CN1046690C - 一种改进固化水泥产品的方法 - Google Patents

一种改进固化水泥产品的方法 Download PDF

Info

Publication number
CN1046690C
CN1046690C CN96194546A CN96194546A CN1046690C CN 1046690 C CN1046690 C CN 1046690C CN 96194546 A CN96194546 A CN 96194546A CN 96194546 A CN96194546 A CN 96194546A CN 1046690 C CN1046690 C CN 1046690C
Authority
CN
China
Prior art keywords
supercritical
cement
mixture
cement products
make
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96194546A
Other languages
English (en)
Other versions
CN1187179A (zh
Inventor
R·H·琼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Materials Technology Ltd
Original Assignee
Materials Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Materials Technology Ltd filed Critical Materials Technology Ltd
Publication of CN1187179A publication Critical patent/CN1187179A/zh
Application granted granted Critical
Publication of CN1046690C publication Critical patent/CN1046690C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0231Carbon dioxide hardening
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0231Carbon dioxide hardening
    • C04B40/0236Carbon dioxide post-treatment of already hardened material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • C04B41/69Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/606Agents for neutralising Ca(OH)2 liberated during cement hardening
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/43Processes of curing clay and concrete materials

Abstract

令固化的水泥基质与高压密相或超临界CO2接触,超临界CO2通过基质通道进入基质,中和水泥固有的碱度,使不耐碱材料可加入水泥。CO2将水泥中氢氧化钙转变成碳酸钙和水,而密相或超临界CO2的高压力形成圆形紧密堆积排列的晶粒,其间很少或没有可见的孔和毛细管,增强了固化水泥的均匀性,强度和其与未涂布的增强玻璃纤维的结合。超临界CO2可将溶解或悬浮的有机或无机材料,包括粉末化金属,传递入水泥基质的内部,改变其化学和/或物理特性。

