CN104645965A - 一种用于光催化的铋-氧化钛纳米线材料及制备方法 - Google Patents

一种用于光催化的铋-氧化钛纳米线材料及制备方法 Download PDF

Info

Publication number
CN104645965A
CN104645965A CN201510121107.6A CN201510121107A CN104645965A CN 104645965 A CN104645965 A CN 104645965A CN 201510121107 A CN201510121107 A CN 201510121107A CN 104645965 A CN104645965 A CN 104645965A
Authority
CN
China
Prior art keywords
bismuth
titanium oxide
preparation
room temperature
electrospinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510121107.6A
Other languages
English (en)
Other versions
CN104645965B (zh
Inventor
陈俊芳
陈源
卢秋菊
张敏
陈冬玲
潘远均
徐斌
刘碧桃
刘代军
涂铭旌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Arts and Sciences
Original Assignee
Chongqing University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences filed Critical Chongqing University of Arts and Sciences
Priority to CN201510121107.6A priority Critical patent/CN104645965B/zh
Publication of CN104645965A publication Critical patent/CN104645965A/zh
Priority to US15/559,061 priority patent/US10046980B2/en
Priority to PCT/CN2016/076586 priority patent/WO2016146070A1/zh
Application granted granted Critical
Publication of CN104645965B publication Critical patent/CN104645965B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/001Starting from powder comprising reducible metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/03Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F26/10N-Vinyl-pyrrolidone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种用于光催化的铋-氧化钛纳复合米线及制备方法,属于无机纳米材料领域。铋-氧化钛纳复合米线的制备为:将聚乙烯吡咯烷酮(PVP)、硝酸铋加入到N-N二甲基酰胺(DMF)中,磁力搅拌一段时间后加入钛酸四丁酯和乙酰丙酮,再持续搅拌6小时以上,得到透明稳定的溶液。将溶液在静电纺丝发生装置中于一定条件下进行电纺,得到的电纺前驱纳米纤维首先在马弗炉中进行空烧以除去有机物。冷却至室温后,再放入管式炉中于氢气气氛下还原烧结。本方法节能环保,条件易于控制,成本低廉,容易大规模工业化生产。得到的铋-氧化钛纳米线在光照下对甲基橙表现出良好的降解活性,反应20 min时甲基橙降解率达到95%以上,在污水处理方面具有广阔的应用前景。