Description

一种改进固化水泥产品的方法
发明背景
本发明涉及对水泥性能的改进,其方法是使水泥接受密相(极高压)气体或超临界(流体)二氧化碳(CO2)的作用,改变硬化的硅酸盐水泥、石灰或火山灰水泥的浆料的结构和/或化学性质,从而控制其性能。本发明还涉及测试水泥来决定水泥中的添加剂抗水泥碳酸化的程度。
如我的待批的与他人共同提出的美国专利申请(序列号No.08/390,468,1995年1月27日提交,“含有不耐碱物质的水泥混合物及其制法”)所公开的(其内容参考用于本发明中),水泥碳酸化可用于中和碱度从而可将不耐碱的物质加入湿的浆料形成优良的产品。该申请公开了将水泥与低压二氧化碳进行接触。
水泥碳酸化,即天然存在于大气中的二氧化碳与水泥基体中的氢氧化钙化合生成碳酸钙和水,这被认为是不期望发生的,因为含有钢筋的混凝土需要水泥有高度碱性来抑制钢筋的腐蚀。但随着时间水泥发生碳酸化,碱性降低,钢筋预防腐蚀的性能就降低。最后,钢筋开始腐蚀,从而减弱了混凝土的牢固性。碳酸化反应的化学计量方程为:
相反,用气体CO2有目的地减少氢氧化物的碳酸化反应,如我的前述专利申请所述,无论浆料单独还是作为其它材料如混凝土或复合材料的一部分,会快速完全地消除硬化水泥浆料中的碱度。结构上仅有的变化是在扫描电子显微镜(SEM)测定下明显可见,在碳酸化前曾为硅酸钙水合物中没有钙矾石和羟钙石,而出现可见的微晶方解石(常称为“犬牙”)。在微型结构上观察到某些变化,但是孔隙和毛细管仍然是可分辨的,且相当多。我发现当注入密相或超临界的二氧化碳时,发生更大的可见变化。结构的不均匀性减少,而出现了常规的“米粒”结构。在这两种情况下用粉末X射线衍射(XRD)明显可见的另一个变化是衍射谱中没有羟钙石和钙矾石的峰。它们被非常强的方解石峰所替代。在用超临界CO2碳酸化的水泥浆料的粉末XRD中,可发现相同的化学变化。
如上所述,在实验中,发现当水泥基体暴露在处于超临界状态的二氧化碳中时,观察到大量的结构形态变化发生。与用较低压力CO2碳酸化的水泥或没有进行碳酸化的水泥相比,获得的微结构较为致密和简单,具有较少的不同类型的晶体,微孔和微毛细管也较少。其中没有平板状的羟钙石结构和细针状的钙矾石晶体。替代它们的是紧密排列的园形“米粒”状质硅晶体,它们整齐地互相排列在一起,几乎没有可见的孔隙或毛细管。
还发现,长期以来被认为是极性溶剂的超临界CO2,如果需要,可注入硬化水泥基体中,同时有材料溶解或悬浮在超临界CO2中,这就改变了硬化水泥的性能。此外,因为某些水泥的最初混合料中含有甲基纤维素聚合物,该聚合物甚至在与极高压力和极大浓度的临界状态的CO2接触时也会阻止水泥碳酸化。因此,这种将超临界二氧化碳驱入基体的方法使人们可以确定水泥最终碳酸化的程度如何,如果能碳酸化的话。另外明显的是,甲基纤维素防止了水泥碳酸化,因为它是所试验的其它水泥混合物配料设计中唯一不存在的物质。
最后,发现其它具有与水泥相似基体的材料,特别是其孔隙结构和密度在配剂和烧成时容易控制的陶瓷材料,也可注入用超临界CO2传输的材料。
如上所述,本发明下面描述的优点和获得的结果可以用超临界CO2和密相CO2获得。两者均很容易流入并通过水泥(除非经特殊处理封闭了其孔隙通道),特别是在高压条件下的超临界CO2
CO2在温度达到至少31℃,压力至少为1071psi时变成超临界状态。而且,超临界CO2,只要维持在阈值压力,甚至在这之后,温度降到临界阈值以下仍可维持其超临界特性。密相CO2不是超临界状态的,它不是在性能上既象液体又象气体因为它没有达到31℃的温度和1071psi的压力。密相CO2是高度压缩的气体;它的压力为80至100个大气压或更高,但它并没有达到至少31℃,因此它没有超临界CO2的典型特性。在实现本发明目的上,密相CO2和超临界CO2作用相同,只是它不象超临界CO2那样,它不能溶解或悬浮在超临界CO2中能溶解或悬浮的某些材料(如下所述)。因此,除非另有描述,这里包括权利要求中所用的“超临界CO2”是指超临界CO2和密相CO2,除了在一些实施例包括权利要求中,指出某些材料在超临界CO2中的溶解度或悬浮度时,这时术语“超临界CO2”不包括“密相CO2”。
发明概要
当一种材料用在由硅酸盐水泥、石灰、火山灰或其它合适的水硬性水泥制成的水泥料中作为增强筋和/或骨料时,这种增强筋和/或骨料的所贡献的强度和挠度与它和水泥基体之间的结合强度成正比。为提高抗压强度和抗挠强度,因此有必要提高这种结合的韧度。水泥碳酸化作用通过在水泥和增强筋和/或骨料之间形成结构完整的未受损伤的结合来使骨料或加入水泥基体的增强玻璃、塑料、天然材料或它们的混合物与水泥基体在结构上一体化。这是通过在围绕着这些材料的中间相中减少或除去羟钙石以及在水泥的空隙中填入紧密堆积的碳酸钙晶体来实现的。结果,它的强度比用耐碱的涂覆玻璃或相对较弱的耐碱塑料作骨料时,强度要大。
本发明因此采用经碳酸化将其pH变为中性(7)的水泥作为玻璃和/或某些塑料、天然存在的骨料、纤维、织物和/或粗纱而非抗碱的玻璃和/或塑料的粘合剂;例如,可以制造如纤维玻璃增强的水泥板及其它许多产品。
因此,本发明的一个目的是用超临界CO2来增密和简化硬化的水硬性水泥浆料基体,这类水泥浆料包括完全或部分用硅酸盐水泥、自胶结或碱激活的烟灰火山灰、天然的火山灰、碱激活或自胶结的炉渣或石灰配制的水泥浆料,还可以含有其它添加剂,增强筋或骨料。
本发明还有一个目的是用超临界CO2来测定硬化水硬性水泥是否可以抗碳酸化。
本发明还有一个目的是用超临界CO2(按前述定义应不包括密相CO2)将溶解的或某些悬浮的有机和/或无机材料传输到硬化和完全水合的水泥基体中的孔隙或毛细管中,以此来改变水泥基体的物理和/或化学性能。
本发明的另一个目的是用超临界CO2来使陶瓷材料或硬化水硬性水泥基体碳酸化,将其碱度减少至约为pH7,同时增密和简化其微结构的结构形态,输入其它溶解的并在一定环境下悬浮在CO2中的材料。
本发明还有一个目的是用超临界CO2将导电性材料注入到水泥基体中,以改变后者的电性能。
本发明还有一个目的是用超临界CO2将某些材料注入水泥基体中,这些材料在温度升高的条件下将熔化或以其它方式与水泥基体的结构融合或化合,使它有改变的物理、电气或机械性质或其它所需的性能。
本发明另外一个目的是用超临界CO2将溶解于其中的物质注入硬化水硬性水泥基体中,该溶解的物质在随后与其它某些化学物质和溶剂接触时将发生反应。
本发明还有一个目的是用超临界CO2将一些物质注入基体中,随后与化学物质和溶剂接触时发生破坏性反应。
较佳实施方案详述
本发明试图采用与那些现在用来生产刚性热塑性塑料、金属或陶瓷的产品的方法相似的生产方法。这些方法包括物体的模制成形、挤压和拉挤以及浇铸、烧结、加工或锻造,这些将在下面有详细描述。
模制成型的产品,特别是刚性热塑性塑料和陶瓷,可以多种方法制成。其中有注射模制成形和转动模制成型,它们共同的特征是将塑性的材料充入有一个或多个部件具有最后所需成品形状成形的模具中。一旦将材料放在模具中后,待其或使其硬化,然后打开模具取出成形的制品。根据本发明,则是将水硬性水泥充入模具。在本说明书中,“水硬性水泥”指的是硅酸盐水泥、火山灰或石灰中的任何一种或它们的混合物,这种水泥还可包括添加剂来增大强度、着色、加快硬化速度或赋予其它所需的特性。这些添加剂还可包括材料如纤维增强筋,骨料,有催化性能的化学物质或增塑剂。
将塑料和金属成型为产品的另一种方法是通过挤压,即将塑性材料通过一个形成制品形状的模孔挤出,或通过拉挤,即将塑料材料拉出而不是推挤出来。
在浇铸方法中,将液态材料简单地倒入模具中,在其中固化或硬化形成具有模具形状的制品,然后分开模具将制品取出。这个技术通常用于生产陶瓷和金属。金属可在锻造过程中击打成形。
最后,塑料,金属和某些陶瓷可用旋转车床和轧制装置制成最后形状。
所有这些技术都适用于将本发明的材料制成产品。
本发明的一个典型的方法包括对材料用上述方法制成最后形状,而如果它然后还要切削加工的话,则制成最后的粗略形状。一旦水泥硬化后,本发明有两个实施方案可供选择。第一个实施方案只是注入超临界CO2(一种很密的气-液相的CO2)使硬化的基体产生改变。超临界CO2的注入可在高于或低于CO2的超临界阈值温度(31℃)下进行,只要CO2先曾达到或超过了超临界阈值温度即可,在本发明的一个实施方案中,注入是在温度范围为2℃至31℃间进行。
超临界CO2的注入使水泥中的氢氧化物转变成碳酸盐。它也改变了材料的物理微结构,使原来是硅酸钙水合物的相简单化,压紧并紧密排列成分缟玛瑙状的均匀晶粒,晶粒间的孔隙和毛细管更少,甚至在放大倍数为10000倍下观察也是如此。在未经超临界CO2注入的情况下会出现的的平板状和针状晶体则完全或几乎没有。
在约100个大气压和2℃至10℃间的温度下注入超临界CO2,会生成最均匀而整齐排列的微结构。材料的孔隙度和孔隙大小决定了完成注入和碳酸化所需的时间。孔隙度大或蜂窝状材料的超临界CO2注入和碳酸化比较密材料进行得快。表1显示不同密度的各种水泥达到完全碳酸化的时间和压力。测试是在均与厚度约为2cm的样品上进行。
                                        表1
  水泥类型      密度磅/立方英尺      压力磅/平方英寸    温度℃    时间分钟