Description

一种用于光催化的铋-氧化钛纳米线材料及制备方法
技术领域
本发明属于无机纳米材料和环境污染治理技术领域,具体涉及一种可用于降解污染物(染料)的具有高效光催化活性的铋-氧化钛纳米线材料及制备方法。
背景技术
随着人口的急剧膨胀和工业的快速发展,环境污染问题已经成为影响人类生产、生活的首要问题。各国政府都将环境污染治理列为现阶段以及未来几年的头等大事。特别是印染行业中甲基橙等大量水溶性偶氮染料的大量排放,使人类赖以生存的水质日益恶化。这些污染物质多难生物降解,一旦进入水体,由于其在水体中自然降解过程缓慢,其危害性延滞较长。光催化反应可以将污染物在光照条件下完全矿化为各种无机离子,因此在环境治理方面得到了广泛关注,关于光催化剂的研发,成为目前国内外的研究热点。
纳米氧化钛由于具有尺寸小、比表面积大、表面原子配位不全等特点,从而导致其表面的活性位较多,形成了凸凹不平的原子台阶,在作为催化剂使用时可以增大与反应物的接触面积,因此,和传统催化剂相比,具有更高的催化活性。在光催化领域,纳米氧化钛作为催化剂时能使水中的有害有机物质最终分解,避免其对环境的污染。研究表明,纳米氧化钛的反应速度是大块氧化钛材料的100~1000倍,而且与普通粒子相比,纳米氧化钛几乎不会引起光的散射,因此是极具应用前景的光催化剂之一。
到目前为止,人们已经通过制备多种多样的氧化钛纳米复合材料对氧化钛进行性能良,如氧化锡-氧化钛复合材料,氧化锌-氧化钛复合材料等。虽然方法很多,但仍都存在一些不足,目前得到的氧化钛复合材料对污染物的降解效率仍待提高。寻求价廉、环境友好并具有高催化活性的光催化材料是光催化技术发展的关键。
发明内容
本发明的目的在于克服现有技术的不足,提供一种可用于降解污染物(染料)的具有高效光催化活性的铋-氧化钛纳米线材料及制备方法。
本发明提供的铋-氧化钛纳米线的制备方法,其特征在于采用一种静电纺丝发生装置进行制备,该方法节能环保,条件易于控制,原材料广泛,成本低廉,容易大规模工业化生产。所得铋-氧化钛纳米线在污染物治理方面具有很好的应用前景。具体包括以下步骤:
(1)   首先,将聚乙烯吡咯烷酮(PVP)、硝酸铋加入到N-N二甲基酰胺(DMF)中,磁力搅拌一段时间后加入钛酸四丁酯和乙酰丙酮,再持续搅拌6小时以上,得到透明稳定的溶胶。
(2)   将步骤(1)所述溶胶溶液在静电纺丝发生装置中于一定条件下进行电纺。
(3)将步骤(2)得到的电纺前驱纳米纤维首先在马弗炉中以5℃/min的升温速率进行空烧以除去有机物。
(4)冷却至室温后,放入管式炉中于氢气气氛下还原烧结。
本发明中,步骤(1)中所述透明稳定溶液指经过6h磁力搅拌后溶液中无肉眼可见的不容物质;.步骤(2)中电纺过程必须在一定条件下进行,其中包括:环境温度大于20℃,湿度小于85%RH,纺丝电压8~25 KV,针头直径0.6~1.2 mm,针头与接收器距离15~25 cm;步骤(3)中在马弗炉中焙烧过程采用阶段程序升温,先以5℃/min的加热速率从室温加热至200℃,然后继续以10℃/min的加热速率升温至600℃焙烧2h,最后自然冷却到室温;步骤(4)中在管式中焙烧过程采用氢气气氛焙烧,先以5℃/min的加热速率从室温加热至200℃,然后继续以10℃/min的加热速率升温至600℃焙烧2h,最后自然冷却到室温。
与现有技术相比,本发明具有如下有益效果:
本发明方法采用静电纺丝法为制备工艺,原料简单易得,通过氢气还原过程获得了复合材料,整个实验过程过程简单,操作方便,很容易实现产物的大规模生产,所得铋-氧化钛氧化锌纳米线均匀、连续,具有较大的长径比,对染料甲基橙的降解具有很好的催化效果。
附图说明
图1 是制备的铋-氧化钛纳米线的XRD图。
图2 是制备的铋-氧化钛纳米线的SEM图。
图3 是制备的铋-氧化钛纳米线的TEM图。
图4是制备的铋-氧化钛纳米线对甲基橙降解反应的光催化效果图。
具体实施方式
下面结合实施例对本发明进行进一步说明。本发明的生产技术对本专业的人来说是容易实施的。本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述的实施例。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。
实施例
用电子天平分别称取0.6g聚乙烯吡咯烷酮(PVP)、4g硝酸铋加入到装有8g N-N二甲基酰胺(DMF)的烧杯中,磁力搅拌30min, 然后后加入4钛酸四丁酯和0.4g乙酰丙酮,再持续搅拌6小时,得到透明稳定的溶胶。
将上述溶液移入静电纺丝发生装置中进行电纺,在电放过程中,控制环境温度35℃,湿度80%RH,电压15KV, 针头直径0.9mm,接收距离15cm。电纺过程结束后,得到电纺前驱纳米纤维。
将得到的纳米纤维用镊子收集到坩埚中,放入马弗炉,以5℃/min的加热速率从室温加热至200℃,然后继续以10℃/min的加热速率升温至600℃焙烧2h,最后自然冷却到室温。
将上述烧结后的纳米线放入管式炉中,通入氢气,以5℃/min的加热速率从室温加热至200℃,然后继续以10℃/min的加热速率升温至600℃焙烧2h,最后自然冷却到室温。
材料的光催化性能测试
准确称量0.2 g 的铋-氧化钛纳米材料加入500 ml 甲基橙(MO)溶液(40 mg/L)中,超声分散;所得悬浮液避光搅拌1 h 使材料达到吸附平衡;平衡后取出3 ml 悬浮液,将剩余悬浮液倒入500 ml 石英管中,然后放入光催化反应仪中;开启500 W 高压汞灯照射,每隔5 min取3 ml 悬浮液于离心管中,总反应时间55 min ;反应结束,取出的各个样品经离心分离后,取上清液用紫外-可见分光光度计测其在465 nm 左右的吸光度,从而反映各个降解时间段后剩余甲基橙的浓度,以此来反映本方法制得铋-氧化钛光催化剂降解甲基橙的效果。