   硅酸盐水泥       20      990      8     15
      50     1071     31     60
     110     2055     26     60
     180     3350     22     60
     C型烟灰       20      990      8     15
      50     1071     28     60
     110     1900     28     60
     180     2300     32     60
本发明的第二个实施方案与第一个相同,只是采用超临界CO2(而不是密相CO2),它除了与水泥中的氢氧化物反应外,也作为传递媒介或溶剂来将其它溶解的或悬浮的(颗粒状的)物质送入硬化的水硬性水泥基体中。在此实施方案中,如上所述发生碳酸化反应,但这只是更多化学和物理过程的一部分。例如,氧化锌或细粒状的(粉末状的)金属锌可溶解或悬浮(作为粉末颗粒)在超临界CO2中,然后注入水泥基体中形成反应产物如异极矿和菱锌矿。这种反应(只是很多可能反应的一种)会将毛细管封闭住并将反应产物填入微孔隙中。结果是,水泥基体对例如水的可渗透性小得多。锌的注入还提高了水泥的延展性。
为实现这种溶解或悬浮在超临界CO2中物质的注入,首先将超临界CO2通过装有该物质的容器,然后流入装有硬化水泥制品的容器中。当CO2通过容器时,会溶解在CO2中的物质就溶入CO2。不会溶解在CO2中的物质应首先粉末化至足够小的粉末颗粒,使其可和超临界CO2一起流入通过水泥基体中的孔隙和毛细管。在将水泥基体与超临界CO2接触之前,将这些粉末颗粒和CO2适当混合即悬浮于其中,使夹带在其中的粉末颗粒随同CO2一起流入通过孔隙和毛细管进入水泥基体内部。
在本发明的另一个实施方案中,水泥基体用溶解在超临界CO2中的塑料来注入并碳酸化。该方法如前段所述进行,只是第一个容器中装有塑料。该方法中所用的塑料是逐个试验进行选择的,可包括在超临界CO2中可溶的单聚物、多聚物或共聚物的任何一种。也可注入塑料、金属和/或金属盐和塑料的混合物以及和种金属和或金属盐的混合物,这要根据碳酸化水泥基体最后所需的特性来决定。
将金属注入固化水泥基体中也可以改变水泥基体的电学性质。例如,可将所需的金属如铝或铜粉末化成足够小的粉末颗粒,使颗粒能够通过孔隙和毛细管进入基体。将金属粉末引入超临界CO2,令水泥基体与CO2和金属粉末的混合物进行接触,CO2携带粉末颗粒进入固化的水泥基体中,在基体中粉末颗粒沉积。对基体加热至超过粉末颗粒的熔化温度,这些粉末颗粒熔化并在水泥基体的孔隙,空穴,通道和毛细管的内表面上形成相互连接的电导层,因此使基体的内部能够导电。
根据本发明的另一个实施方案,超临界二氧化碳碳酸化/注入方法可用来快速测定水泥基体是否会碳酸化。这在建筑业中非常重要。因为这与保护增强钢筋和钢网防止腐蚀的水泥碱度有关。当水泥浆料在混合过程中加入一种有机聚合物羟丙基甲基纤维素,它将防止水泥碳酸化的发生,还知道有其它此类材料可加入湿水泥混合物中。直到现在还不可能快速测定混合物中是否含有这种物质以及水泥暴露在天然存在大气中的CO2、低压CO2、或超临界CO2时是否将会碳酸化的办法。注入超临界CO2后用X射线衍射仪检测或将小基体样品与酚醛接触可快速确定样品基体碳化酸的程度。这就提供了简单快速测定水泥中是否加入了一种或多种能防止水泥基体碳酸化材料的试验。
用超临界CO2碳酸化注入来制成的制品和材料的范围很广。它包括许多现在用不透明的刚性热塑性塑料,金属或陶瓷制成的制品。预计制成的产品可用于航天,汽车,制造业,建筑,医药和石油化学工业。由于用这个方法可控制硬度、延展性、膨胀系数、电性质等性能,预计用本发明制成的材料可生产消费品、发动机部件甚至是假肢器官等等。
因此,本发明可使得水泥产品有以前不能获得的特性,这不仅是因为可混入水泥的纤维增强物和/或骨料的类型和特性受到严格的限制,而且由于本发明能将材料注入固化的水泥中来影响它的化学和/或物理性质。通过碳酸化和最后的pH中和,增强纤维分解的可能性可以被消除。所以几乎任何类型的纤维和/或骨料都可混入水泥中。可根据高拉伸强度来选择纤维如玻璃纤维,又可根据柔性来选择其它材料(如聚酯),它们可结合或混合在一起加入水泥基体中,使最后的水泥产品具有各种性质结合的性能。此外,此前不能获得的特性如水泥基体的内部导电性也可根据本发明方法获得,进一步扩大了水泥产品的用途。而且,因为水泥产品的初始成形很容易,例如通过将湿的水泥混合物倒入模具,所以可显著减少成本获得新型的产品。

Claims (20)

1.一种改进固化水泥产品的方法,包括下列步骤:混合至少水泥和水形成混合物,固化此混合物,然后使混合物接受超临界CO2作用。
2.根据权利要求1所述的方法,其中使混合物接受超临界CO2作用的步骤是在引发固化之后进行。
3.根据权利要求2所述的方法,其中使混合物受超临界CO2作用的步骤至少部分地是在固化基本上完成之后进行。
4.根据权利要求1所述的方法,包括将CO2压力提高到至少1071psi,并同时将CO2温度提高至至少31℃来生产超临界CO2的步骤。
5.根据权利要求1所述的方法,包括在令混合物与超临界CO2接触之后,将该混合物用压力大于1071psi和温度低于约31℃的CO2处理。
6.根据权利要求5所述的方法,其中CO2的温度在约2℃和不超过31℃之间。
7.根据权利要求1所述的方法,包括将第三种材料引入超临界CO2,并进行使混合物接受超临界CO2作用,从而使携带着第三种材料的超临界CO2注入基体中的步骤。
8.根据权利要求7所述的方法,其中第三种材料是在CO2中可溶解的物质,在使混合物接受超临界CO2作用之前包括将该第三种材料溶解在超临界CO2中的步骤。
9.根据权利要求7所述的方法,其中第三种材料在CO2中不溶解,它是一种由颗粒组成的粉末,其颗粒足够小使得颗粒能和超临界CO2一起传递通过基体内的孔隙和毛细管形成的通道。
10.根据权利要求9所述的方法,其中第三种材料是金属。
11.根据权利要求10所述的方法,包括将固化的混合物和注入其中的的颗粒加热到至少为金属熔点的温度,使固化的混合物具有改进的导电性。
12.根据权利要求1所述的方法,包括在使混合物接受超临界CO2作用步骤后,用X射线衍射仪检测固化的混合物。
13.一种保护固化的水泥产品中不耐碱的物质并改变固化后水泥产品特性的方法,包括步骤为,混合水泥、水和物质成为混合物,使混合物固化,提供超临界CO2,在超临界CO2中加入一种材料形成超临界混合物,该材料的形态可以使该材料通过水泥产品中的孔隙和毛细管进入水泥产品,使水泥产品接受超临界混合物的作用以降低水泥产品的pH,并使超临界混合物注入水泥产品中,从水泥产品中抽取出至少部分的超临界CO2,使至少部分材料留在水泥产品内从而藉该材料改变产品的化学和物理特性中的至少一种。
14.根据权利要求13所述的方法,其中加入材料步骤是将材料溶解在超临界CO2中。
15.根据权利要求13所述的方法,其中加入材料步骤是将材料悬浮在超临界CO2中。
16.根据权利要求15所述的方法,包括在使水泥产品接受临界CO2作用步骤之前对材料粉末化。
17.根据权利要求13所述的方法,其中使水泥产品接受超临界混合物作用的步骤包括将水泥产品的pH降低至约为7。
18.一种改变固化水泥产品的特性的方法,包括将至少含水泥和水的湿水泥混合物制成产品,提供超临界CO2,将一种材料加入超临界CO2中形成超临界混合物,该材料处于可以通过水泥产品中的孔隙和毛细管进入水泥产品的形态,令超临界混合物流入水泥产品,使至少部分材料沉积在水泥产品的内部从而改变水泥产品的特性。
19.根据权利要求18所述的方法,其中材料是粉末化的金属颗粒,它夹带在超临界CO2之中。
20.根据权利要求19所述的方法,包括将水泥产品加热至足够的温度,使至少部分金属颗粒互相熔合,从而改变产品的导电性。
CN96194546A 1995-06-07 1996-06-03 一种改进固化水泥产品的方法 Expired - Fee Related CN1046690C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/483,235 US5518540A (en) 1995-06-07 1995-06-07 Cement treated with high-pressure CO2
US08/483,235 1995-06-07

Publications (2)

Publication Number Publication Date
CN1187179A CN1187179A (zh) 1998-07-08
CN1046690C true CN1046690C (zh) 1999-11-24

Family

ID=23919255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96194546A Expired - Fee Related CN1046690C (zh) 1995-06-07 1996-06-03 一种改进固化水泥产品的方法

Country Status (17)

Country Link
US (2) US5518540A (zh)
EP (1) EP0840713A4 (zh)
JP (1) JP3261384B2 (zh)
KR (1) KR100252841B1 (zh)
CN (1) CN1046690C (zh)
AR (1) AR002371A1 (zh)
AU (1) AU689045B2 (zh)
BR (1) BR9608433A (zh)
CA (1) CA2224065C (zh)
EA (1) EA000302B1 (zh)
EG (1) EG20663A (zh)
IL (1) IL118370A (zh)
MX (1) MX9709700A (zh)
PE (1) PE11297A1 (zh)
TW (1) TW331555B (zh)
WO (1) WO1996040601A1 (zh)
ZA (1) ZA964249B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793076A (zh) * 2010-02-26 2010-08-04 哈尔滨工业大学深圳研究生院 外加剂的混凝土构件及制备方法
CN108340480A (zh) * 2018-01-24 2018-07-31 浙江大学 一种利用二氧化碳梯级矿化养护混凝土砌块的方法