Claims (7)

1.一种用于光催化的铋-氧化钛复合纳米线材料,其特征在于该材料微观结构为直径约200 nm的线状结构,成分为JCPDS 编号44-1246的铋金属和编号为21-1272的金红石结构的氧化钛。
2.如权利要求1所述的氧化锌纳米片材料的制备方法,其特征在于具体合成步骤如下
(1) 首先,将聚乙烯吡咯烷酮(PVP)、硝酸铋加入到N-N二甲基酰胺(DMF)中,磁力搅拌一段时间后加入钛酸四丁酯和乙酰丙酮,再持续搅拌6小时以上,得到透明稳定的溶胶;
(2) 将步骤(1)所述溶胶溶液在静电纺丝发生装置中于一定条件下进行电纺;
(3)将步骤(2)得到的电纺前驱纳米纤维首先在马弗炉中以5℃/min的升温速率进行空烧以除去有机物;
(4)冷却至室温后,放入管式炉中于氢气气氛下还原烧结。
3.如权利要求2所述的铋-氧化钛纳米线的制备方法,其特征在于采用一种静电纺丝发生装置进行制备,该方法节能环保,条件易于控制,成本低廉,容易大规模工业化生产。
4.如权利要求2所述的铋-氧化钛纳米线材料的制备方法,其特征在于步骤(1)中溶液必须持续搅拌至透明稳定。
5.如权利要求2所述的铋-氧化钛纳米线材料的制备方法,其特征在于步骤(2)中电纺过程必须在一定条件下进行,其中包括:环境温度大于20℃,湿度小于85,纺丝电压8~25KV,针头直径0.6~1.2mm,针头与接收器距离15~25cm。
6.如权利要求2所述的铋-氧化钛纳米线材料的制备方法,其特征在于步骤(3)中在马弗炉中焙烧过程采用阶段程序升温,先以5℃/min的加热速率从室温加热至200℃,然后继续以10℃/min的加热速率升温至600℃焙烧2h,最后自然冷却到室温。
7.如权利要求2所述的铋-氧化钛纳米线材料的制备方法,其特征在于步骤(4)中在管式中焙烧过程采用氢气气氛焙烧,以5℃/min的加热速率从室温加热至200℃,然后继续以10℃/min的加热速率升温至600℃焙烧2h,最后自然冷却到室温。
CN201510121107.6A 2015-03-18 2015-03-18 一种用于光催化的铋‑氧化钛纳米线材料及制备方法 Expired - Fee Related CN104645965B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510121107.6A CN104645965B (zh) 2015-03-18 2015-03-18 一种用于光催化的铋‑氧化钛纳米线材料及制备方法
US15/559,061 US10046980B2 (en) 2015-03-18 2016-03-17 Bismuth-titanium oxide nanowire material used for photocatalysis, and preparation method
PCT/CN2016/076586 WO2016146070A1 (zh) 2015-03-18 2016-03-17 一种用于光催化的铋-氧化钛纳米线材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510121107.6A CN104645965B (zh) 2015-03-18 2015-03-18 一种用于光催化的铋‑氧化钛纳米线材料及制备方法

Publications (2)

Publication Number Publication Date
CN104645965A true CN104645965A (zh) 2015-05-27
CN104645965B CN104645965B (zh) 2017-10-27

Family

ID=53237898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510121107.6A Expired - Fee Related CN104645965B (zh) 2015-03-18 2015-03-18 一种用于光催化的铋‑氧化钛纳米线材料及制备方法

Country Status (3)