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518540A (en) * 1995-06-07 1996-05-21 Materials Technology, Limited Cement treated with high-pressure CO2
US5935317A (en) * 1995-08-02 1999-08-10 Dpd, Inc. Accelerated curing of cement-based materials
AU3075997A (en) * 1996-05-20 1997-12-09 Materials Technology, Limited Hardened hydraulic cement, ceramic or coarse concrete aggregate treated with high pressure fluids
US6010619A (en) * 1997-01-22 2000-01-04 Greenvue Company, Llc FCC process with zeolite and hydrotalcite
US5897704A (en) * 1997-05-19 1999-04-27 Materials Technology, Limited Hardened hydraulic cement, ceramic or coarse concrete aggregate treated with high pressure fluids
US6264736B1 (en) 1997-10-15 2001-07-24 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Pressure-assisted molding and carbonation of cementitious materials
US6251356B1 (en) 1999-07-21 2001-06-26 G. R. International, Inc. High speed manufacturing process for precipitated calcium carbonate employing sequential perssure carbonation
GB0010411D0 (en) * 2000-04-28 2000-06-14 Abonetics Ltd A process for the preparation of carbonated biomedical materials
US7048900B2 (en) * 2001-01-31 2006-05-23 G.R. International, Inc. Method and apparatus for production of precipitated calcium carbonate and silicate compounds in common process equipment
JP4285051B2 (ja) * 2003-04-07 2009-06-24 株式会社豊田中央研究所 炭酸塩膜の製造方法
US7390444B2 (en) * 2005-02-24 2008-06-24 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
US9028607B2 (en) * 2005-02-24 2015-05-12 Wisconsin Electric Power Company Carbon dioxide sequestration in foamed controlled low strength materials
US20070017418A1 (en) * 2005-07-25 2007-01-25 Dennis Andrew C Magnesium cementitious composition
US7736430B2 (en) * 2006-03-16 2010-06-15 William Marsh Rice University Compositions and methods for controlling the setting behavior of cement slurries using carbonated fly ash
WO2008148055A1 (en) * 2007-05-24 2008-12-04 Calera Corporation Hydraulic cements comprising carbonate compounds compositions
MY150249A (en) * 2007-11-15 2013-12-31 Univ Rutgers Systems and methods for carbon capture and sequestration and compositions derived therefrom
NZ601533A (en) * 2007-11-15 2014-12-24 Univ Rutgers Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom
WO2009132692A1 (en) * 2008-04-28 2009-11-05 Carbstone Innovation Nv Production of an article by carbonation of alkaline materials
US9061940B2 (en) * 2008-09-30 2015-06-23 Calera Corporation Concrete compositions and methods
EP2462277B1 (en) 2009-08-05 2014-11-05 International Paper Company Process for applying composition containing a cationic trivalent metal and debonder and fluff pulp sheet made from same
MY162376A (en) 2009-08-05 2017-06-15 Shell Int Research Method for monitoring a well
EP2845948B1 (en) 2009-08-05 2022-03-02 International Paper Company Dry fluff pulp sheet additive
KR101120618B1 (ko) * 2009-09-17 2012-03-16 한국건설기술연구원 이산화탄소 가스를 이용한 콘크리트 2차 제품의 중성화 처리 방법 및 이에 의하여 개질된 콘크리트 2차 제품의 제조방법
US8377197B2 (en) 2009-10-21 2013-02-19 Reco Cement Products, LLC Cementitious compositions and related systems and methods
US20110100265A1 (en) * 2009-10-29 2011-05-05 Malone Philip G Process and system for increasing density of non-conductive porous solids and material made therefrom.
US20110182799A1 (en) * 2010-01-22 2011-07-28 Rutgers, The State University Of New Jersey Sequestration of a gas emitted by an industrial plant
US8465624B2 (en) 2010-07-20 2013-06-18 International Paper Company Composition containing a multivalent cationic metal and amine-containing anti-static agent and methods of making and using
EP2596167B1 (en) 2010-07-22 2017-03-22 International Paper Company Process for preparing fluff pulp sheet with cationic dye and debonder surfactant and fluff pulp sheet made from same
UA113844C2 (xx) 2011-03-05 2017-03-27 Зв'язуючий елемент, зв'язуюча матриця і композитний матеріал, що має зв'язуючий елемент, та спосіб його виготовлення
CN103717548B (zh) 2011-06-09 2016-08-17 新泽西州州立大学(拉特格斯) 合成配制物及其制备和使用方法
WO2013079732A1 (es) 2011-11-29 2013-06-06 Geosilex Trenza Metal, S.L. Procedimiento de fraguado aéreo para la obtención de piezas prefabricadas con matrices cementantes, matrices y piezas prefabricadas así obtenidas y utilización de las mismas
WO2013177583A2 (en) * 2012-05-25 2013-11-28 Neumann Systems Group, Inc. System and method for selectively removing metals from industrial waste
US8845940B2 (en) 2012-10-25 2014-09-30 Carboncure Technologies Inc. Carbon dioxide treatment of concrete upstream from product mold
CA2900049C (en) 2013-02-04 2020-08-18 Coldcrete, Inc. System and method of applying carbon dioxide during the production of concrete
US9108883B2 (en) 2013-06-25 2015-08-18 Carboncure Technologies, Inc. Apparatus for carbonation of a cement mix
US9376345B2 (en) 2013-06-25 2016-06-28 Carboncure Technologies Inc. Methods for delivery of carbon dioxide to a flowable concrete mix
US10927042B2 (en) 2013-06-25 2021-02-23 Carboncure Technologies, Inc. Methods and compositions for concrete production
US9388072B2 (en) 2013-06-25 2016-07-12 Carboncure Technologies Inc. Methods and compositions for concrete production
US20160107939A1 (en) 2014-04-09 2016-04-21 Carboncure Technologies Inc. Methods and compositions for concrete production
ES2959490T3 (es) * 2013-06-25 2024-02-26 Carboncure Tech Inc Red que comprende una pluralidad de operaciones de mezcla de cemento separadas espacialmente
WO2015103107A1 (en) * 2013-12-30 2015-07-09 Solidia Technologies, Inc. Anticorrosive coatings, processes and uses thereof
WO2015123769A1 (en) 2014-02-18 2015-08-27 Carboncure Technologies, Inc. Carbonation of cement mixes
CA2943791C (en) 2014-04-07 2023-09-05 Carboncure Technologies Inc. Integrated carbon dioxide capture
EP2990393A1 (en) * 2014-08-29 2016-03-02 Recoval Belgium Method for producing a carbonate bonded, press-moulded article
WO2016061251A1 (en) * 2014-10-15 2016-04-21 The Regents Of The University Of California Enhanced carbonation and carbon sequestration in cementitious binders
CA3019860A1 (en) 2016-04-11 2017-10-19 Carboncure Technologies Inc. Methods and compositions for treatment of concrete wash water
US10577248B2 (en) 2016-05-24 2020-03-03 Harper Biotech LLC Methods and systems for large scale carbon dioxide utilization from Lake Kivu via a CO2 industrial utilization hub integrated with electric power production and optional cryo-energy storage
BR112019005963B1 (pt) * 2016-09-26 2023-03-21 Solidia Technologies, Inc Aparelho para a cura de materiais
US11247940B2 (en) 2016-10-26 2022-02-15 The Regents Of The University Of California Efficient integration of manufacturing of upcycled concrete product into power plants
MX2019015651A (es) 2017-06-20 2020-08-03 Carboncure Tech Inc Métodos y composiciones para tratamiento de agua de lavado de concreto.
WO2019006352A1 (en) 2017-06-30 2019-01-03 The Regents Of The University Of California CO2 MINERALIZATION IN PRODUTED AND INDUSTRIAL EFFLUENT WATER BY PH CHANGE CARBONATION
EP3668820A4 (en) 2017-08-14 2021-05-05 The Regents of the University of California, A California Corporation REDUCING THE ALKALINE-SILICA REACTION IN CONCRETE USING SLIGHTLY SOLUBLE CHEMICAL ADDITIVES
US20220002203A1 (en) * 2018-11-15 2022-01-06 University Of Virginia Patent Foundation Cementitious materials and methods of making and using thereof
US11384029B2 (en) 2019-03-18 2022-07-12 The Regents Of The University Of California Formulations and processing of cementitious components to meet target strength and CO2 uptake criteria
CN111085101B (zh) * 2019-12-25 2021-03-09 华北电力大学 一种二氧化碳矿化封存及固化飞灰中重金属的系统及方法
CN113733352B (zh) * 2021-04-08 2022-08-16 中国矿业大学 一种利用超临界二氧化碳制备泡沫混凝土的方法及装置
CA3233212A1 (en) * 2021-10-07 2023-04-13 Vahit Atakan Method of preparing supplementary cementitious materials, and supplementary cementitious materials prepared therefrom
US11859122B2 (en) 2021-10-19 2024-01-02 Halliburton Energy Services, Inc. Enhanced carbon sequestration via foam cementing
CN114230293B (zh) * 2021-12-16 2023-01-31 中煤科工集团西安研究院有限公司 一种无机有机复合注浆止水材料、制备方法及其应用
CN115749787B (zh) * 2022-11-21 2023-06-23 中国海洋大学 一种喷洒二氧化碳固化海底稀软底质的系统与方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069063A (en) * 1976-11-24 1978-01-17 Westvaco Corporation Cement composition
US5307876A (en) * 1992-10-22 1994-05-03 Shell Oil Company Method to cement a wellbore in the presence of carbon dioxide
US5358676A (en) * 1990-05-18 1994-10-25 E. Khashoggi Industries Methods of manufacture and use for hydraulically bonded cement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3468993A (en) * 1966-09-06 1969-09-23 Knud Georg Bierlich Manufacture of portland cement products
CH548598A (it) * 1972-07-03 1974-04-30 Domenighetti Domenico Apparecchio per misurare ''in situ'' la permeabilita di uno strato di materiale e procedimento per la messa in esercizio di detto apparecchio.
DE3300598C2 (de) * 1983-01-11 1986-05-22 Hauni-Werke Körber & Co KG, 2050 Hamburg Einrichtung zum Stabilisieren eines Vordruckes zum pneumatischen Prüfen von aufeianderfolgenden Rauchartikeln
US5066522A (en) * 1988-07-14 1991-11-19 Union Carbide Chemicals And Plastics Technology Corporation Supercritical fluids as diluents in liquid spray applications of adhesives
US5433847A (en) * 1989-11-01 1995-07-18 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Radial flow chromatography
US5219388A (en) * 1992-01-17 1993-06-15 University Of Florida Method and apparatus for testing water permeability of concrete
US5360743A (en) * 1992-03-10 1994-11-01 Quantachrome Corp. Method for measuring a sample sorption and a sample cell void volume and wall adsorption using an adsorbate gas
FR2706204B1 (fr) * 1993-06-07 1995-09-01 Total Sa Dispositif d'étude de la migration d'un gaz dans un laitier de ciment.
US5518540A (en) * 1995-06-07 1996-05-21 Materials Technology, Limited Cement treated with high-pressure CO2