Country Link
US (1) US10046980B2 (zh)
CN (1) CN104645965B (zh)
WO (1) WO2016146070A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105586663A (zh) * 2016-01-31 2016-05-18 青岛科技大学 一种电纺制备光催化型ZnO/Ag复合纳米纤维的新方法
WO2016146070A1 (zh) * 2015-03-18 2016-09-22 重庆文理学院 一种用于光催化的铋-氧化钛纳米线材料及制备方法
CN106540676A (zh) * 2016-09-07 2017-03-29 福建师范大学 一种简易调控制备不同晶型铋钛复合氧化物光催化剂的方法及其应用
CN108404963A (zh) * 2018-04-02 2018-08-17 常州大学 一种直接氮化制备高性能Ta3N5/Bi光催化材料的方法
CN108654595A (zh) * 2018-05-17 2018-10-16 齐鲁工业大学 一种光催化还原二氧化碳的助催化剂及其制备方法与应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480719B2 (en) * 2016-08-16 2019-11-19 King Abdullah University Of Science And Technology Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications
CN107890877B (zh) * 2017-10-26 2020-06-09 江苏大学 一种Bi3O4Cl/CdS复合材料及制备方法和用途
CN111111681A (zh) * 2019-12-26 2020-05-08 东莞东阳光科研发有限公司 一种多级纳米结构的NiO/WO3光催化剂及其制备方法、用途
CN111330568A (zh) * 2020-03-25 2020-06-26 陕西科技大学 碳布负载原位生长非贵金属Bi修饰BiVO4柔性易回收光催化材料、制备方法及其应用
CN111330566B (zh) * 2020-03-25 2024-01-30 深圳万知达科技有限公司 一步法制备可见光响应TiO2@BiVO4核-壳结构介孔纳米纤维光催化材料
CN112501718B (zh) * 2020-11-27 2022-07-01 江苏科技大学 一种Bi2Ca2Co2Oy纳米纤维的制备方法及其产品与应用
CN113083268B (zh) * 2021-04-02 2023-08-11 西安建筑科技大学 一种晶型可控TiO2光催化材料的制备方法
CN113181970B (zh) * 2021-04-09 2023-06-02 南通大学 一种空气净化pp纳米纤维膜及其制备方法
CN113104995B (zh) * 2021-06-16 2021-09-24 天津市环境保护技术开发中心设计所有限责任公司 一种磁性聚氨酯光生耦合填料及其制备方法
CN113731439B (zh) * 2021-10-11 2023-06-16 山东理工职业学院 一种一维氧化镍/钼钨酸铋固溶体光催化材料及其制备方法与应用
CN114456622B (zh) * 2022-02-14 2022-09-23 山西亮龙涂料有限公司 一种具有净化甲醛和抗菌功能的涂料
CN114655981B (zh) * 2022-03-15 2023-09-22 山西师范大学 一种铋掺杂的TiO2纳米线电极的制备方法及其应用
CN114632536B (zh) * 2022-04-01 2023-10-20 吉林化工学院 具有光催化性能的NiCo2O4/NiO/g-C3N4纳米管制备方法和应用
CN115467091B (zh) * 2022-08-26 2023-07-04 东华大学 一种氧化铋/氧化钆纳米纤维膜交替堆叠的复合材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006064799A1 (ja) 2004-12-13 2008-08-07 国立大学法人大阪大学 可視光応答性を有する複合金属酸化物光触媒
CN101623630B (zh) 2009-07-24 2012-01-25 中国科学院上海硅酸盐研究所 具有多级异质结构的Bi2WO6/氧化物纤维布、方法及应用
CN102826630A (zh) * 2012-09-09 2012-12-19 桂林理工大学 Bi/TiO2纳米管阵列对制糖废水的光催化降解的应用
CN104645965B (zh) * 2015-03-18 2017-10-27 重庆文理学院 一种用于光催化的铋‑氧化钛纳米线材料及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIE XU ET AL.: "Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation", 《JOURNAL OF HAZARDOUS MATERIALS》 *
S. RENGARAJ ET AL.: "Enhanced photocatalytic reduction reaction over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole scavenger", 《CHEMOSPHERE》 *
S. RENGARAJ ET AL.: "Photocatalytic degradation of methylparathion—An endocrine disruptor by Bi3+-doped TiO2", 《JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL》 *
李跃军等: "γ-Bi2O3/TiO2 复合纤维的制备及光催化性能", 《无机材料学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146070A1 (zh) * 2015-03-18 2016-09-22 重庆文理学院 一种用于光催化的铋-氧化钛纳米线材料及制备方法
US10046980B2 (en) 2015-03-18 2018-08-14 Chongqing University of Arts and Sciences Bismuth-titanium oxide nanowire material used for photocatalysis, and preparation method
CN105586663A (zh) * 2016-01-31 2016-05-18 青岛科技大学 一种电纺制备光催化型ZnO/Ag复合纳米纤维的新方法
CN106540676A (zh) * 2016-09-07 2017-03-29 福建师范大学 一种简易调控制备不同晶型铋钛复合氧化物光催化剂的方法及其应用
CN108404963A (zh) * 2018-04-02 2018-08-17 常州大学 一种直接氮化制备高性能Ta3N5/Bi光催化材料的方法
CN108654595A (zh) * 2018-05-17 2018-10-16 齐鲁工业大学 一种光催化还原二氧化碳的助催化剂及其制备方法与应用

Also Published As

Publication number Publication date
US10046980B2 (en) 2018-08-14
WO2016146070A1 (zh) 2016-09-22
CN104645965B (zh) 2017-10-27
US20180072586A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
CN104645965A (zh) 一种用于光催化的铋-氧化钛纳米线材料及制备方法
CN104646038A (zh) 一种用于可见光催化的碘氧铋-碳纤维复合纳米材料及制备方法
CN110180548B (zh) 一维氧化铟中空纳米管/二维铁酸锌纳米片异质结复合材料及其在去除水体污染物中的应用
CN106582892B (zh) 纳米TiO2涂层结构及其制备方法和用途
Li et al. The synthesis of CdS/TiO2 hetero-nanofibers with enhanced visible photocatalytic activity
Yao et al. Electrospun Bi-decorated BixTiyOz/TiO2 flexible carbon nanofibers and their applications on degradating of organic pollutants under solar radiation
CN106732524B (zh) 一种α/β-氧化铋相异质结光催化剂及其制法和用途
CN102580708B (zh) 制备具有可见光催化活性的氮改性二氧化钛溶胶的方法
CN101491756A (zh) 植物分级结构二氧化钛光催化剂的制备方法
CN104826622A (zh) 多孔碳纳米纤维负载钐掺杂纳米二氧化钛材料及其制备方法和应用
CN111068715B (zh) Ag/Bi2O3/CuBi2O4纳米纤维复合光催化剂的制备方法
CN104759273A (zh) 一种原位碳掺杂中空二氧化钛可见光催化剂的制备方法
CN108745356A (zh) 一种贵金属Pt负载的多孔WO3纳米纤维光催化剂及制备方法
Yang et al. Degradation of formaldehyde and methylene blue using wood-templated biomimetic TiO2
CN114100635A (zh) 一种硫化铟锌/铁酸锌复合光催化剂及其制备方法和应用
CN103638929A (zh) 一种石墨烯-钨酸银复合光催化材料及其制备方法
CN110327914B (zh) 一种三氧化钨/钨酸镉纳米纤维光催化材料及其制备方法与应用
Minchi et al. Photocatalytic activity of Ca-TiO2 nanofibers with different concentrations of calcium
Li et al. Enhanced simulated solar sono-photocatalytic performance and antibacterial activities of ZnO/NiO heterojunction nanofibrous membranes
CN104445371B (zh) 一种用于光催化的氧化锌纳米片材料及制备方法
Hou et al. Fabrication of TiO2/SiO2 hybrid fibers with tunable internal porous structures
Xiao et al. A facile template-free method for preparing bi-phase TiO2 nanowire arrays with high photocatalytic activity
CN107460562B (zh) 一步法制备铜掺杂三氧化钨复合纳米纤维材料
CN105921142A (zh) 一种二氧化钛基石墨烯/ La3+碳纤维的制备方法
CN103041799A (zh) 一种镧、硼共掺杂的二氧化钛可见光催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Liu Bitao

Inventor before: Chen Junfang

Inventor before: Tu Mingjing

Inventor before: Chen Yuan

Inventor before: Lu Qiuju

Inventor before: Zhang Min

Inventor before: Chen Dongling

Inventor before: Pan Yuanjun

Inventor before: Xu Bin

Inventor before: Liu Bitao

Inventor before: Liu Daijun

CB03 Change of inventor or designer information
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171027

CF01 Termination of patent right due to non-payment of annual fee