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069063A (en) * 1976-11-24 1978-01-17 Westvaco Corporation Cement composition
US5358676A (en) * 1990-05-18 1994-10-25 E. Khashoggi Industries Methods of manufacture and use for hydraulically bonded cement
US5307876A (en) * 1992-10-22 1994-05-03 Shell Oil Company Method to cement a wellbore in the presence of carbon dioxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793076A (zh) * 2010-02-26 2010-08-04 哈尔滨工业大学深圳研究生院 外加剂的混凝土构件及制备方法
CN108340480A (zh) * 2018-01-24 2018-07-31 浙江大学 一种利用二氧化碳梯级矿化养护混凝土砌块的方法

Also Published As

Publication number Publication date
JP3261384B2 (ja) 2002-02-25
PE11297A1 (es) 1997-04-17
MX9709700A (es) 1998-10-31
EA000302B1 (ru) 1999-04-29
TW331555B (en) 1998-05-11
AU5983596A (en) 1996-12-30
US5650562A (en) 1997-07-22
KR19990022689A (ko) 1999-03-25
CA2224065A1 (en) 1996-12-19
CA2224065C (en) 2002-08-06
IL118370A (en) 2000-06-29
CN1187179A (zh) 1998-07-08
EA199800010A1 (ru) 1998-06-25
BR9608433A (pt) 1999-12-07
US5518540A (en) 1996-05-21
IL118370A0 (en) 1996-09-12
EP0840713A1 (en) 1998-05-13
AU689045B2 (en) 1998-03-19
WO1996040601A1 (en) 1996-12-19
KR100252841B1 (ko) 2000-04-15
EP0840713A4 (en) 1999-10-27
EG20663A (en) 1999-10-31
JPH10511073A (ja) 1998-10-27
AR002371A1 (es) 1998-03-11
ZA964249B (en) 1996-12-04

Similar Documents

Publication Publication Date Title
CN1046690C (zh) 一种改进固化水泥产品的方法
CN111954648B (zh) 混凝土和砂浆中的沙漠砂和细丝状纤维素
US5786080A (en) Compositions and methods for manufacturing ettringite coated fibers and aggregates
EP2225186B1 (en) Ductile ultra-high performance concrete composition
US5965201A (en) Hardened hydraulic cement, ceramic or coarse concrete aggregate treated with high pressure fluids
DE102006051216B4 (de) Verfahren zur Herstellung leichter Gesteinskörnungen, durch diese Verfahren erhältliche leichte Gesteinskörnungen, und Verwendung derselben zur Herstellung von Baustoffen
Shilar et al. Advancement of nano-based construction materials-A review
CN113683370B (zh) 一种抗压抗碳化再生混凝土及其制备方法
DE19752045A1 (de) Mischung und Herstellung von Formteilen aus Glasfaserbeton sowie Verfahren und Vorrichtung zur Herstellung solcher Formteile
EP2062863A1 (de) Baustein und Verfahren zur Herstellung eines Bausteins
Jones Cement treated with high-pressure CO2
DE2246381A1 (de) Geformte zementprodukte
DE1569550C3 (de) Verfahren zur Herstellung von zuschlagstoffhaltigen Aminoplastschaumstoffen
EP0375653A2 (de) Verfahren zur Behandlung von Abfallstoffen
US6846856B1 (en) Mixed organic and inorganic composites with intermingled facial layers
CN1024462C (zh) 一种液体废料化学固定和固化处理的方法
Meloni et al. Mix Design of Geopolymeric Formulations for Environmentally Sustainable Structural Applications
DE4415278C2 (de) Verfahren zur auslaugarmen Ablage von mit Schadstoffen belasteten mineralischen Materialien
DE102015112878A1 (de) Verfahren zum Verfestigen von staubförmigen Abfällen in Müllverbrennungsanlagen und Kraftwerken sowie Zusammensetzung der Verfestigungsmischung
DE102020112292A1 (de) Verfahren zur Herstellung einer Schaumbetonmischung für die Herstellung von hochdeformierbaren Schaumbetonprodukten, hochdeformierbare Schaumbetonprodukte und deren Verwendung
Babu et al. Hybrid Advances
KR20100013112A (ko) 생석회, 폐석고, 알루미나 및 하수슬러지를 포함하는복토재 및 이의 제조방법
JPH0592409A (ja) 水硬性無機質成形体の製造方法
KR20030015591A (ko) 표면처리-재생 잔골재 및 그의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee