CN104640708B - 喷射器设备、方法、驱动器及用于其的电路 - Google Patents

喷射器设备、方法、驱动器及用于其的电路 Download PDF

Info

Publication number
CN104640708B
CN104640708B CN201380032419.9A CN201380032419A CN104640708B CN 104640708 B CN104640708 B CN 104640708B CN 201380032419 A CN201380032419 A CN 201380032419A CN 104640708 B CN104640708 B CN 104640708B
Authority
CN
China
Prior art keywords
signal
frequency
piezo
activator
drive signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380032419.9A
Other languages
English (en)
Other versions
CN104640708A (zh
Inventor
J·R·维尔克森
I·林奇
J·派瑞特
C·E·亨特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corinthian Ophthalmic Inc
Original Assignee
Corinthian Ophthalmic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corinthian Ophthalmic Inc filed Critical Corinthian Ophthalmic Inc
Publication of CN104640708A publication Critical patent/CN104640708A/zh
Application granted granted Critical
Publication of CN104640708B publication Critical patent/CN104640708B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0638Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
    • B05B17/0646Vibrating plates, i.e. plates being directly subjected to the vibrations, e.g. having a piezoelectric transducer attached thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0676Feeding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0452Control methods or devices therefor, e.g. driver circuits, control circuits reducing demand in current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04541Specific driving circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04551Control methods or devices therefor, e.g. driver circuits, control circuits using several operating modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H13/00Measuring resonant frequency
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/15Moving nozzle or nozzle plate

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Vascular Medicine (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Reciprocating Pumps (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Coating Apparatus (AREA)
  • Micromachines (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

在压电喷射器组件中,压电致动器附连到喷射器机构,同时驱动信号发生器和控制器耦合到致动器。驱动信号发生器被配置为生成用于驱动致动器来振荡喷射器组件的驱动信号。控制器被配置为控制驱动信号发生器来以喷射器组件的共振频率驱动致动器,并且提供了定义最优驱动信号频率的自动调谐电路。

Description

喷射器设备、方法、驱动器及用于其的电路
相关申请
本申请要求享有于2012年5月15日提交且标题为“Methods,Drivers andCircuits for Ejector Devices and Systems”的美国申请号61/647,359、于2012年11月5日提交且标题为“Ejector Device and Resonance Function Driver Therefor”的美国申请号61/722,556以及于2012年11月5日提交且标题为“On Demand Droplet GenerationDevice”的美国申请号61/722,584的提交日的权益,所有这些申请的全部内容都通过引用被结合于此。
技术领域
本文所公开的系统、方法和装置一般而言涉及机电系统领域。更具体而言,本文所描述的系统、方法和装置可以用于驱动、监视和控制液滴(droplet)生成喷射器系统。
背景技术
压电致动器是在电压跨其施加时经历机械变形的电子部件。在电压的影响下,压电材料(例如陶瓷)的晶体结构受影响,使得该压电材料将改变形状。例如,如果交变的电场施加到压电材料,则压电材料将以所施加的信号的频率振动(收缩和扩张)。压电材料的这种属性可以被用来产生有效的致动器——可以用来使机械负载移位的电子部件。当电压施加到压电致动器时,作为结果的压电材料的形状和尺寸的变化使机械负荷移位。施加到压电致动器的电信号通常或者是单音(即单频)或者是方波输入。
在某些配置中,当具有足够的电压和一个或多个适当频率的驱动信号施加到压电致动器时,压电致动器可以在诸如流体的机械负载中 感应出运动,生成流体的液滴,流体的液滴可以作为液滴流被喷射。在被喷射的液滴流的生成期间,改进的压电驱动器、驱动系统以及驱动方法一般而言是所期望的。
发明内容
本公开内容针对液滴喷射器设备以及驱动这种设备的方法。液滴喷射器设备可以包括耦合到液滴发生器板的致动器,以定义喷射器组件,还包括驱动器和反馈电路。液滴发生器板可以包括与要加载流体的流体储液器流体相通(fluid communication)的多个开口。驱动电路与致动器信号相通(signal communication)并且配置为基于驱动波形来驱动致动器。反馈电路与致动器和驱动电路信号相通(signal communication)并且配置为基于指示加载有流体的液滴发生器板的振荡的反馈信号来确定松弛时间。驱动波形包括与第二驱动序列隔开松弛时间段的第一驱动序列,该松弛时间段基于致动器和加载有流体的液滴发生器板的松弛时间。
此外,根据本公开内容,提供了驱动电路以及驱动信号或驱动波形,用于压电喷射器设备或者用于可以包括在压电设备中的液滴发生器。
附图说明
图1示出了本公开内容的喷射器组件的一个实施例的截面图。
图2A和2B是本公开内容的用于喷射器组件的被激活的喷射器板的一个实施例的截面图。
图3A是本公开内容的用于喷射器组件的处于对称配置的喷射器机构的一个实施例的示意图。
图3B是本公开内容的对称喷射器机构的实施例的拆解视图。
图3C是本公开内容的对称喷射器机构的实施例的平面图。
图4是本公开内容的穿过喷射器机构的实施例的部分的截面图。
图5是根据本公开内容的用于驱动和控制压电致动器的系统的一 个实施例的框图。
图6是本公开内容的修改后的降压-升压转换器的示意性电路图。
图7是本公开内容的修改后的升压转换器的一个实施例的示意性电路图,用来把电池电压从2至3伏特转换成高达60V输出,以驱动全桥和/或共振转换器。
图8是本公开内容的驱动共振转换器的一个实施例的示意性电路图。
图9是本公开内容的使用升压转换器的驱动器的一个实施例的框图。
图10是根据本公开内容的多音驱动器和共振检测与控制电路的一个实施例的框图。
图11示出根据本公开内容的双音驱动器的一个实施例的时变电压输出。
图12是根据本公开内容的多音驱动器和共振检测与控制电路的另一个实施例的框图。
图13是根据本公开内容的多音驱动器和共振检测与控制电路的再一个实施例的框图。
图14是根据本公开内容的多音驱动器和共振检测与控制电路的又一个实施例的框图。
图15是根据本公开内容的驱动器的一个实施例的示意性电路图。
图16是根据本公开内容的多音驱动器和共振检测与控制电路的另一个实施例的框图。
图17是具有TEP测量电路的全桥电路的一个实施例的电路图。
图18是图17电路的TEP测量部分的放大视图。
图19是示出共振与非共振衰减的电压vs时间的波形。
图20是说明确定机电机构的共振的方法的一个实施例的流程图。
图21是说明确定机电机构共振的方法的另一个实施例的流程图。
图22示出根据本公开内容的机构的一个实施例的积分信号的样本波形(振幅对频率)。
图23示出根据本公开内容的机构的另一个实施例的积分信号的样本波形(振幅对频率)。
图24是根据本公开内容的驱动器和共振检测与控制电路的另一个实施例的框图。
图25是根据本公开内容的驱动器和共振检测与控制电路的再一个实施例的框图。
图26是根据本公开内容的驱动器和共振检测与控制电路的又一个实施例的框图。
图27是TEP共振检测电路的一个实施例的框图。
图28是根据本公开内容的用于共振检测与控制电路的旁路的一个实施例的框图。
图29示出根据本公开内容一个实施例的驱动信号和共振检测与控制电路信号。
图30是根据本公开内容的电平偏移驱动器的一个实施例的示意性电路图,该电平偏移驱动器取得互补波形发生器输出以驱动全桥操作必需的电平。
图31是用于本公开内容的一种实现的质量沉积vs频率变化的波形。
图32是根据本公开内容的一种实现的用于共振测量输出的积分电压vs频率图。
图33是用于驱动系统的门控振荡器升压电路的一个实施例的示意性电路图。
图34A是示例性流体松弛波形的图。
图34B是图34A中流体松弛波形的扩展视图。
图35A-D是用于环降(ring-down)阻尼的波形实例的图。
图36是跟在去除驱动信号之后的松弛波形的图。
图37是跟在驱动信号的软斜坡下降之后的松弛波形的图。
图38A是五周波激励之后的松弛波形的图,示出了环降信号的谐波产生(“拍频(beating)”)。
图38B是图38A中的松弛波形的扩展视图。
图39A是添加有阻尼信号的在十周波激励之后的流体松弛波形的图,示出了减小的松弛时间和谐波产生。
图39B是图39A中的松弛波形的扩展视图。
图40是带阻尼信号的十周波方波激励之后的松弛波形的图。
图41是不带阻尼信号的松弛波形的图。
图42是带阻尼信号和松弛死区时间的两个时间段的十周波方波驱动之后的松弛波形的图。
图43是驱动信号发生器的一个实施例的框图。
图44是电平偏移器电路的一个实施例的示意性电路图。
图45是IR量检测电路的一个实施例的示意性电路图。
图46是2X电荷泵的一个实施例的示意性电路图。
图47是根据本公开内容的充当电荷泵和压电陶瓷(piezo)驱动器的两个升压转换器的一个实施例的示意性电路图。
图48是本公开内容的微控制器的一个实施例的示意性电路图。
图49示出驱动加载有共振回路(tank)(包括压电体)的全桥的一组电平偏移器的一个实施例的电路图。
图50示出TEP下拉/液滴按需下拉电路的一个实施例。
具体实施方式
本公开内容一般而言涉及喷射器设备,以及它们在流体输送中使用的方法。特别地,本公开内容涉及在用于眼部、局部、口部、鼻部或肺部用处的流体输送(包括眼液到眼睛的输送)中有用的喷射器设备和方法。在液滴按需操作中,利用本文所描述的系统和方法,一个或多个流体滴可以在给定的时间喷射,以实现按液滴形式输送流体所必需的喷射器位移和速度,这种按液滴形式输送流体具有期望的质量传送率和流体剂量,并且具有减少的起泡(beading)和喷射器阻塞。
作为背景,在很高量的液滴生成和喷射器系统中,流体可以在喷射器的表面上起泡、阻塞液滴生成开口并降低质量传送,有时候持续 高达几秒钟或者甚至几分钟的时间段。因而,流体起泡和相关的影响可使得难以在喷射器开口或喷嘴的图案上提供必需的流体喷射速度。当以低速模式或者不利的本征模式形状操作时,这些挑战是特别相关的。振荡系统的本征模式或正常模式是其中系统的所有部分都以相同的频率并以固定的相位关系正弦移动的振动或运动模式。由正常模式描述的运动被称为共振。系统的正常模式的频率被称为其固有频率或共振频率。诸如建筑物、桥梁或分子或者就像这个例子中的流体喷射器机构之类的物理对象具有依赖于其结构、材料和边界条件的一组正常模式。喷射的流体还可以在喷射器表面上形成蒸发膜,这会大大降级喷射器性能。
在某些实施例中,喷射器设备包括生成流体液滴的定向流的喷射器机构(例如耦合到致动器的喷射器板和液滴发生器板),以及用于对喷射器机构进行加载的流体供应布置。为了容易引用,喷射器机构和流体供应布置的组合将在本文中被称为喷射器组件。合适的流体包括但不限于:具有在能够利用喷射器机构形成液滴的范围内的粘性的溶液、悬浮液和乳液。合适的流体还包括但不限于包含药物和药剂产品的流体。
为了在高量的液滴生成和喷射系统中实现流体液滴的质量沉积,可以利用经喷射的连续流体喷射。通过大量小液滴的生成和喷射,连续的喷射允许更大量流体(例如,在0.5-30uL范围内)的质量沉积。
但是,除其它原因之外,还由于混乱的喷射、卫星液滴收回以及感应性和摩擦起电效应,在连续模式下喷射液滴流可导致起泡。一旦形成,位于喷射器开口之上的流体泡就可以生长——例如由于泵送动作,从而最终打湿喷射器开口的外表面——例如由于Coulomb吸引或者机械运动。除了振荡喷射器机构的动量,流体本身也增加动量,这可以在连续喷射模式期间或者当不足的松弛时间段在振荡和喷射时间段之间提供时建立,如以下讨论的。
这样,根据本公开内容,提供改进的液滴生成和喷射技术以便驱动压电致动器(或者其它致动器)来减小、最小化或消除喷射器表面 上和喷射器开口之上的流体起泡。本公开内容还提供改进的液滴生成和喷射技术,该技术抑制或防止在喷射组件表面上和在其它部件上形成不完全喷射的流体膜,这是在延长的使用时间段中维持性能所必需的。
公开了在连续喷射操作期间停止或减小流体动量积聚的不同技术,以便通过电驱动信号定时和压电能量抵消或主动阻尼来抑制或防止起泡。这些技术可应用于一定范围的合适的驱动信号类型,包括但不限于正弦、方形、斜坡、啁啾(chirp)、振幅调制和频率调制的驱动信号及波形、以及此类波形的组合。
在这些技术的实施例中,液滴可以由包含在耦合到喷射器机构的储液器中的流体形成。喷射器机构和储液器可以是一次性的或者可重用的,并且部件可以包装在喷射器设备的外罩中,诸如在美国临时申请号61/569,739、61/636,559、61/636,565、61/636,568、61/642,838、61/642,867、61/643,150和61/584,060中以及在美国专利申请号13/184,446、13/184,468和13/184,484中所描述的那些,这些申请的内容通过引用被结合于此。
参考图1,例如,喷射器组件100可以包括喷射器机构101和储液器120。喷射器机构101可以包括具有喷射器板102的振荡板布置,其中喷射器板102与中央定位的、包括喷射器开口126的发生器板部分一体化形成,如在该实施例中的,或者喷射器板102可以耦合到单独的发生器板,该发生器板可以被形成喷射器机构的一部分的压电致动器104激活。为了方便,这两个实施例都将被称为具有液滴发生器132。致动器104振动或以别的方式使喷射器板102移位,以便沿方向114从储液器120输送流体110,要么作为来自一个或多个开口126的单个液滴112(液滴按需),要么作为从一个或多个开口126喷射的液滴112的流。
在一些应用中,眼液可以朝眼睛116(例如成人或儿童或者动物的)眼睛喷射。流体可以包含治疗人或动物的不适、病症或疾病(或者在眼中或皮肤表面上,或者在鼻部或肺部应用中)的药剂。
致动器104到喷射器板102的附连位置也可以影响喷射器组件100的操作、以及单个液滴或者液滴流的产生。在图1的实现中,例如,致动器104(或者多个单独的致动器部件104)可以在与储液器120相对的表面122上耦合到喷射器板102的外围区域。
在该实施例中,喷射器板102的中央区域130包括具有一个或多个开口126的喷射区域132,流体110流经这些开口以形成液滴112。喷射区域(或液滴发生器)132可以占用中央区域130的一部分,例如其中心,或者喷射区域132的喷射孔图案可以占用基本上中央区域130的整个面积。此外,储液器的开口端138可以基本上对应于喷射区域132的尺寸,或者就像在该实施例中的,开口区域138可以比喷射区域132大。
如图1中所示,喷射器板102设置在包含流体110的储液器120的开口端138之上或者与其流体相通。例如,利用布置在储液器壁150中所形成的槽中的诸如O-环148a的合适的密封或耦合,储液器120可以沿第一主表面125的外围区域146耦合到喷射器板102。储液器外罩的一部分144还可以以可拆卸囊状物的形式提供。但是,本公开内容并不受此限制,并且任何合适的囊状物或储液器都可以使用。
当电压跨位于致动器104的相对表面136和134上的电极106a和106b施加时,喷射器板102偏转以分别变成如图2A和2B中所示的相对更凹的形状170或者相对更凸的形状172,这依赖于电压的极性。
当用交变电压驱动时,致动器104操作成交替反转喷射器板102的凸和凹形状170和172,包括喷射器板102的周期运动(振荡)。液滴112在小孔或开口126处形成,如上面所描述的,其中喷射区域132的振荡运动使一个或多个液滴112沿着流体输送(喷射)方向114喷射,例如在单液滴(液滴按需)应用中或者作为液滴流。
驱动电压和频率可以为喷射机构的改进性能而选择,如上面所描述的。在一些实施例中,致动器104的振荡频率可以选择在喷射器板102的共振频率处或者其附近,或者在被选择用来经叠加、干扰或共 振耦合而以这样的共振来振荡喷射器板102的一个或多个频率处。
与直接耦合的设计相比,当操作在共振频率处或其附近时,喷射器板102可以放大喷射器区域(液滴发生器)132的位移,减小致动器的相对功率需求。共振系统(包括致动器104、喷射器板102和任何填充了流体的液滴发生器)的阻尼因素也可以被选择成大于压电致动器输入功率,以便在没有重大故障的情况下减轻疲劳并增加服务寿命。
喷射器组件的例子在于2011年12月12日提交且标题为“Ejector Mechanism,Ejector Device,and Methods of Use”的美国临时专利申请号61/569,739中说明,该申请通过引用被结合于此。在一个特定的实施例中,喷射器板机构100可以包括耦合到环形致动器104的旋转对称的喷射器板102,如图3A中所示,并且如在2012年4月20日提交且标题为“Centro-Symmetric Lead Free Ejector Mechanism,Ejector Device,and Methods ofUse”的美国临时专利申请号61/636,565中所描述的,该申请也通过引用被结合于此。但是,本公开内容并不受此限制。
在图3A的特定配置中,喷射器机构300包括附连到喷射器板302的单独的发生器板301。致动器304结合了用于驱动旋转对称喷射器板302的一个或多个单独的压电设备或其它致动器元件,如上面所描述的,但是在该实施例中,致动器304包括环形结构。喷射器板302的液滴发生器(喷射器)区域332包括在中央区域330中的开口326的图案,并且经致动器304借由如下所描述的合适的驱动信号发生器电路被驱动。用于生成驱动电压的技术的例子在于2012年5月15日提交且标题为“Methods,Drivers and Circuits for EjectorDevices and Systems”的美国临时专利申请号61/647,359中说明,该申请通过引用被结合于此。
图3B是对称喷射器机构300的拆解视图。在该实施例中,喷射器板302使用分立的(单独的)液滴发生器元件(喷射器区域)301,如在图3B的左边和右边分别从后(面朝下)表面325和前(面朝上) 表面322所示出的。液滴发生器元件301在中央小孔352之上机械耦合到喷射器板302,并且包括配置为在被发生器板类型的致动器304驱动时生成流体液滴流的开口326的图案,如上面所描述的。
图3C是对称喷射器机构300的平面图。喷射器机构300包括喷射器板302,致动器304和液滴发生器301附连到喷射器板302。液滴发生器包括中央区域330中的开口326的图案,如上面所描述的。喷射器机构300可以经对称布置的片式机械耦合元件355中的小孔351或者利用以上关于图1所描述的另一合适的连接而耦合到流体储液器或其它喷射设备部件。
如图3C中所示,依赖于应用,喷射器板302可以具有大约21mm、或者在大约10mm或更小至大约25mm或更大的范围内的维度354。用于喷射器板302和液滴发生器301的合适的材料包括但不限于柔性应力和抗疲劳金属(诸如不锈钢)。
出于取向的目的,如图3A-3C中所示的喷射器机构300的不同元件可以相对于储液器(诸如以上关于图1所描述的储液器320)的位置来描述。一般而言,机构300的近端元件定位成离流体储液器120(图1)更近,并且远端元件定位成离流体储液器120更远,如沿着液滴流或喷射方向114所定义的。
在图4的特定实施例中,喷射器组件400包括喷射器机构400,喷射器机构400包括振荡喷射器板402,振荡喷射器板402具有与流体储液器420相邻的第一主(近端)表面425以及与流体储液器420相对的第二主(远端)表面422。在该实施例中,压电致动器404形成为远端元件,其中储液器420附连到振荡板402的近端表面425。另选地,致动器404可以在远端表面425上在储液器420的周围耦合到喷射器板402。
致动器404的近端和远端表面436和434设置有传导层460,例如为了提供用于驱动信号的底部和顶部电极106a和106b(图1),如上面所描述的。如图4中所示,在致动器404的近端表面436上的传导层460被介电层462与喷射器板402的远端表面或侧面422隔开, 从而允许振荡喷射器板402接地并且与致动器404的传导层460电隔离。在致动器的远端侧面434上,可以提供附加的介电层462,以便隔开金属化层461与顶部传导层(或驱动电极)460。在本公开内容的某些实施例中,这电隔离金属化层461,从而允许该金属化层充当用于反EMF(电动势)测量的电隔离电极。在其它实施例中,用于反EMF测量的单独触点可以通过使用电极106a、106b上的电压电平而被消除,如以下进一步讨论的。
如图4中所示,振荡喷射器板402定位成与储液器420流体相通,并且近端表面或侧面425与流体410接触。附加的涂层463可以在致动器404的露出(顶部和侧面)表面上形成,并且可以包括喷射器板402的远端表面422的至少一部分,以便防止致动器404与从储液器420喷射的任何流体410之间的接触。在一些实现中,喷射器板402和发生器板(或喷射器区域)432当中的一者或二者也可以涂覆有惰性的、医用级的、无毒的、非反应性(non-reactive)的以及可选地耐酸、耐碱和耐溶剂的材料465,或者具有这样的属性的合适组合的其它材料。
涂层463和465可以相同或不同,并且单独地或者以任何组合施加,例如通过喷溅、汽相沉积、物理汽相沉积(PAD)、化学汽相沉积(COD)、静电粉末沉积、或者这样的技术的任何合适的组合。涂层463和465可以包括诸如聚丙烯、尼龙和高密度聚乙烯(HDPE)、材料和其它保形涂层的聚合物材料,以及包括但不限于金、铂和钯的金属涂层材料。在涂层463和465或者单独地或者一起以大约0.1μm或更小至大约500μm或更大的厚度范围施加到振荡喷射器板402、发生器板432和致动器404的表面的任何组合时,涂层463和465可以被选择以充分粘合,以防止在以高频振动时分层。
为了驱动压电机构的致动器,驱动信号或驱动波形需要由驱动电路生成。在提供这种驱动信号时,根据本公开内容,考虑多种因素。特别地,多种多样的因素可以影响移位的机械负载的速度,包括驱动 信号频率和振幅以及机械共振在所述频率处的品质因数。当驱动信号频率、振幅或者这二者增加时,机械负载的位移速度增加。但是,更高的操作频率在增加位移速度的同时也具有更高的平均功率。在某些应用中可能不期望以高频率操作所需的附加功率。压电材料和压电驱动的设备呈现出机械致动变得最大化的共振区域。常常期望以这些频率来提供电致动,以便利用可能的最少量的电能来产生压电元件或压电机构(例如,耦合到诸如喷射器板和填充了流体的发生器板的负载的压电元件)的最大位移。但是,在共振时,压电设备变成是或者完全或者部分电阻性的,从而耗散压电体中的大量能量。它们还丧失了电容性模式操作的有益的能量耗散属性并且降低了它们在共振转换器电路中的效率。因而,仍然存在对如本文所描述的改进的装置、方法和系统的需求,这种改进的装置、方法和系统提供耦合到压电致动器的机械负载的最大位移和位移速度,同时增强系统的能量效率。这在可用电力可能受限的靠电池操作的系统中是特别重要的。根据本发明,填充了流体的喷射器机构被看作具有与压电陶瓷(piezo)本身不同的振动膜模式的膜。虽然压电陶瓷的共振是具有陶瓷本身的最高运动/机械驱动功率的频率,但是存在不基于陶瓷/压电陶瓷共振本身的膜模式。压电陶瓷仅仅生成加力函数,并且膜中的损耗越小,运动越高。当系统以这些膜模式之一被驱动时,压电陶瓷可以是几乎完美的电容器,通过压电陶瓷作为电容器来允许输入电压或电流的高Q放大。这大大降低了能量消耗并且允许高得多的电压和电流向设备的输送,而不加热压电体。
另外,多种多样的因素可以改变压电设备的共振属性和电特性,诸如施加到压电体的驱动信号、耦合到压电体的机械负载、或者甚至压电体周围的环境温度、压力和湿度。由于这些因素当中的一个或多个,最初被驱动成以共振频率操作的压电体会漂移出共振,这造成压电体更低效的操作,以及机械负载有可能减小的位移。因而,仍然存在对如本文所描述的装置、方法和系统的需求,这种装置、方法和系统可以检测包括压电致动器及其关联的机械负载的机电系统的共振, 并且当这些系统不再操作在共振模式时,提供把压电致动器和/或机械负载带回到共振的校正动作。
根据本公开内容,提供了跟踪最大位移或共振模式的方法和电路,以便补偿温度、湿度和压力变化以及制造容限。此外,利用致动器电极作为共振系统的反馈部分的一部分,本文描述了在不使用隔离的反馈电极的情况下对共振的跟踪。通过消除单独的隔离的反馈电极,喷雾依赖于设备明显增加10-50%。在一个实施例中,这种技术与全桥电路和具有共振转换器电路的Q因数扫描(sweep)一起使用,如以下更具体讨论的。
在本公开内容的某些实施例中,提供了用于激励、检测和表征压电元件或几个耦合的元件的、或者喷射器机构的电气和/或机械共振的装置。当诸如喷射器机构的机电机构变得共振时,能量存储在机电机构中并且以与非共振机电、电气或机械机构不同的速率释放。此外,机电机构的共振将充当电信号按时间的积分器,从而允许多个独特的签名(signature)依赖于所施加的电信号而生成。
在某些实施例中,可以是单音、多音、啁啾、任何波形或包含一个或多个频率的任何电信号的电信号施加到压电元件。生成电信号的电路可以是以预期的电信号频率输送电力或电压及电流的任何电路。电信号施加定义的时间量,接着突然停止。接着,留在压电体中的电信号通过电流、电压或功率测量来测量,并且或者被记录以用于诸如通过FFT(傅立叶变换)的数学处理或者被直接施加到模拟能量积分电路。模拟积分器可以接通和断开以对照定义的波形进行关联,或者可以简单地对存储在喷射器中的所有能量积分。获得机电共振的签名,该签名依赖于原始的电信号以及机电系统的机械和电气属性。
此外,并且尤其是关于液滴喷射器系统,为了生成适当尺寸并具有足够喷射速度的液滴,到压电体的驱动信号必须相当大。可以方便地附连到液滴发生器喷射系统的电池不产生驱动压电体的足够电压。因而,仍然存在对在维持电池组的方便性和便携性的同时给液滴生成喷射系统供电的系统、方法和装置的需求。
图5示出了用于使用压电致动器540的系统500的一个实施例,例如,其可以在液滴发生器系统中使用。如图5上所示的,系统500可以包括电源510,诸如电池;电子驱动器520,即负责生成到压电致动器540的驱动电压或信号530的电路系统;压电致动器540;及压电致动器540所耦合到的机械负载550。压电致动器540可以用来驱动多种多样的机械负载550,诸如液滴发生器板,以形成流体液滴,如在美国临时申请号61/569,739、61/636,559、61/636,565、61/636,568、61/642,838、61/642,867、61/643,150和61/584,060中以及在美国专利申请号13/184,446、13/184,468和13/184,484中所描述的,这些申请的内容通过引用被结合于此,并且如上面所描述的。
在某些实施例中,如图5上所示的,还会期望将共振检测与控制电路560耦合到压电致动器540。该电路560可以用来检测整个机电机构570(致动器540和负载550)何时不再操作在共振模式,即其中机构570产生负载550的最大或增加的机械位移的模式。电路560还可以向驱动器520提供反馈以控制频率,例如将频率带回到共振频率。根据本公开内容的电源、驱动器、转换器和波形的其它实施例在所结合的参考物中给出。
如以下进一步具体讨论的,在一个实施例中,全桥电路被用来驱动压电喷射器机构。压电元件每一侧上的电势(电压)在电源电压和地之间交替,以允许在给定频率处的便携式操作,其中电源电压可以是升压转换器、共振转换器、降压-升压转换器、变压器或电压转换器的输出。通过以单个频率驱动压电体低至一个周波(cycle),能量存储在压电喷射器机构中,如果驱动信号停止,则该能量以电压的形式释放回电路中。
因而,当驱动信号暂停时,压电体主要作为信号源而不是负载操作。机电机构(带有其压电元件的喷射器机构)的能量必须或者作为电压返回到电子电路系统中或者通过机械系统中的摩擦和电损耗而耗散。
对于确定机电能量如何被去除和/或耗散,存在三种情况。如果 附连到喷射器的电路是开路(三态),则压电体将通过振荡而与驱动器FET电容交换(trade)能量或者简单地通过机械损耗和内部电损耗而耗散。连接到喷射器的电路还可以被短路,这使得喷射器快速地将它的能量转储(dump)到系统地。作为代替,电路可以向喷射器给出有限的电负载,这产生受控的渐逝振荡。
在开路和有限负载的情况下,采样喷射器的输出电压提供对关联到流体喷射的喷射器机构运动的测量。电流采样可以在短路的情况下用来提供运动跟踪。在任何这些情况下都不需要反馈电极,由此避免必须提供单独的金属化层,诸如图4实施例中的层461。
电源510可以是能够给驱动器520供电的任何合适的电源,包括合适的电池。虽然没有示出,但是如果期望的话,则系统500可以包括多于一个的电源,或者另选或后备的电源。依赖于电源510的特性,升高电源510的输出电压可能是必需的,以便最终给压电致动器540供电。
如以上所讨论的,在根据本公开内容的一些实施例中,来自电源510的输出电压可以被升高,例如被以压电致动器540为负载的升压转换器或者降压-升压转换器升高。本公开内容的修改的降压-升压转换器的一个实施例在图6中示出。
这种转换器进行DC-AC而不是DC-DC的转换。它用来将电荷转储到(由压电致动器600定义的)电容器上,接着取得所有该电荷并且将它回流到电池602中。可以包括快速恢复二极管D1、D3,以防止体二极管故障。驱动器可以包括从电源输入到地与电感器L1串联连接的P-MOSFET T1、连接在电感器L1和P-MOS T1的串联连接之间的压电体、以及连接到地的N-MOS T2。N-MOS T2应当具有快速恢复二极管D1,以防止体二极管故障。当P-MOSFET T1断开时,电流继续流经电感器L1,使得N-MOSFET T2之上的输出电压降为负并且电流传导经过与该N-MOSFET并联的二极管D1。所有电流都沉积到压电体上并且压电体上的电压从零变成由经过电感器L1斜坡变化(ramping)的电流而确定的值。电压可以根据等式V=Q/C基于由电感器L1中的电流所包含的电荷来计算,其中Q是电荷,C是电容(V是电压)。在一个实施例中,在周波结束时,N-MOSFET T2可以接通,以便将压电电压带回到地。这个周波可以以预期的驱动频率重复。与升压转换器相比,在产生等效电压时,具有其降压-升压转换器的电路可以更有效(使用少50%的电流或更好)。对于相同的驱动电压,这个电路采用小得多的电流。但是,使用这种配置的缺陷是,由于FET漏极到源极的电压Vds的限制,它局限于大约80-100伏特的振幅信号。
在另一个实施例中,与全桥(以下关于图15进一步讨论)一起使用并且驱动共振转换器(图8中所示)的修改的升压转换器(图7中所示)被用来增加信号振幅并且提供期望的过冲能力(即100-170伏特)。图8中所示的共振转换器的实施例包括一个或多个电感器800。添加电感器以产生用于经压电致动器(由电容器802绘出)增加的电压放大的共振转换器,其中压电致动器充当负载。因而,在该实施例中,全桥被用来驱动共振回路,该共振回路充当共振转换器,没有DC-AC-DC转变中最后的DC部分。
使用升压转换器的驱动电路的一个实施例在图9中示出。相同的元件在以下讨论的各种实施例中都将利用相同的标号来指示。如在图9的实施例中所示,电源510可以耦合到升压转换器900,升压转换器900又包括或者耦合到电荷保持电容器910。升压转换器900可以用来逐步升高来自电源510的电源电压并且给电容器910充电,以便供应驱动压电致动器540所必需的电荷和电压。升压转换器900改变电压,以允许正确的电场施加到压电致动器540,因而,电压而不是功率可以被升高。作为非限制性的例子,电源510可以向升压转换器900供应2.7V,从而为电容器910提供高达60V的输出电压。根据本公开内容的电源的其它实施例在本文中给出。反馈信号580由共振检测与控制电路560用来确定共振频率并且可选地提供反馈,以控制由驱动器520提供的频率。
根据本公开内容的驱动器520一般可以配置为产生并控制到压电 致动器540的驱动信号530。以下讨论根据本公开内容的驱动器520的附加实施例。依赖于整个机构570的期望特性,驱动器520可以以任何几种不同的模式操作。例如,在某些实施例中,如本文所描述的驱动器520可以配置为产生多音驱动信号530,该信号(1)操作在机械/电气共振之外的两个或更多个频率处,其中拍频处于机械共振,如以下在标题为“包络模式”的部分中更具体描述的,或者(2)操作在单独机械共振的两个或更多个频率处,如以下在标题为“Bessel模式”的部分中更具体描述的。当然,可以理解,这些驱动器还可以配置为驱动单个频率,诸如单个共振频率。驱动器还可以提供方波以用方波谐波驱动单个模式或多个模式,以感应出增加的机械速度。现在讨论具体的实现。
在一个实施例中,可以期望驱动压电致动器540,以使得增加机械负载550的位移,同时保留压电致动器540的电容性效果并且最小化整体的功耗。在一个实施例中,驱动器可以操作在“包络模式”。在这样的实施例中,驱动器520可以配置为使得操作在机械/电气共振之外的两个或更多个频率处,其中拍频处于机械共振。
如前面所描述的,在某些实现中,压电致动器可以被共振驱动,以提供机械负载的最大位移。因而,驱动信号530可以基于共振频率的整数倍,即压电致动器540可以被谐波驱动。但是,不受理论的限制,本领域技术人员将理解,具有更高基本操作频率的信号可以产生增加的电功耗,因为当负载的阻抗随频率变化时,某些更高的操作频率可以具有让压电致动器的行为相比电容器而言更像电阻器的效果。在本公开内容的某些实施例中,驱动器520可以另选地组合两个或更多个信号来驱动压电致动器540。输入信号的频率和振幅可以被选择以使得产生机械负载的增加的位移,同时保留有益的能量和电路好处,诸如几乎理想的电容性行为。信号特性选择可以依赖于例如机械负载的期望位移。
一般而言,如图10上所示的,根据本公开内容的驱动器520可以包括耦合到组合电路1020的两个或更多个输入信号1010a、1010b、1010c等。组合电路1020可以是适合将两个或更多个电信号组合成组合的双音或多音驱动信号530的任何形式的电子装置,例如,适于产生输入信号1010a、1010b、1010c等的全部或子集的总和和/或差值的电子装置。组合的驱动信号530可以直接耦合到压电致动器540,或者可选地,耦合到阻抗匹配电路(未示出),接着该阻抗匹配电路耦合到压电致动器540。这允许阻抗匹配(即,压电致动器540与驱动器电路的输出阻抗的阻抗匹配)。
输入信号1010a、1010b、1010c等的频率可以被选择以使得优化系统的某些特性。例如,通过用两个(或更多个)非共振频率驱动压电致动器540,压电致动器540中的能量耗散可以最小化。在一个特定的实施例中,可以期望通过选择输入信号1010a、1010b、1010c等将压电致动器540间接地驱动成共振,使得两个或更多个频率之差或总和——即一个或多个组合的驱动信号530的频率,等于压电致动器540的一个或多个共振频率。不受理论的限制,可以理解,当具有不同频率的两个或更多个电信号组合时,它们将以差值、总和和交叉调制频率周期性地相长和相消地干扰。
干扰的这种属性可以与振幅和相位加权相结合地被采用,使得作为结果的相长和相消干扰发生,以提供压电致动器540的一个或多个共振频率并且产生负载550的最大物理位移x。以这种方式,驱动器520可以间接地造成压电致动器540中的共振机械运动。图11示出了双音驱动器520的一个例子的时变电压输出530。在一个实施例中,两个或更多个输入信号1010a、1010b、1010c等(每个都具有非共振频率)可以以与单模式驱动相同的组合的最大振幅被驱动。与单模式驱动相比,这可以产生减小的电功耗,因为单独的信号处于比共振频率低的频率。因而,压电材料得益于组合的更高的频率,因为压电材料在比共振频率低的频率处具有更高的阻抗。
此外,通过用两个或更多个非共振频率驱动压电致动器540,压电致动器540的电气属性可以保持完全的电容性,同时仍然产生机械共振和增加的位移。这允许压电致动器540直接用在共振转换器中, 从而通过收回一个或多个电感器中的能量来进一步减小压电致动器540中的能量损耗。
根据本公开内容实施例的操作在“包络模式”的驱动器可以改进压电液滴喷射器系统中的液滴喷射并降低该系统中的功耗。它们可以附加地扩大可以从液滴喷射器系统喷射的流体粘性的范围。这种应用中的示例性操作频率的范围可以从1KHz到5MHz,诸如像43kHz和175kHz。利用如本文所描述的驱动器,系统可以支持多个高位移频率,这些频率减少流体起泡并增加系统可以喷射的粘性的范围。
在另一个实施例中,根据本公开内容的驱动器可以操作在“Bessel模式”。驱动器120可以配置为操作在单独的机械共振的两个或更多个频率处。
类似于以上所描述的操作模式并且如图10上所示的,根据本公开内容的驱动器520可以包括耦合到组合电路1020的两个或更多个输入信号1010a、1010b、1010c等。组合电路1020可以是适合将两个或更多个电信号组合成组合的双音或多音驱动信号530的任何形式的电子装置,例如适于产生输入信号1010a、1010b、1010c等的全部或子集的总和和/或差值的电子装置。组合的驱动信号530可以直接耦合到压电致动器540,或者可选地,耦合到阻抗匹配电路(未示出),接着该阻抗匹配电路耦合到压电致动器540。这允许负载(即压电致动器540)的阻抗与驱动电路520的阻抗的匹配。为了确定共振,反馈信号580被共振检测与控制电路560用来确定共振频率并且可选地提供反馈,以控制由驱动器520提供的频率。
在驱动器520以Bessel模式操作的实施例中,输入信号1010a、1010b、1010c等的频率与以上对包络模式所描述的频率不同,使得系统的不同特性被优化。在包络模式实现中,输入信号1010a、1010b、1010c等特别地在非共振频率处被选择,这些频率将组合以产生如图11中所示的共振拍频。在Bessel模式的实施例中,出于以下进一步描述的原因,输入信号1010a、1010b、1010c等本身处于压电致动器540和机械负载550的不同共振频率处。此外,操作在Bessel模式的驱动器被优化以特别地与非矩形负载550工作。
不受理论的限制,一般而言可以理解,机电系统的共振模式被假设为是共振频率的整数倍,即处于谐波。但是,当或者机械负载550或者压电致动器540本身是非矩形的时候,喷射器机构的本征模式——即整个机构同时振动的频率,不在可以利用谐波电信号530很容易生成的整数倍处发生。对于不是矩形的形状,这阻止压电致动器540和机械负载550的最优驱动。更确切地说,对于圆形或者大致圆形的机械负载550,共振频率发生在Bessel频率处,即共振频率乘以Bessel函数的解。因而,对于操作在Bessel模式的实施例,通过使用具有Bessel频率的两个或更多个输入信号1010a、1010b、1010c等,驱动器520可以被优化,以提供圆形或者大致圆形的机械负载550的最大位移。
在某些实施例中,输入信号1010a、1010b、1010c等的振幅和频率可以选择成使得系统500在较低的共振频率处提供机械负载550的改进位移并且在较高的共振频率处提供机械负载550的改进位移速度。例如,在液滴发生器应用中,Bessel模式输入信号1010a、1010b、1010c等可以用具有期望的形状因子的不同本征模式之间的振幅加权来驱动以优化液体药物的机械位移以及液滴位移的速度两者,同时维持与电驱动信号520的最优定相关系,以便利于最大化流体喷射。与单模式信号相比,通过以这种方式组合两个(或更多个)输入信号1010a、1010b、1010c等,系统的整体质量可以增强–较低频模式可以增强较高频模式——并且每个信号中的整体功率可以减小。
仅仅作为例子,液滴喷射器机构可以具有在50kHz和165kHz处的Bessel共振模式。以50kHz单独驱动提供喷射器机构5μm的位移;以165kHz单独驱动提供800nm的位移,而且还提供更高的速度和改进的喷雾特性。但是,在根据本公开内容的系统中,这两种模式可以同时被驱动。以一半的功率运行两个信号提供来自50kHz模式的2.5μm的位移以及来自165kHz模式的另一400nm的位移,相当于总计2.9μm——显著高于165kHz信号单独可以提供的800nm——但是 具有与165kHz信号关联的改进的位移速度和喷雾特性。另外,喷雾以拍频215kHz(即信号之和)与115kHz(即信号之差)周期性地被升高。这在抑制流体起泡的同时增加系统的峰值速度以及液滴喷射器机构可以喷射的粘性范围。
本领域普通技术人员将理解,这仅仅是模式组合的一个例子,并且许多其它操作模式都可以被选择来满足不同的系统需求。每种Bessel模式(不同的频率)具有特定的速度和位移。因而,较低频率模式具有较低的速度,但是可以具有较高的位移。
根据本公开内容,喷雾是由于位移和频率(速度)的组合。这两方面都可以通过使用多个频率来加强。在一个实施例中,例如,通过将每个电驱动频率的振幅减小一半,由于较低频率、较高位移的低喷雾模式,利用操作在391kHz的液滴喷射器机构看到的总计位移可以增加超过1700nm,同时对共振喷射维持正确的电气和机械定相。另外,与单模式驱动器的使用相比,给高粘性流体喷射供电所需的能量量得以降低。
如关于图10所示出的,如本文所描述的,操作在包络模式和Bessel模式两者中的驱动器都可以利用相同的逻辑和电子部件实现。如上面所描述的,系统500的操作——即以包络模式或Bessel模式——是施加到电路系统的信号的频率和振幅以及机械共振品质因数的函数。
以下讨论驱动器的其它实施例。在图12的实施例中,驱动器520借由交流电流(AC)源1200a、1200b提供电信号1210a、1210b,接着,这两个信号被混频器1220求和。这些AC源可以选择成使得生成具有期望的频率和振幅的每个信号1210a、1210b。在一个实施例中,组合的信号1220可以耦合到放大器1230,放大器1230可以由电源510供电,或者另选地由单独的电源1240供电,其中,在对于压电致动器540的致动需要大输出电压、电流或功率的情况下,电源1240可以耦合到诸如AC/DC转换器或DC/DC转换器的电源转换器1250。这种放大器1230可以是线性或者非线性的,并且可以是单 端或者差分的。反馈信号580由共振检测与控制电路560用来确定共振频率并且可选地提供反馈,以控制由AC源1200a、1200b提供的频率。
图13示出了根据本公开内容的驱动器520的另一种实现。在该实施例中,驱动器520可以包括具有不同频率410a、410b的一个或多个电源或数控振荡器(NCO)1300、1302。接着,由这些源1300、1302生成的信号1310a、1310b可以在OR门或其它数字逻辑1320中数字求和,以产生多频信号,与执行脉宽调制(PWM)相似。接着,如图13中所示,作为结果的信号1330可以被用来驱动半桥电路1340以生成跨压电体150的单端驱动信号130。桥接电路1340可以从电源110或单独的电源1342馈电,可选地经电源转换器1350。反馈信号580由共振检测与控制电路560用来确定共振频率并且可选地提供反馈,以控制由NCO 1300、1302提供的频率。
在图14所示的另一个实施例中,驱动器520可以再次包括具有不同频率1410a、1410b的一个或多个电源或数控振荡器(NCO)1400、1402。由这些源1400、1402生成的信号1410a、1410b可以在OR门或其它数字逻辑1420中数字求和,以产生多频脉宽调制(PWM)信号。接着,如图14中所示,作为结果的信号1430可以被用来驱动两个半桥电路1440a和1440b,半桥电路1440b经反相器1480馈电以提供输出1430的反相版本,以便形成全桥驱动。桥接电路1440a、1440b可以从电源110或单独的电源1442馈电,可选地经电源转换器1450。反馈信号580由共振检测与控制电路560用来确定共振频率并且可选地提供反馈,以控制由NCO 1400、1402提供的频率。
本领域普通技术人员将理解,两个单独的源和适当的逻辑可以用来控制半桥驱动之间的定相和死区时间(dead time)。图15示出了实现这种全桥驱动1501的电路图的一个实施例,其中多路复用器1590a、1590b从NCO分别接收附加的未反相的控制线输入1592a、1592b以及分别接收反相的控制线输入1594a、1594b。多路复用器1590a、1590b允许或者混合的两个频率信号驱动全桥,或者单独的频率驱动全桥的每一半。控制线允许不同的操作模式,例如使用单个NCO和反相器来以单个频率驱动全桥的两个半桥或者以相同的频率但是以反相位在所示配置中使用两个NCO。图16示出了根据本公开内容的驱动器520的再一个实施例。在该实施例中,驱动器520包括例如结合驱动信号530的数字表示的波形数据库1600。波形数据库1600可以用来为数模转换器(DAC)1610生成任意的单音或多音数字波形信号,用于转换成对应的电信号1620。这个信号1620可以被适当供电的放大器1630(由电源510或者由单独的电源1640供电,如图16上所示)升高。放大器1630可以是线性或者非线性的,并且可以是单端或者差分的。接着,作为结果的驱动信号530施加到压电致动器540,以便驱动机械负载550,例如加载了流体的喷射器板或者具有填充了流体的液滴发生器的喷射器板。反馈信号580由共振检测与控制电路560用来确定共振频率并且可选地提供反馈,以控制由数据库1600所提供的频率选择。
图17示出了根据本公开内容的驱动器120电路的一个实施例的电路图,提供了全桥驱动器和共振测量电路。在该实施例中,驱动器120包括第一PMOS/NMOS对1800、1802,它们利用驱动信号1804和反相的驱动信号1806以系统驱动频率在压电致动器(喷射器)的电极之间开关正电压Vboost。第一PMOS/NMOS对1800、1802通过信号1810驱动致动器的第一或正侧。驱动频率的范围可以例如从1Hz到10MHz,并且Vboost电压的范围可以例如从6伏特到75伏特。输出1810上的电压是通过晶体管1812控制的,该晶体管由作为图18放大视图中所示的TEP测量电路的一部分的时间-能量-乘积(TEP)反馈信号1814控制。这允许来自驱动器的信号为了监视来自压电致动器的输出信号而被解耦合,如以下更具体讨论的。
驱动器还包括第二PMOS/NMOS对1814、1816,以通过信号1820驱动致动器的第二或负侧。到驱动器的驱动信号1820通过关闭晶体管1822来控制。在监视来自压电致动器的输出电压期间,晶体 管1822短暂开启,以防止驱动器电压穿过到ADC(未示出,但是其位置由标号1850指示)。如以下更具体讨论的,接着晶体管1822关闭并且晶体管1824被TEP使能信号1832关闭,以允许输出电压穿过到ADC(未示出)。晶体管1824还可以经TEP使能信号1832以原始信号驱动频率被驱动,以提供相关的输出信号。
图18以放大的视图示出了图17的电压控制电路系统。该电路是通过提供相等的电阻R1和R2来差分平衡的。TEP_enable 1832保持T7晶体管1824在驱动期间开启。这阻止45V+到达ADC,其中ADC具有VDD<=6V的最大输入。电阻器R2和电容器C1形成测量喷射器环降(ringdown)的积分器电路。
在驱动被切断之后,信号TEP_n 1814和TEP_p 1830分别短路信号Ejector_p 1810和Ejector_n 1820短暂的时间段,以便将电压泄露至足够低的电平,以避免破坏ADC。其后,TEP_n 1814保持通过晶体管T51812将Ejector_p 1810连接到地。信号TEP_p 1830切断晶体管T61822,从而将Ejector_n 1820切换到ADC端口路径中。为了相关,TEP_enable 1832或者禁用晶体管T71824或者以原始驱动频率驱动它。在ADC前面的RC积分器简单地积分输出信号并且ADC在指定的时间采样,以得到用于TEP信号中能量振幅的值。
不考虑驱动信号130的振幅和/或频率,当压电致动器540被驱动信号530驱动时,一些量的能量将在机电机构500中既被存储又被释放。也就是说,多少能量在压电致动器540中被存储和耗散的问题是除别的之外的驱动信号530的频率、环境温度以及机械负载550的性质的函数。如前所描述的,压电致动器常常以共振模式被驱动,以提供机械负载的增加的或最大的位移。在压电致动器540的共振频率处,能量以与压电体处于非共振模式时不同的速率被存储和释放。当机构处于共振时,能量将留在机构中并且在其最终衰减之前在压电体中减幅振荡(ring)某一(可测量的)时间段,并且机构返回其初始的静止状态。当机构不处于共振时,能量从机构泄露可以是几乎立刻的。例如,图19示出了根据本公开内容的系统的一个实施例在共振 和非共振模式下的该衰减时间段期间的时变电压。采用机电系统的这种特性来确定机构何时处于共振以及何时不处于共振是可能的。
图20和21示出本公开内容的用于生成机构500的能量分布的方法的例子,所述能量分布可以用于确定机构是否处于共振。为了简化,流程图中相似的步骤由相同的标号绘出。如图20上所示,在步骤2000,驱动信号530可以施加到压电致动器540有限的时间段。依赖于整体机构需求和要被检测的特性的类型,压电致动器540可以耦合到或者可以不耦合到机械负载(未绘出)。一般而言,为了获得可检测的信号,对于压电模式(其中压电致动器不耦合到负载),驱动信号530应当施加到压电致动器540至少波形的一个时间段,对于膜模式(其中压电致动器耦合到诸如填充了流体的喷射器机构的负载),驱动信号530应当施加到压电致动器540至少波形的两个时间段,而不考虑频率。负载中的能量积聚由共振的品质因数指示的一段时间,并且可以被驱动大于所需最小数量时间段的任意时间量。
在步骤2010,信号530不再施加到压电致动器540。该“停止”可以通过简单地将驱动器520断电、断开驱动器520(例如,以电的方式,通过三态驱动FET)或者足以阻止信号530施加到压电致动器540的某种其它动作造成。在这时,机构570将恢复到其初始的静止状态,即,压电致动器540将不再被致动以使机械负载550移位,并且留在机构中的能量将耗散。如前面所讨论的,信号580衰减得多快依赖于机构是否处于共振。为了使信号580更容易可检测,可以期望通过在驱动信号530的峰值而不是在过零处停止驱动波形来增加信号580的振幅。但是,应当指出,在过零处停止驱动信号530对于测量机械共振比压电共振更有害。
在步骤2020,例如,如图5中所示耦合到压电致动器540的共振检测与控制电路560可以被激活,以测量与留在压电机构570中的信号的衰减关联的各种特性。在步骤2030,共振检测与控制电路560可以积分检测到的信号580。在机构570的共振频率处,积分的信号将具有最大的振幅,从而反映压电致动器540的最大物理运动和机械 负载550的对应位移。共振检测与控制电路560可以与驱动器520同步,以便在衰减的相关时间段上给测量到的信号580的积分开窗。例如,如果积分开始得太早,则它会检取原始的驱动信号530,这在分析中的该时间不是所感兴趣的。
在图20的实施例中,共振确定在步骤2040基于检测到的信号580与在之前的输入信号530频率处取得的信号580相比而言增加而作出。如果没有检测到这种增加,则输入信号530的频率在步骤2050改变,以监视对压电机构170的影响。因而,在步骤2040,可以做出关于机构是否处于共振的评估。在某些实施例中,步骤2000至2040的过程可以重复若干次,以真正确定系统的共振频率。每次在步骤2040确定机构不处于共振模式时,驱动频率520可以在步骤2050被调整。例如,施加到压电体的驱动信号530的频率可以以例如隔开1kHz的步幅变化,从而在变化的驱动频率处观察机构500的响应,直到观察到振幅——即共振响应——中的清晰尖峰。
在图21的实施例中,通过倒计数被测频率的个数并且在步骤2160确定定义的频率个数是否已经被测试、并且如果不是就在步骤2050改变频率并且施加新的输入信号530,对输入信号530测试定义的频率集合。一旦必要数量的频率已经运行,就在步骤2170做出关于获得最高振幅检测信号580的频率的确定。因而,在图21的实施例中,步骤的次序可以稍有变化,使得关于是否观察到共振响应的确定在过程结束时发生。在步骤2000,驱动信号530可以施加到压电致动器540,接着在步骤2010它可以被去除。共振检测与控制电路可以在步骤2020被激活并且测量到的信号580可以在步骤2030被积分。在步骤2160,该方法可以确定它是否已经测试了足够的频率;例如,可能需要测试10个不同的频率。如果只测试了一个(或者小于10的任何个数),则该方法可以跳到步骤2050并且改变驱动信号频率。这个过程可以重复,直到必要数量的频率已经被测试,在这时,可以确定是否有一个被测的频率具有经过证明的共振行为,即如在步骤2170所示出的。
前面的例子已经假设使用单音驱动频率来定位共振频率。但是,本领域普通技术人员将理解,这些过程可以通过例如使用多音驱动信号530而被加速。例如,驱动信号可以具有在45kHz处开始、隔开1kHz的10个音,这些音具有相等的振幅。以这种方式,10个频率中每一个可以同时被分析,即在等待和评估输出信号580之前发送10个频率信号。在再一个实施例中,驱动信号530可以是啁啾或者任意波形。
图22和23示出根据本公开内容的两个示例性系统的积分信号的处理后的(在每个频率处的积分值)样本波形(振幅对频率)。具体而言,图22示出基于相关器的系统的样本波形,即如图26所示并且以下进一步描述的,而图23示出基于快速傅立叶变换(FFT)的系统的样本波形,即如图24和25所示并且以下进一步描述的。
前面的例子已经假设使用单音驱动频率。但是,本领域普通技术人员将理解,这些过程可以通过例如使用多音驱动信号530而被加速。例如,驱动信号可以具有在45kHz处开始、隔开1kHz的10个音,这些音具有相等的振幅。以这种方式,10个频率中每一个可以同时被分析。在再一个实施例中,驱动信号130可以是啁啾或者任意波形。出于这种应用的目的,啁啾是这样的信号,其中该信号的频率以指定的速率被连续扫描。速率可以是线性或非线性函数。
前面的描述描述了在高电平处这样的系统如何工作。本领域普通技术人员将理解,存在多种多样的合适的电子实现。例如,合适的共振检测与控制电路160可以以许多不同的方式实现。在两种实施例中,如图24和图25中所示,共振检测与控制电路560可以包括快速傅立叶变换电路。在图24的实施例中,模拟FFT电路2400耦合到模数转换器(ADC)2410。在图25的实施例中,共振检测与控制电路560可以包括耦合到数字FFT 2510的ADC 2500。因为在诸如PIC微处理器的标准微处理器或微控制器中实现的方便性,所以数字FFT可以优于模拟FFT实现。
在再一个实施例中,如图26中所示,共振检测与控制电路560 可以在输出信号580在前置放大器级2630中被放大之后接收该输出信号580。在该实施例中,共振检测与控制电路560包括耦合到积分器2610的混合器2600。混合器2600可以是能够将驱动信号530与实测信号580相乘的任何形式的数字或模拟电路系统。这种实现在需要非常快速的处理的情形下可以是优选的,因为混合器可能能够实时地执行计算。接着,积分器2610可以耦合到ADC2620或者任何其它振幅测量或跟踪电路。
本领域普通技术人员将理解,依赖于整个系统的特性,可以期望包括某些可选的预处理部件。例如,如图26上所示并且如以上所讨论的,可以期望在压电致动器540和共振检测与控制电路560之间放置前置放大器2630,使得测量到的信号580和/或驱动信号530在处理之前被放大。另选地,电阻性或电容性分压器(未绘出)可以耦合到共振检测与控制电路560,以便例如将压电致动器540的输出580转换成适于输入到实现共振检测与控制电路560的部件的电压。可以理解,关于其它实现,包括但不限于图24和25中所示的实现,这些部件也会是期望的。
图27是根据本公开内容的共振频率检测电路的一个实施例的框图。如图27中所示,压电元件(或者压电陶瓷)540耦合到隔离阻抗2740、采样FET 2750、电容器2760和ADC2720。
采样FET 2750可以用来将电路维持在其动态范围中,由此确保电路在其线性、可操作范围中操作。隔离阻抗2740可配置为允许驱动信号(例如,45V驱动信号)从隔离阻抗2740与采样FET 2750、电容器2760和ADC 2720之间的点A隔离,使得点A不会超过特定的限制电压(例如3V),以便保护包括ADC 2720在内的其它部件。
因而,驱动信号的范围可高达信号电压SV(例如,大约45V),如由输入到压电陶瓷540的方波示出的。在驱动信号之后,TEP信号(由衰减波绘出)由压电陶瓷540发出。该信号通过隔离阻抗,以在点A处给出减小振幅版本。在隔离阻抗2740与采样FET 2750、电容器2760和ADC 2720中的一个或多个之间所定义的电压限制或 隔离点A处的电压具有最大值MV(例如,大约3V)。为了压电共振检测和表征,还示出了时间-能量乘积(TEP)信号,如本文所公开的并且如在所结合的参考物中所描述的。为了能够分析驱动信号的离散样本,采样FET 2750选择性地关闭或开启。根据以上讨论将认识到,TEP(时间-能量乘积)是存储在压电/膜组合中、即存储在填充了流体的喷射器机构中的能量。依赖于模式的品质因数,更多或更少的能量将被存储。模式中的阻尼越小,系统在驱动信号已经终止之后将继续移动越长时间。这意味着压电体将在驱动信号关闭之后输出信号(基于负载电路)。因而,在该环降时间期间,基于模式的品质因数以及它是压电模式还是系统(膜)模式,所生成的信号将具有最大振幅和减幅振荡(ringing)时间。TEP信号给电容器充电并且被模数转换器(ADC)2720用来确定环降时间。因而,TEP信号可以被相关或积分,以确定模式中的能量存储。
图28示出带可选的旁路开关2800的共振检测与控制电路560的一个实施例的所选部件。旁路开关2800可以用来在直接输入到ADC2810或者首先通过前置放大器2820、混合器2830和积分器2840之间选择。当整个共振检测与控制电路560被启用时,NCO或振荡器在单频模式中开启并且在频率内扫过。如果共振检测与控制电路2810的输出大于定义的值或最大值,则它定义共振。共振的强度由共振检测与控制电路2810输出的振幅确定。升压转换器(未示出)由门控振荡器利用模数转换器(ADC)输出控制,以采样输出电压。在电感器添加到全桥输出的情况下,压电致动器电压被监视以便控制升压电压输出。与导致实际功率传送而不是能量在共振元件中存储的常规共振匹配相反,升压电压输出进一步被由压电陶瓷和电感器构成的共振转换器放大而不增加输入电流。在该实施例中,测量电路实现为用来监视回路中的电压的电阻分压器和峰值检测器,并且还在品质因数期间扫过电共振回路,其中电阻分压器和峰值检测器都用于电压控制。这给ADC馈电。TEP不可以与共振转换器一起使用,因为电气共振的量值更强。
在另一个实施例中,参考图18,共振检测与控制电路操作成使得N-通道设备T7在整个全桥驱动周波中都开启,以便接地测量节点,同时使施加到压电致动器(喷射器)的高驱动电压被激活(以保护ADC)。当高电压驱动信号停止时,N-通道设备T5和T6被启用(开启),以暂时短路压电致动器。这二者把高驱动电压泄漏到压电致动器(其掩盖压电运动电压)并且允许由致动器运动感应出的电压不被掩盖并且指向ADC节点。N-通道设备T5对于整个测量周波都开启,而T6在短时间量(1ns-50us)之后被禁用(关闭),以强迫压电运动把电压输出到ADC节点。如果没有T6的短路,则能量不必定指向ADC测量端口。当T6被禁用时,T7也被禁用,从而允许压电体的输出是电压除以R3/(R2+R3)并且被来自C1和T7的电容积分。ADC在T7被禁用之后规定的时间,通常在1μs和500μs之间,采样电压。晶体管T7可以以原始驱动信号的速率被开关,以便与特点的频率相关。
对于压电致动器的两侧以及施加到T5、T6和T7的对应信号,驱动信号的例子在图29中示出。这个序列和ADC测量可以以从1Hz到150MHz的定义的频率步幅(例如150kHz、10MHz等)进行。最大积分值可以被选作喷雾频率,但是关于具体喷雾动态特性的数学校正也可以应用(诸如喷射器速度随频率的增加,以及压电vs膜模式位移)并且可以应用电压耦合系数来使机构更准确。
在一个实施例中,根据本公开内容的机电系统可以确定其共振的频率和品质因数。在另一个实施例中,如本文所描述的机电系统可以在其共振由于机械负载、所施加的驱动信号以及环境温度或者它们的任意组合而改变时允许对其共振的跟踪。这样的方面和共振跟踪可以无需反馈电极而实现,反馈电极的使用可以影响流体喷射系统中的液滴生成、效率和在期望目标上的质量沉积。具体应用中的附加好处也可以根据本公开内容实现。
例如,在某些实施例中,本文所描述的共振跟踪可以在本公开内容的任何液滴发生器设备中使用。因而,可以使液滴发生器设备把自 己带回到共振模式。处于不同频率的短持续时间驱动被用来跨一定范围的频率映射共振振幅。(频率的这个范围可以通过确定制作/制造过程中零件之间的最大统计差异来计算。)喷雾之后的输出可以与液滴发生器设备的原始共振映射进行比较,以固定任何漂移并且用于喷雾验证。在这样的使用中,共振跟踪可以无需反馈电极而实现,这将具有在流体喷射机构中减小质量沉积的效果,如本文所描述的。
电荷隔离的喷射器(双层柔性电路,50μm SS316L环形镀金的40×160,57孔喷射器元件,19mm OD×13mm ID 250μm厚PZT)被驱动,以便在从10kHz到150kHz的频率喷射。在每个频率在相同的时刻记录质量沉积和电波形。
图30中所示的电平偏移驱动器电路被来自内部互补波形发生器的MICROCHIPPIC16LF1503驱动。电平偏移驱动器驱动致动压电元件的全桥。MICROCHIP PIC16LF1503在每个频率之间等待10秒钟,以允许OHAUS PA214比例尺在质量沉积测量期间到达平衡。MICROCHIP PIC16LF1503还提供全部必需的驱动信号(对于在图18中引用的T5-T7)。电信号记录在AGILIENT 3014A示波器上并且在MATLAB中通过对信号积分一直到PIC16LF1503的测量时间而顺序地被处理,以证明共振测量与控制的操作(以数字方式实现各种模拟过滤器,以确定最优电路部件)。
从T7被禁用时开始采样30μs的经积分的压电输出信号密切跟踪机构跨频率的运动和质量沉积,如图31和图32中所示。图31示出膜模式和压电模式下的质量沉积,同时图32示出共振测量输出。相对于膜模式(其中致动器耦合到膜,可以采取填充了流体的喷射器机构的形式),输出对于压电模式(其中只涉及压电致动器)更强,并且对于压电模式和膜模式都必须利用到电压耦合参数的运动来校正输出。耦合参数是利用数字全息显微(DHM)通过致动器的正弦激励和运动的测量来确定的。耦合参数仅仅按比例缩放在给定频率区域内的结果(给它们加权),以提供最优的喷射。此外,运动的频率和振幅可以用来计算喷射器速度,该速度可以用来确定最优喷雾。如果操作局限于压电或膜模式,即不允许混合操作,则电路无需校正就可以被使用。电路只跟踪松散地与喷雾相关的系统位移。准确的喷雾计算需要耦合常量和速度计算。共振测量与控制系统可以以任一方式配置。
虽然以上已经讨论了确定并向致动器(压电模式)或者向喷射器机构(膜模式)提供共振信号的具体实施例,但是本领域技术人员将理解,在不背离本发明主旨与范围的情况下,可以对其元件进行各种变化并且可以进行等同替换。此外,在不背离其本质范围的情况下,为了使本发明的示教适应特定的情况和材料,可以进行修改。
虽然以上讨论讨论了在驱动压电致动器时确定和使用共振频率的价值,但是,特定的驱动信号或驱动波形通过影响在喷射器机构的正面或前表面上的起泡和打湿,还影响喷射器设备的稳定性和可重复性。
图33是用于以上述任何配置来实现液滴生成系统的电路3300的一个实施例的示意性电路图。在该特定的实施例中,电路3300配置为用于驱动器(例如驱动器520)的门控振荡器升压实现,如本文所描述的并且如在结合的参考物中所公开的。
如图33中所示,电路3300包括一个或多个附加的电子部件,包括但不限于开关部件S1-S4、电容器C1-C4、二极管D1、比较器U1、反相器U3、脉宽调制电路(PWM),其中PWM包括PW包络发生器V2、反相器U5-U6、逻辑NAND门U2和U4以及NOR门U8,从而控制晶体管Q1的栅极,以控制比较器U1给PWM电路馈电,并且控制到开关S1-S4的电轨的电压。这些附加部件用来生成延迟、相移、门控、求和、信号提升以及其它功率和信号调节效果,以生成用于驱动致动器(例如以上讨论的致动器540)的脉宽调制PWM信号。如上面所描述的,机械负载(例如负载550)可以包括例如基于单音或多音数控振荡器(NCO)信号附连到加载了流体的喷射器板或者附连到耦合到加载了流体的发生器板的喷射器板的致动器。
图34A、B是使用本公开内容的设备的一个实施例的流体松弛波形与时间的图。驱动信号电压在两个脉冲串中输送,在时间轴(横轴) 上从大约25ms到刚刚超过25.5ms以及在时间轴上从大约27.5ms到刚刚超过28ms。
如图34A中所示,反EMF信号跟在驱动信号之后,并接着以一毫秒的十分之几的特征时间尺度衰减,例如以在大约0.1-0.5ms或者大约0.2-0.3ms范围内的指数衰减常量而衰减。因此,在驱动信号终止后可以存在来自设备的流体喷射。还可以存在在大约1ms或更多的稍微更长时间尺度上衰减的残余偏置,如由第一和第二脉冲串之间驱动信号电压(在零处)和反EMF信号之间的分离所示出的。
图34B是图34A中流体松弛波形图的扩展视图,示出了驱动信号终止后的反EMF环降。如图34B中所示,在驱动信号终止之后可以存在喷射器板的大幅运动,从而导致如上所描述的继续的液滴形成。还存在驱动信号和反EMF之间的相移,这可以造成加载了流体的喷射器板运动滞后于(或者在该情况下,领先于)驱动信号波形。
在被驱动波形激励之前,喷射器板组件从其中没有机械运动的静止状态开始。当电驱动信号被施加以感应出运动时,在液滴喷射之前存在有限的时间滞后。当在液滴发生器中存在多于一个开口时,依赖于振荡模式(或多个模式)和对应的共振频率(或者多个频率),每个开口可以具有达到流体喷射所需的速度的不同特征时间。因而,液滴形成之前的特征前置时间是驱动电压、频率、小孔位置和本征模式形状的函数,如由振荡喷射器板或液滴发生器定义的。
当流体在达到液滴生成的足够速度之前通过开口被挤出时,可以发生起泡,从而进一步延迟液滴形成的开始并且减小质量沉积和流体输送。流体起泡还可以增加打湿的喷射器板动量、延长驱动信号终止后的特征环降时间。
为了减少起泡,喷射器系统可以被驱动选定的时间,在本文中也被称为持续驱动长度。特别地,依赖于特定结构的本征模式,该时间可以选择成让喷射器板达到足以从位于液滴发生器上的各个位置中或者位于喷射器板的中央区域中的喷射区中的一个或多个开口喷射一个(或多个)液滴的速度。根据本公开内容的一方面,驱动信号可以选 择成以液滴按需模式操作。在这种模式下,致动器被驱动由流体属性确定的某个数量的周波,接着驱动停止以允许系统松弛,之后重复持续驱动长度序列。这可以被执行期望的次数,以实现期望的流体质量传送。液滴按需模式具有减少流体起泡并且因此减小喷射器机构的动量的效果,由此增加向液滴流的质量传送并且减小驱动信号切断之后的环降时间。持续驱动长度也依赖于期望的剂量、流体粘性、振荡模式和喷射器配置以及其它参数来选择,并且可以从大约1ms或更小到大约10ms或更大或者在大约1-2ms或更小或者大约2-5ms或更大的范围内变动。
流体起泡可以通过驱动压电致动器选定数量的周波而被减少或抑制。该周波数足以让一个或多个液滴从一个或多个开口喷射。周波的数量也基于包括但不限于期望的剂量、流体粘性、振荡模式和喷射器配置的参数来选择,例如在大约1个周波到大约10个周波的范围内,例如在大约2-5个周波的范围内。另选地,致动器1604可以被驱动10个周波或更多,例如大约10-20个周波,或者在大约10-60个周波或更多的范围内,例如大约10、20、30、40、50或60个周波。
在其它应用中,为了输送相对更大量的液体(例如,在0.5-30μl或更多的范围内),经喷射的持续流体喷射是必需的。但是,以持续模式的喷射(即,具有持续的驱动信号)也可以导致起泡。如上面所描述的,不受任何特定理论的限制,起泡可以由于混乱的喷射、卫星液滴收回、感应和起电效应而发生。而且,当流体泡在开口上形成时,坏流体量可以趋于随致动器的附加周波而增加,例如,经泵送动作和相关的流体力学效应。持续的泵送可以最终导致振荡喷射器板(或者液滴发生器板)的远端表面上的打湿,从而导致增加的动量、Coulomb吸引以及相关的机械和机电效应。
压电致动器还可以被驱动选定数量的周波,接着是驱动信号之间的时间段,该时间段可以被表征为松弛时间或松弛时间段。松弛时间段期间振荡驱动电压的停止导致填充了流体的喷射器板振荡经特征环降时间衰减。环降时间依赖于例如喷射器板和致动器运动的量值以及 流体打湿的喷射器系统的质量。依赖于应用,基于环降时间选择的松弛时间段可以减少起泡。致动器的这种间歇式驱动在本文中将被称为脉动操作模式。与持续喷射的操作模式相比,依赖于驱动脉冲宽度和松弛时间,(每单位时间的)质量喷射速率在脉动操作模式下可以减小,例如减小大约三分之一、大约一半或者大约三分之二。
在一些实施例中,驱动信号停止之后压电致动器的运动可以通过检测由压电致动器的残余运动感应出的反EMF(或反电压)来监视,其中压电致动器机械耦合到喷射器板。例如,反EMF可以经与致动器表面电隔离的金属化层或电子传感器来监视,如以上参考图4所描述的,或者利用在驱动信号电路上感应出的反电压来监视,例如经与致动器表面直接接触的驱动电极或其它传导层。
因而,基于反EMF信号,环降时间可以通过残余喷射器板和流体振荡降至低于特定阈值所需的时间来确定。这具有优于固定松弛时间应用的优点,因为松弛时间是基于液滴形成、打湿、流体粘性和其它因素对流体打湿的喷射器组件的环降时间的影响而针对它们自动调整的。
例如,松弛时间可以由在驱动信号停止后让反EMF电压变得小于其初始值的选定的分数(例如初始值的大约十分之一(10%))所需的时间来定义。另选地,可以选择不同的分数,例如大约二十分之一(5%)或更少,或者大约五分之一(20%)、大约三分之一(33%)、大约一半(50%)或者诸如1/e的不同比率,或者它们的倍数。在附加的应用中,松弛时间段可以基于绝对阈值来选择,例如基于反EMF信号到让加载了流体的喷射器板振荡的选定量值或速度的相关。
图35是驱动信号波形和对应的压电运动波形的一组振幅与时间图,示出了两个波形之间随时间的相移。图35A-D中每一个都示出了用于生成环降阻尼信号的不同方法,以便减小驱动信号终止之后的残余运动。基于观察到的环降反馈信号的量值与相位,抵消波形可以以主动阻尼或制动信号的形式生成。例如,在图35A中,抵消信号 仅仅包括生成相对于原始波信号相反或相移180度的半波。在图35B中,除了生成相反的半波,该相反的波形的振幅也被调整。在图35C中,相反的半波还时移以实现附加的相移。在图35D中,更高频率和相反相位的小脉冲被生成。
一般而言,阻尼信号可以关于驱动信号在相位上偏移,并且量值减小(图35B和35C的组合)。量值是基于反EMF信号的量值确定的,例如在驱动电路中利用致动器传感器或反电压生成用于共振检测与控制电路560的环降或反馈信号580,如在以上的压电系统中示出的。对反EMF信号执行松弛波形和环降分析,以便生成具有适当量值和相位延迟的脉宽调制(PWM)阻尼信号,例如如以上关于图33的电路3300的各个部件所描述的。
依赖于应用,液滴发生器上的流体振荡可以以或者可以不以与喷射器板本身的环降振荡相同的频率发生。就这种情况发生而言,或者在多种模式被激励的任何情况下,反EMF信号将呈现多个频率和拍频,如下面所描述的,并且主动阻尼信号可以相应地被修改,例如通过提供具有不同量值、相位和频率的两个或更多个不同阻尼信号的组合。
另选地,基于期望的信号复杂性水平和对环降信号的所需效果,可以利用单个短脉冲或“啁啾”信号。例如,或者基于驱动波形本身的相位或者基于反EMF信号的定时,可以应用“反相”抵消或阻尼信号。在这种应用中,可以提供具有选定的定时和振幅的更小的相反极性的阻尼信号,以吸收或抵消残余的振荡能量并且使致动器和负载以与车辆相似的方式制动。
一旦任何抵消波形或主动阻尼(制动)信号被施加,松弛时间段就可以在施加另一个驱动信号之前被使用,如上面所描述的。因而,液滴发生器可以以脉动或持续脉动模式被驱动,有或者没有跟在每个脉冲之后的阻尼波形。
液滴还可以在单脉冲模式下生成,其中流体输送经在特定数量的周波上延伸的单个有限驱动波形,有或者没有跟随的主动阻尼信号。 在这种单脉冲操作模式下,松弛时间可以被认为是任意的,一直延伸到被独立触发的(例如,用户选择的)设备激活。
因而,一系列不同方法可以被用来生成阻尼信号。例如,相等振幅的波形可以被应用,具有基于存储在压电体中的能量的振幅以及基于反EMF信号的相位的180°相移(相反的极性)。另选地,基于可用的正或负的电源电压,一个或多个不等振幅的脉冲可以以相反的极性或者不同的相移应用。在单脉冲或“啁啾”阻尼波形中,波形中的能量可以被选择成匹配加载了流体的喷射器板和致动器系统的能量,并且用为最大化能量吸收所选择的相反极性或其它相移来输送,从而利用时间-能量平衡来抵消残余的振荡并减小环降时间。
在操作的脉动或“有限周波”模式下,致动器可以被驱动有限数量的周波,低于喷射器系统的特征起泡时间,之后是基于特征环降时间的松弛时间段,并且在必要的时候重复以达到期望的流体剂量或者质量沉积。虽然每单位时间的质量喷射名义上减少,如上面所描述的,但是这可以被减少起泡的好处来弥补。输送脉冲之间的松弛或“死区”时间可以通过适当阻尼信号的施加来减小。
在这种模式下,液滴发生器可以被驱动有限数量的周波,低于喷射器板系统的特征起泡时间,之后是反相(相反极性)波形的施加,这基于反EMF信号的对应相位。振幅和相位可以为能量平衡而选择,以便在单个脉冲中吸收残余振荡能量的相当大的部分,或者振幅和相位可以如上面所描述地变化。阻尼波形或“制动”信号可以被控制以减小致动器和喷射器板膜的运动,之后是流体本身的附加环降,在附加环降期间不施加新的驱动信号。
因而,完整的波形包括有限周波的驱动信号,之后是用于流体环降的阻尼信号和松弛或死区时间,并且在必要的时候重复,以便实现期望的流体剂量或质量沉积。基于减少的环降时间,与没有主动阻尼或制动信号的有限周波驱动相比,这种模式既提供减少的起泡又提供增加的流体输送速率,如就每单位时间的流体质量而言所定义的。
实例
实例1:喷射器机构。在这个例子中,使用对称的(例如,21mm直径的不锈钢)喷射器板104,具有在喷射器板104的中央区域中形成的液滴发生器132中设置的开口126的图案。驱动电路520被用来生成驱动信号,振荡或反馈电路560被用来测量来自(例如,压电)致动器的反EMF或反馈电压信号,并控制驱动电路来在每个驱动波形之后提供阻尼信号。用于生成不同驱动波形和阻尼信号的其它技术也是预期的,如上面所描述的并且如在结合的参考物中公开的。
喷射器机构与流体储液器接触地操作,并且提供有驱动信号(例如,正弦或方波),以便把流体泵送通过液滴发生器的开口并且以液滴流的形式喷射流体。当持续驱动信号可以导致流体起泡时,短脉冲串或有限周波时间可以被使用,例如大约150ms或更少,大约100ms或更少,大约50ms或更少,或者大约25ms或更少。电隔离垫或反EMF传感器可以附连到致动器,以便监视喷射器组件关于驱动信号的运动,并且在驱动信号终止后提供残余振荡抵消信号,以便减小环降时间并增加净流体输送速率。
实例2:压电松弛和流体松弛。在这个例子中,以共振模式驱动的致动器在驱动信号停止之后将继续振荡由松弛时间定义的给定时间段。甚至在致动器和喷射器系统的运动减小时,由于加载了流体的机构中的附加能量,膜或液滴发生器也将继续振荡。如果压电体在流体已被允许松弛之前被驱动,则流体起泡将发生,并且,如果周波之间的死区时间不足,则起泡和流体振荡将随重复的周波而增加。
图36是流体松弛波形的图,说明了驱动信号去除之后的这些现象。如上面所描述的,压电反EMF电压(纵坐标)由压电致动器的运动生成,并且可以从压电体顶上的电隔离的金属垫或反EMF传感器取得。依赖于相对振幅阈值,反EMF指示致动器组件的环降以一毫秒左右的时间尺度发生,例如大约半毫秒或更少,或者大约0.2-0.3ms。经这个松弛时间段,振荡的量值可以导致在驱动信号终止之后流体喷射显著的时间段,例如高达驱动信号波形本身的长度的1至10倍。
依赖于喷射器设计、流体加载、孔尺寸和其它因素,流体填充的机构(或者在本文中也称为喷射器机构)的流体松弛时间可以是致动器本身的环降时间的两至三倍,例如1毫秒或更多,或者在大约1-2ms或大约2-4ms的范围内。流体必须被允许经这个通常较慢的松弛时间而松弛,以防止起泡。
图37是软斜坡下降之后的流体松弛波形的图,说明了当驱动信号线性减小时致动器组件如何反应。由于存储在致动器本身当中的能量(例如,在压电元件中,其可以是陶瓷元件),残余振荡的振幅在斜坡下降时间段期间并且甚至在驱动信号达到零之后实际上增加。该能量相对慢地耗散,例如经几百个谐波振荡周波。
图38A是五周波激励之后的松弛波形的图,其中驱动信号被突然停止。图38B是图38A中松弛波形的扩展视图,示出了环降信号中的谐波产生(“拍频”)。如图38A和38B中所示,不仅致动器组件在驱动信号被终止之后继续移动,并且它还生成相对大的谐波和交叉调制产物,这又会生成共振模式(“本征模式”)下具有对起泡有利的形状的运动。
实例3:抵消波形。在这个例子中,抵消波形用来减小这种残余运动和环降时间。
图39A是在十周波激励之后的具有主动阻尼波形的流体松弛波形的图。图39B是图39A中的松弛波形的扩展视图,说明了减小的松弛时间和谐波产生。如图39A中所示,阻尼信号是在驱动信号之后生成的,以便吸收存储在(压电)致动器中的能量。虽然喷射器机构在阻尼信号施加之后仍然继续移动,但是松弛时间大大减小,并且谐波和交叉调制产物(“拍频”)被抑制。这使得有更高的质量沉积速率,具有减少的起泡。
图40是在十周波方波激励之后的具有主动阻尼信号的松弛波形的图。如所示出的,驱动信号和阻尼信号都可以作为基本的方波提供。
图41是说明对于与图40中所使用的相同方波激励的松弛波形的 图,但是没有阻尼信号。
图42是说明十周波方波驱动信号的两个时间段之后的具有主动阻尼信号和松弛死区时间的压电和流体松弛的图。图42示出了完全组装的波形的两个完整周波,包括十周波方波驱动信号、用于制动压电致动器的主动阻尼信号、以及重复之间的流体松弛(死区)时间。
实例4:流体的起泡。这个例子使用根据以上实例1的喷射器机构,其中起泡在驱动信号是简单的正弦或方波时被观察到。在这个特定的例子中,驱动信号波形是50ms长。
为了说明松弛时间和主动阻尼信号的好处,利用两种不同粘性的液体:蒸馏水和拉坦前列素(latanaprost),拍摄处于各个阶段的喷射器的图片,其中拉坦前列素是用于减小眼内压力的局部药物。
蒸馏水和拉坦前列素图像以高速(每秒75000帧)来捕捉。对于这两种液体,初始喷雾都证明发生器板的共振模式,但不是每个孔都喷射液滴。在30%通过喷雾信号,不允许松弛或“环降”的持续喷雾导致大泡的形成。在60%通过喷雾信号,卫星液滴由于混乱的喷雾碰撞而产生,这在没有松弛时间的时候增加,并且起泡和碰撞的水平随着喷雾继续而增加。在周波完成之后,大的卫星液滴和起泡被观察到。
实例5:起泡和卫星液滴形成的抑制。这个例子也使用根据以上实例1的喷射器机构,但是起泡通过利用以上所描述的有限周波(重复脉冲)、松弛时间和主动阻尼技术当中的一个或多个被抑制。
再一次把水与拉坦前列素进行比较,但是利用主动阻尼和松弛。初始喷雾图像再次显示发生器板的共振模式,但不是每个孔都喷射流体。这证明模式是非平凡的,并且必须结合选定的孔图案和喷射器板几何形状仔细地确定。在周波中期,液滴以线性流从大部分喷射地点(开口)射出。有更少的混乱流,由此,与显示差喷射的喷雾模式相比,减少了卫星液滴形成。在这个例子中,起泡对两种流体都被抑制,并且较大的泡基本上不存在,或者观察不到。在周波完成之后,大的卫星液滴显著减少,并且在开口中基本上观察不到起泡。一些卫星液 滴可以被观察到,但是在液滴形成地点基本上没有。
在各种附加的例子中,提供了一种方法,该方法对压电致动器施加第一交变电压一个或多个周波,其中压电致动器可操作成振荡喷射器机构从而生成流体的液滴,停止第一交变电压并且施加抵消波形或主动阻尼信号,等待第一松弛时间段,向所述压电致动器施加第二交变电压一个或多个周波,停止第二交变电压并施加抵消波形,并且等待第二松弛时间段。喷射器机构可以包括具有与流体接触的近端表面和一个或多个开口的喷射器板,在驱动电压施加后压电致动器振荡喷射器板。这些步骤可以重复一次或多次,以生成或输送选定量的流体,例如以液滴流的形式。量可以在大约5μl和大约30μl之间选择。喷射器机构还可以配置为以大于大约15微米的平均喷射液滴直径来喷射液滴流。
喷射器可以配置为用于关于驱动电压进行钝化和电荷隔离。抵消波形可以关于驱动电压相移并且具有基本上等于驱动电压或者与其不同的振幅。相移可以是180度,使得抵消波形具有关于交变驱动电压当中的一个或两个相反的极性。另选地,抵消波形可以基本上与交变驱动电压当中的一个或两个同相,或者具有针对关于交变电压当中的一个或两个的不同相移而选择的时间延迟。
抵消波形还可以具有关于交变电压当中的一个或两个不等的振幅,例如比交变驱动电压当中的一个或两个更小的振幅。抵消波形还可以具有针对具有基本上等于存储在压电致动器中的能量的能量的波形而选择的振幅。
第一和第二交变电压和抵消波形当中的任何一个或多个可以被脉宽调制,或者包括或基本上由基本方波或基本正弦波组成。例如,两个交变电压可以都是基本正弦或基本方波,或者正弦和方波的组合。
松弛时间段中的一个或两个可以基于致动器的共振监视,例如通过检测反EMF电压。一个或两个松弛时间段可以与交变电压当中的一个或两个的周波数成比例,并且周波数可以在一和大约三十之间。一个或两个松弛时间段还可以在反EMF具有某个阈值时被确定,例 如作为初始值的一部分,或者一个或两个松弛时间段可以与一个或多个交变电压的周波数成比例。
实例6:
在一个实施例中,喷射器设备实现为两部分设备,包括具有流体储液器(在本文中也称为盒)的喷射器组件和基座系统。基座系统配置为接纳盒并且以互补的方式与盒啮合。当用户把盒插入基座系统中时,进行电接触并且盒变得激活。在一个实施例中,盒EEPROM被读取,以便对禁用盒开始倒计时。
可以提供前端旋转密封,该密封覆盖盒的喷射器机构,并且配置为被转动以便打开喷射器机构或者提供对喷射器机构的喷射器孔的视线访问。转动还触发盒中的磁性开关,该开关被中继到微控制器单元,以便把它带出睡眠模式。瞄准系统(蓝色LED)也被开启并且升压转换器起动。
自动调谐或质量扫描(Q-扫描)被启动以设置喷雾频率。在该实施例中,Q-扫描涉及预定频率范围内一定范围的频率当中的每一个的三个周波的生成并且获得TEP反馈,以找出最优喷雾频率区域。这在以下更具体地讨论。扫描的启动可以或者通过转动前端旋转密封或者通过激活喷雾按钮来触发,并且在一个实施例中,激活机构可以软件选择的。在Q-扫描完成之后,配置为充当电荷泵的升压转换器把环形(压电喷射器)电压升高到为该产品规定的电压,通过把升压轨充电至期望的电压。这个范围可以是例如0至120V。
当用户按下喷雾按钮时,第二开关被触发。在这个事件后,门控互补波形发生器(CWG)驱动电平偏移器电路,该电平偏移器电路又驱动全桥,以驱动压电致动器并输送药物。喷射器机构经恒定的电压驱动(升压工作周波(duty cycle)被不断地调整,以平衡升压输出电压并且因此平衡共振回路中的放大)或者过冲驱动来喷射,其中过冲驱动是通过充电升压(boost up)接着开启驱动从而对高速喷雾造成大规模过冲来实现的。虽然恒定的电压可以在持续或液滴按需模式(x个周波ON–y个周波OFF–重复)下使用,但是过冲只能与液滴按需一起使用。
另外,驱动信号频率可以是恒定的频率或者颤动。颤动意味着频率在一组带宽(3k、5k、10k、20k)上被扫过(就像啁啾)。颤动造成压电运动的急剧速度变化,从而导致更好的喷射。颤动可以例如快速执行(在共振回路的衰减时间内),以生成恒定的多音信号。
可以包括基于IR的量检测电路,以测量在喷雾期间输送的液体量并且延伸或缩短喷雾时间,以输送正确的剂量。在预定义的时间段之后(在该实施例中,在10秒钟之后),所有LED都关闭,并且设备返回睡眠模式,直到用户关闭并重新打开前端旋转密封。
由于自动调谐包括本发明的一方面,因此特定的实现将在以下更具体地描述。
自动调谐系统的目的是允许压电喷射器系统对轻微的材料差异和变化的环境变量动态调整其自身,并且对于可靠的并且可制造的产品是关键的。
在高达1kHz至200kHz的定义范围上,由数控振荡器(NCO)和CWG生成的频率以设置的量递增,但常常是在80-150kHz上以1kHz或0.5kHz的增量。电池电压被补偿,以考虑电池的逐步损耗,其后,升压轨利用模数(ADC)采样反馈被充电至恒定的电压。接着,回路(由电容性压电致动器(压电陶瓷)和一个或多个电感器定义的共振结构)被驱动短暂的时间段,优选地是最小可能的样本尺寸,例如,在单个频率的1.5-2.5个周期。驱动信号在这个频率快速而连续地重复3-5次,以便每次利用相同的振幅系数(电压)给积分峰值检测器中的电容器充电。振幅系数被记录并且该过程在下一个频率重复。这种低电压信号的重复显著提高了测量的信噪比并且防止系统喷射,同时确定喷射的最优共振频率。
自动调谐是通过以低电压驱动喷射器并且测量压电陶瓷/电感器回路响应(Q-因数)来实现的。当跨宽频率范围完成时,自动调谐表征喷射器系统并找出峰值频率。
为了让Q扫描正确地工作,驱动电压需要足够高,以便把能量 正确地驱动到压电体中,但是,它必须足够低,以便不造成不想要的喷射。因此,驱动电压必须被微控制器紧密监视。
用来监视驱动电压的模数转换器(ADC)被数学补偿,以便在电池降低出力(de-rate)和电压下降的时候维持准确的测量。
在该实施例中,扫描是通过算法由软件控制的,该算法首先检查输出范围,以确保已满足正确的电压阈值。扫描将是常量输出,没有用于流体喷射的足够高的电压,因此,如果输出范围太低,则电压稍微增加并且扫描重复。
扫描在脉冲串中重复,从而在多个测量之间寻找一致的峰值频率。如果峰值不一致,则电压稍微增加并且脉冲串重复。如果两个峰值保持相等,则微控制器将在之前编程的最优频率范围内选择用于喷射的峰值。
用于生成驱动信号的部件在图43的框图中绘出,该图示出了具有集成的驱动门的全桥驱动器。数控振荡器(NCO)4300产生具有高频分辨率的驱动信号。第二数控振荡器4302通过逻辑4304用第一NCO门控,以便周期性地禁用互补波形发生器(CWG)4306,而没有在处理器资源上的巨大软件负载。这既允许延长的FET寿命又允许喷射器系统以任意频率的松弛,以防止(combat)如以上讨论的喷雾“起泡”问题。定时器也可以用来实现这个目的。逻辑组合的信号输入到互补波形发生器4306中,该互补波形发生器4306把具有可调整死区的两个反相方波输出到电平偏移器电路4308,该电平偏移器电路4308把2.0V-3.5V对全桥4310的PMOS(未示出)转换成+35并且对NMOS(未示出)转换成+10,以最小化开关损耗和ON电阻。CWG 4306有效地交替驱动压电陶瓷的“开”周波的数量与允许流体松弛的“关”周波的数量。
用于驱动NMOS和PMOS的电平偏移器电路4308的一个实施例的电路图在图44中示出。
它利用45V升压转换器输出(V_Boost)差分驱动致动器并且利用来自CWG的反相方波(CWG_P和CWG_N)被驱动,这两个反 相方波控制FET T1和T10的栅极。PMOS输出(FB_P1和FB_P2)是+45V至+35V,同时NMOS输出(FB_N1和FB_N2)是0V至+10V。
如以上讨论的,本实施例也提供红外线(IR)喷雾量检测。IR LED利用高达1.8V的正向压降和65mA的电流被驱动。光电晶体管测量光强度并且提供在0V和电池电压之间的模拟输出电压,这个输出电压被ADC读取。喷雾已经示为对喷雾量响应具有基本线性的电压。
这种IR喷雾量检测电路的一个实施例在图45中示出。
在本实施例中,每个都提供大约1.5V的三个电池用作便携式电源。在另一个实施例中,只使用两个电池,使得需要使用2X电荷泵来把电池电压升到足够高以便驱动高亮度瞄准系统LED。这种电荷泵的一个实施例使用来自微控制器外围设备的脉宽调制信号。用于瞄准LED的电荷泵电路的一个实施例的示意性电路图在图46中示出。
作为本实施例的另一方面,设备提供药盒启用/禁用/定时器。这在本实施例中实现为在盒上提供的双线串行接口EEPROM,以允许例如通过序列号的唯一识别。在预定义的使用时间段后,该序列号可以被擦除,以便永久性地禁用该盒。序列号可以以不同的方式配置,例如,前几位可以是制造商的标识符,而剩余的位可以提供用于设备的唯一序列号,以识别储液器中的药物。该实施例中的微控制器可以对多达30个设备保持跟踪多达60天。
可以在ASIC中实现的电子装置可以配置为从温度传感器接收输入,或者ASIC可以具有用于如果药物温度超过预定义的温度就禁用盒的内部温度传感器。
如以上所讨论的,为了向致动器提供适当的电压,通过使用配置为充当电荷泵的升压转换器,升压轨被充电至期望的电压。图47是两个升压转换器的电路图,其中一个升压转换器给压电驱动器供电并且另一个升压转换器提供规定的低电流环形电荷(电压)。监视是由ADC结合微控制器执行的。图48是微控制器的一个实施例的电路图。ADC、NCO、CWG、PWM全都在该部分的内部。在该实施例中,ADC是集成设备并且可以在芯片内部在各种引脚之间切换。最初,它在引脚RC2上开始,在那里,它被用来在Q-扫描(自动调谐)期间监视和维持升压电压。如以上所讨论的,电压必须几乎是恒定的,否则频率扫描的结果将提供错误的结果。接着,ADC被切换到RA4,这将允许致动器(环形)电压被充电和校准。最后,ADC被切换到RA0,在那里积分峰值检测器把峰值电压缩放到ADC的电压范围。来自峰值检测器的测量可以用来保持恒定的回路电压或者从Q-扫描抢夺振幅系数。
图49示出了一组电平偏移器的一个实施例的电路图,其中电平偏移器驱动加载有共振回路(包括压电陶瓷)的全桥。它还具有峰值检测器反馈。
图50示出了TEP下拉/液滴按需下拉电路的一个实施例,该电路由一个电平偏移器和两个NMOS FET组成,当全桥停止驱动时,这两个NMOS FET泄露回路而不是让它漂浮。
虽然本发明已经参考具体实施例进行了描述,但是本领域技术人员应当理解,在不背离本发明主旨与范围的情况下,可以对其元件进行各种变化并且可以进行等同替换。此外,在不背离其本质范围的情况下,为了使本发明的示教适应特定的情况和材料,可以进行修改。因而,本发明不限于本文所公开的特定实例,而是涵盖属于权利要求范围的所有实施例。

Claims (36)

1.一种液滴喷射系统,包括:
液滴喷射器组件,包括耦合到液滴发生器板的压电致动器,该液滴发生器板具有通过其的多个开口,该液滴发生器板在开口用流体填充时定义填充了流体的液滴发生器板;
驱动信号发生器,电耦合到压电致动器,该驱动信号发生器被配置为生成用于驱动压电致动器的驱动信号;以及
控制器,电耦合到致动器和驱动信号发生器,其中该控制器被配置为控制驱动信号来以液滴喷射器组件的共振频率驱动压电致动器并且被配置为基于来自压电致动器的衰减信号来确定共振频率,并且其中控制器包括电容器和ADC以确定衰减信号的时间-能量乘积。
2.如权利要求1所述的系统,其中控制器包括共振测量与控制电路,该共振测量与控制电路被配置为通过控制驱动信号发生器跨一定范围的频率产生一组频率信号并监视对衰减信号的影响来确定液滴喷射器组件的共振频率。
3.如权利要求2所述的系统,其中每个频率信号重复多次,并且作为结果的时间-能量乘积信号每次都被监视以确保一致性。
4.如权利要求1所述的系统,其中驱动信号包括至少两个不同的频率信号,共振频率由所述至少两个不同的频率信号之间的干扰来定义。
5.如权利要求4所述的系统,其中每个不同的频率信号关于液滴喷射器组件是非共振的。
6.一种操作液滴喷射器组件的方法,该方法包括:
对液滴喷射器组件施加驱动信号,其中该液滴喷射器组件包括耦合到加载有流体的液滴发生器板的压电致动器;
基于来自压电致动器的反馈信号的累积量值或峰值来确定喷射器组件的共振频率;以及
控制驱动信号来以喷射器组件的共振频率驱动压电致动器,
其中反馈信号是由跟在到致动器的驱动或测试信号之后的衰减信号定义的。
7.如权利要求6所述的方法,其中共振频率的确定是跟随测试信号或者跟随驱动信号完成的。
8.如权利要求7所述的方法,其中驱动信号被调整以考虑由于以下一个或多个的变化引起的喷射器组件的共振频率的变化:加载到液滴发生器板中的流体的特性、液滴发生器板的流体加载的量、温度、湿度和压力。
9.如权利要求8所述的方法,其中共振频率的变化至少基于由温度、湿度、压力和驱动电压中的一个或多个感应出的共振偏移。
10.如权利要求6所述的方法,其中共振频率的确定包括对衰减信号积分以确定能量量值。
11.如权利要求6所述的方法,其中确定共振频率是跟随不同的测试频率信号完成的,该方法还包括跨一定范围的频率对致动器施加不同的频率测试信号。
12.如权利要求11所述的方法,其中确定共振频率是基于来自致动器的时间-能量乘积信号的,并且通过对时间-能量乘积信号求积分而获得。
13.如权利要求6所述的方法,其中对致动器施加驱动信号包括至少生成不同的第一驱动频率信号和第二驱动频率信号,这两个信号单独地关于加载有流体的液滴发生器板是非共振的,但是合起来关于加载有流体的液滴发生器板是共振的。
14.一种液滴喷射设备,包括:
流体储液器或安瓿;
喷射器组件,包括液滴发生器板和耦合到该液滴发生器板的压电致动器,其中液滴发生器板与储液器流体相通,使得液滴发生器板加载有流体;以及
驱动器,耦合到压电致动器,其中该驱动器被配置为至少生成处于不同的第一驱动频率和第二驱动频率的第一驱动信号和第二驱动信号,其中驱动信号耦合到压电致动器,以便以一个或多个共振频率来振荡喷射器组件;以及
控制器,被配置为确定共振频率中的一个或多个的偏移并且基于该偏移控制第一驱动频率和第二驱动频率中的至少一个,使得喷射器组件以共振频率被振荡,
其中,控制器被配置为在没有驱动信号的情况下基于来自致动器的衰减信号来确定共振频率的偏移。
15.如权利要求14所述的液滴喷射设备,其中,驱动信号关于加载有流体的液滴发生器板是非共振的,使得致动器基于第一驱动频率和第二驱动频率之间的干扰来以共振频率振荡喷射器组件。
16.一种用于对包括压电致动器的机电系统何时操作在共振模式进行检测的方法,该方法包括:
a.向压电致动器施加驱动信号有限的时间段;
b.从压电致动器去除驱动信号;
c.激活耦合到压电致动器的测量电路;
d.在测量电路中从压电致动器接收检测到的信号;以及
e.基于检测到的信号的性质来确定机电系统是否处于共振模式,
其中共振模式是基于跟在去除驱动信号之后来自致动器的衰减信号的持续时间或者基于该衰减信号的峰值或总能量来确定的。
17.如权利要求16所述的方法,还包括在机电系统不操作在共振模式的情况下改变驱动信号的频率并且重复步骤a至e的步骤。
18.如权利要求16所述的方法,还包括对衰减信号求积分的步骤。
19.如权利要求16所述的方法,其中机电系统能在多种共振模式下操作,并且该方法还包括确定用于机电系统的操作的所述多种共振模式中的最佳模式。
20.一种提供驱动波形用以使耦合到压电致动器的机械负载的物理位移最大化的方法,该方法包括:
提供两个或更多个输入信号;以及
组合输入信号以产生组合的驱动信号,其中所述两个或更多个输入信号被选择以使得组合的驱动信号具有与耦合到压电致动器的机械负载的至少一个共振频率相等的频率。
21.如权利要求20所述的方法,其中至少一个输入信号是振幅和相位加权的,使得压电致动器实现机械负载的最大物理位移。
22.如权利要求20所述的方法,其中所述两个或更多个输入信号被选择以使得一个信号具有压电致动器在其提供增大的机械负载位移的频率,并且另一个信号具有压电致动器在其提供增大的机械负载位移速度的频率。
23.如权利要求22所述的方法,其中至少一个输入信号被选择为是在耦合到压电致动器的机械负载的共振频率。
24.如权利要求22所述的方法,其中机械负载是非矩形的,并且其中至少一个输入信号操作在Bessel模式频率,并且其中Bessel模式频率是共振频率乘以Bessel函数的解。
25.一种用于喷射流体液滴的压电喷射器设备,包括:
喷射器机构,包括压电致动器和液滴发生器板;以及
驱动器电子装置,用于驱动致动器,该电子装置包括被配置为通过识别和设置最优喷雾频率来执行喷射器机构的自动调谐的微控制器,
其中自动调谐涉及生成在预定义频率范围上的一定范围的驱动信号频率中的每一个的至少一个周波并且从跟在每次频率生成之后由致动器发射的衰减信号获得时间-能量乘积反馈。
26.如权利要求25所述的压电喷射器设备,其中对于每个频率快速且连续地生成多个单独的周波,以便对于每个周波用相同的电压对积分峰值检测器中的电容器充电,该电压被记录并且该过程在下一个频率之下重复。
27.如权利要求25所述的压电喷射器设备,还包括至少一个数控振荡器NCO,用于在预定义的频率范围上递增频率。
28.如权利要求25所述的压电喷射器设备,其中电力从至少一个电池提供给致动器,微控制器被配置为监视电池电压并补偿电池的逐渐损耗。
29.如权利要求25所述的压电喷射器设备,还包括至少一个电感器,以定义具有压电致动器的共振回路,其中压电致动器充当电容器。
30.如权利要求26所述的压电喷射器设备,其中微控制器被配置为在自动调谐期间在每个驱动信号频率维持恒定的电压,使用ADC来监视驱动电压以确保足够高到能正确地将能量驱动到压电致动器中的驱动电压并同时将电压维持在足够低的水平以避免不需要的喷射。
31.如权利要求29所述的压电喷射器设备,其中升压电路被配置为充当电荷泵,以在自动调谐之后将压电致动器电压升高到规定的电压。
32.如权利要求31所述的压电喷射器设备,其中驱动电子装置包括驱动电路,该驱动电路包括两个NCO、用于组合来自所述两个NCO的信号以定义组合的信号的逻辑、用于接收组合的信号的互补波形发生器CWG、连接到CWG的电平偏移器电路、以及连接到电平偏移器并且能操作成用驱动信号来驱动压电致动器用以喷射流体的全桥。
33.如权利要求32所述的压电喷射器设备,其中微控制器被配置为不断地调整升压工作周波以平衡升压输出电压,并因而平衡共振回路中的放大,以提供恒定的电压驱动。
34.如权利要求32所述的压电喷射器设备,其中微控制器被配置为将驱动信号保持在恒定的频率。
35.如权利要求32所述的压电喷射器设备,其中微控制器被配置为通过在定义的带宽上扫描驱动信号的频率而使驱动信号颤动。
36.如权利要求32所述的压电喷射器设备,其中所述逻辑对来自所述两个NCO的信号进行组合以定义组合的信号,该组合的信号周期性地禁用CWG,以向电平偏移器电路提供具有可调整的死区的两个反相位方波。
CN201380032419.9A 2012-05-15 2013-05-15 喷射器设备、方法、驱动器及用于其的电路 Active CN104640708B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201261647359P 2012-05-15 2012-05-15
US61/647,359 2012-05-15
US201261722584P 2012-11-05 2012-11-05
US201261722556P 2012-11-05 2012-11-05
US61/722,584 2012-11-05
US61/722,556 2012-11-05
PCT/US2013/041208 WO2013173495A1 (en) 2012-05-15 2013-05-15 Ejector devices, methods, drivers, and circuits therefor

Publications (2)

Publication Number Publication Date
CN104640708A CN104640708A (zh) 2015-05-20
CN104640708B true CN104640708B (zh) 2017-11-07

Family

ID=49584264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380032419.9A Active CN104640708B (zh) 2012-05-15 2013-05-15 喷射器设备、方法、驱动器及用于其的电路

Country Status (15)

Country Link
US (3) US9539604B2 (zh)
EP (1) EP2849949A4 (zh)
JP (1) JP6240170B2 (zh)
KR (1) KR102234042B1 (zh)
CN (1) CN104640708B (zh)
AU (1) AU2013262787A1 (zh)
BR (1) BR112014028400A2 (zh)
CA (1) CA2873508A1 (zh)
EA (1) EA201492094A1 (zh)
HK (1) HK1210111A1 (zh)
IL (1) IL235703A0 (zh)
IN (1) IN2014DN10575A (zh)
MX (1) MX2014013962A (zh)
SG (2) SG10201602609XA (zh)
WO (1) WO2013173495A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU228923U1 (ru) * 2024-07-09 2024-09-17 Общество с ограниченной ответственностью "СпецмашСоник" Пьезокерамический излучатель

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107970506B (zh) 2012-04-10 2020-06-16 艾诺维亚股份有限公司 具有可控制的微滴电荷的定向微滴流在制备药物中的用途
BR112014026171A2 (pt) 2012-04-20 2017-07-18 Eyenovia Inc dispositivo ejetor por aspersão e métodos de uso
SG10201602609XA (en) 2012-05-15 2016-05-30 Eyenovia Inc Ejector devices, methods, drivers, and circuits therefor
US20140263695A1 (en) * 2013-03-13 2014-09-18 King Abdullah University Of Science And Technology Method and apparatus for atomizing and vaporizing liquid
PL3427782T3 (pl) 2014-01-31 2020-06-29 Eye-go A/S Urządzenie do aplikowania płynu oftalmicznego
JP6260382B2 (ja) * 2014-03-19 2018-01-17 セイコーエプソン株式会社 印刷装置
MX357682B (es) 2014-03-25 2018-07-19 Halliburton Energy Services Inc Sensor de viscosidad.
US9421199B2 (en) 2014-06-24 2016-08-23 Sydnexis, Inc. Ophthalmic composition
WO2016172712A2 (en) 2015-04-23 2016-10-27 Sydnexis, Inc. Ophthalmic composition
CL2014002079A1 (es) * 2014-08-06 2016-09-16 Univ Santiago Chile Un atomizador conformado por una placa vibrante que es excitada por un transductor ultrasonico, una linea nodal y al menos un vientre porque posee al menos una perforacion de entrada de liquido a atomizar, al menos una perforacion de salida del liquido atomizado localizada en dicho al menos un vientre.
US11382909B2 (en) 2014-09-05 2022-07-12 Sydnexis, Inc. Ophthalmic composition
EP3244851B1 (en) 2015-01-12 2024-10-16 Bausch + Lomb Ireland Limited Micro-droplet delivery device
EP3253433A4 (en) * 2015-04-10 2018-08-22 Kedalion Therapeutics, Inc. Piezoelectric dispenser with replaceable ampoule
US10090453B2 (en) 2015-05-22 2018-10-02 Nordson Corporation Piezoelectric jetting system and method
WO2016196367A1 (en) 2015-05-29 2016-12-08 Sydnexis, Inc. D2o stabilized pharmaceutical formulations
EP3304607B1 (en) * 2015-06-03 2019-10-23 Koninklijke Philips N.V. Actuator matrix array and driving method
EP3190637B1 (en) * 2016-01-06 2020-03-04 poLight ASA Electronic circuit for controlling charging of a piezoelectric load
ES2694563T3 (es) * 2016-03-14 2018-12-21 Abb S.P.A. Un actuador de bobina para aplicaciones LV o MV
US11302858B2 (en) * 2016-04-25 2022-04-12 Koninklijke Philips N.V. EAP actuator and drive method
US11285284B2 (en) 2016-05-03 2022-03-29 Pneuma Respiratory, Inc. Methods for treatment of pulmonary lung diseases with improved therapeutic efficacy and improved dose efficiency
US11285274B2 (en) 2016-05-03 2022-03-29 Pneuma Respiratory, Inc. Methods for the systemic delivery of therapeutic agents to the pulmonary system using a droplet delivery device
KR102122887B1 (ko) 2016-05-03 2020-06-16 뉴마 레스퍼러토리 인코포레이티드 유체들의 폐기관계로의 전달을 위한 액적 전달 디바이스 및 사용 방법
WO2017192782A1 (en) 2016-05-03 2017-11-09 Pneuma Respiratory, Inc. Systems and methods comprising a droplet delivery device and a breathing assist device for therapeutic treatment
US11285283B2 (en) 2016-05-03 2022-03-29 Pneuma Respiratory, Inc. Methods for generating and delivering droplets to the pulmonary system using a droplet delivery device
CN106292448B (zh) * 2016-09-06 2018-10-19 吉林大学 压电喷射点胶设备的驱动控制装置
JP6144398B1 (ja) * 2016-09-26 2017-06-07 株式会社タカラトミー 液体霧化装置
CA3039106A1 (en) 2017-01-20 2018-07-26 Kedalion Therapeutics, Inc. Piezoelectric fluid dispenser
EP3634552A4 (en) 2017-05-19 2021-03-03 Pneuma Respiratory, Inc. DRY POWDER ADMINISTRATION DEVICE AND METHODS OF USE
SG11201911895XA (en) 2017-06-10 2020-01-30 Eyenovia Inc Methods and devices for handling a fluid and delivering the fluid to the eye
JP6972684B2 (ja) * 2017-06-15 2021-11-24 コニカミノルタ株式会社 記録装置及び記録ヘッド電圧設定方法
US9967946B1 (en) * 2017-08-14 2018-05-08 Nxp B.V. Overshoot protection circuit for LED lighting
US10991498B2 (en) 2017-09-19 2021-04-27 Paccar Inc Sine pulse actuation, and associated systems and methods
CN118203735A (zh) 2017-10-04 2024-06-18 精呼吸股份有限公司 电子呼吸致动式直线型液滴输送装置及其使用方法
EP4344719A3 (en) 2017-10-17 2024-06-05 Pneuma Respiratory, Inc. Nasal drug delivery apparatus and methods of use
CN109674576B (zh) * 2017-10-19 2024-02-27 深圳市启明医药科技有限公司 流体供应单元及微液滴喷射驱动装置、发生装置
JP2021502178A (ja) 2017-11-08 2021-01-28 ニューマ・リスパイラトリー・インコーポレイテッド 小容積アンプルを有して呼吸により電気的に作動するインライン液滴送達装置および使用方法
WO2019104191A1 (en) 2017-11-21 2019-05-31 Sydnexis, Inc. Ophthalmic composition and delivery device thereof
US11278448B2 (en) 2017-12-08 2022-03-22 Kedalion Therapeutics, Inc. Fluid delivery alignment system
EP3539779B1 (en) 2018-03-16 2020-08-12 Ricoh Company, Ltd. Liquid droplet forming device and liquid droplet forming method
CN210409159U (zh) * 2018-04-20 2020-04-28 广东东阳光药业有限公司 一种雾化装置
CN112040798B (zh) * 2018-05-16 2024-04-05 菲利普莫里斯生产公司 具有振动室的雾化器组件
US10933203B2 (en) * 2018-12-19 2021-03-02 L'oreal Adjustable misting arrays
FR3093426B1 (fr) * 2019-03-05 2022-08-19 Nemera La Verpilliere Dispositif de distribution d’une solution
US11679028B2 (en) 2019-03-06 2023-06-20 Novartis Ag Multi-dose ocular fluid delivery system
US12097145B2 (en) 2019-03-06 2024-09-24 Bausch + Lomb Ireland Limited Vented multi-dose ocular fluid delivery system
US11162861B2 (en) * 2019-04-24 2021-11-02 Lawrence Livermore National Security, Llc Magnetically coupled pressure sensor
US11510809B2 (en) 2019-05-14 2022-11-29 Twenty Twenty Therapeutics Llc Non-gravitational fluid delivery device for ophthalmic applications
EP3754733A1 (en) * 2019-06-19 2020-12-23 Albert-Ludwigs-Universität Freiburg Piezoelectric actuator and microfluidic device
US20210113783A1 (en) 2019-10-20 2021-04-22 Respira Technologies, Inc. Electronic devices and liquids for aerosolizing and inhaling therewith
EP3855949A1 (en) 2019-12-15 2021-08-04 Shaheen Innovations Holding Limited Ultrasonic mist inhaler
US20240148053A9 (en) 2019-12-15 2024-05-09 Shaheen Innovations Holding Limited Hookah device
US11730193B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Hookah device
WO2021123871A1 (en) 2019-12-15 2021-06-24 Shaheen Innovations Holding Limited Ultrasonic mist inhaler
US11589610B2 (en) 2019-12-15 2023-02-28 Shaheen Innovations Holding Limited Nicotine delivery device having a mist generator device and a driver device
ES2971290T3 (es) 2019-12-15 2024-06-04 Shaheen Innovations Holding Ltd Inhalador nebulizador ultrasónico
US11730191B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Hookah device
US11666713B2 (en) * 2019-12-15 2023-06-06 Shaheen Innovations Holding Limited Mist inhaler devices
SI3837999T1 (sl) 2019-12-15 2022-10-28 Shaheen Innovations Holding Limited Naprave za inhaliranje meglic
US11877953B2 (en) 2019-12-26 2024-01-23 Johnson & Johnson Surgical Vision, Inc. Phacoemulsification apparatus
KR20220149706A (ko) * 2020-03-05 2022-11-08 필립모리스 프로덕츠 에스.에이. 트랜스듀서의 피드백 제어를 갖춘 에어로졸 발생 장치
CN115768384A (zh) 2020-04-17 2023-03-07 科达隆治疗公司 流体动力致动的不含防腐剂分配系统
US11938057B2 (en) 2020-04-17 2024-03-26 Bausch + Lomb Ireland Limited Hydrodynamically actuated preservative free dispensing system
US12090087B2 (en) 2020-04-17 2024-09-17 Bausch + Lomb Ireland Limited Hydrodynamically actuated preservative free dispensing system having a collapsible liquid reservoir
US20210330493A1 (en) * 2020-04-23 2021-10-28 Johnson & Johnson Surgical Vision, Inc. Multi-channel piezoelectric resonant system
WO2021252054A1 (en) 2020-06-10 2021-12-16 Ocular Science, Inc. Compositions and uses in method for post-operative ocular care
CN113071218B (zh) * 2021-03-25 2022-03-18 中国农业大学 一种面向柔性传感器喷墨打印过程的质量监控方法
US11793945B2 (en) 2021-06-22 2023-10-24 Pneuma Respiratory, Inc. Droplet delivery device with push ejection
CN113937797B (zh) * 2021-09-27 2023-11-21 东北电力大学 考虑电网调频需求及动态频率分散性的储能系统配置方法
US20230120997A1 (en) 2021-10-18 2023-04-20 Ocular Science, Inc. Compositions and methods for myopia control and orthokeratology lenses treatment
US20230188901A1 (en) 2021-12-15 2023-06-15 Shaheen Innovations Holding Limited Apparatus for transmitting ultrasonic waves
CN114247016A (zh) * 2021-12-29 2022-03-29 深圳摩尔雾化健康医疗科技有限公司 超声雾化组件及超声雾化装置
CN115106143A (zh) * 2022-06-29 2022-09-27 合肥瀚海星点生物科技有限公司 一种高精度电动微量液体移液器
CN115037185B (zh) * 2022-07-18 2024-03-12 西安交通大学 基于压电充放电原理的结构形状调节机构与断电保形方法
WO2024180418A1 (en) * 2023-03-01 2024-09-06 Ricoh Company, Ltd. Liquid discharge apparatus and liquid discharge method

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4818270B1 (zh) * 1968-03-16 1973-06-05
JPS4818270Y1 (zh) 1969-05-16 1973-05-25
US3892235A (en) 1971-07-27 1975-07-01 Respiratory Care Multi-use inhalation therapy apparatus
AU553251B2 (en) 1981-10-15 1986-07-10 Matsushita Electric Industrial Co., Ltd. Arrangement for ejecting liquid
GB8528032D0 (en) 1985-11-13 1985-12-18 Ici Plc Ocular treatment
US5115971A (en) 1988-09-23 1992-05-26 Battelle Memorial Institute Nebulizer device
DE68902989T2 (de) 1988-12-20 1993-04-15 Step Soc Tech Pulverisation Vorrichtung zum spenden einer fluessigkeit oder einer creme in tropfen kleinen volumens.
JPH0712362B2 (ja) * 1989-02-17 1995-02-15 オリンパス光学工業株式会社 超音波治療装置
GB8916133D0 (en) 1989-07-14 1989-08-31 Raychem Ltd Laser machining
EP0424686A1 (en) * 1989-10-27 1991-05-02 Storz Instrument Company Control system for ophthalmic surgical instruments
US5249121A (en) * 1989-10-27 1993-09-28 American Cyanamid Company Remote control console for surgical control system
DE69019289T2 (de) 1989-10-27 1996-02-01 Storz Instr Co Verfahren zum Antreiben eines Ultraschallwandlers.
CA2063382A1 (en) * 1990-05-08 1991-11-09 Michael R. Verheyen Apparatus for driving a piezoelectric actuator
JP2938179B2 (ja) 1990-11-13 1999-08-23 ヤマハ発動機株式会社 筒内噴射式2サイクルエンジンのコンデンサ放電式多重点火装置
US5938117A (en) 1991-04-24 1999-08-17 Aerogen, Inc. Methods and apparatus for dispensing liquids as an atomized spray
US5359350A (en) * 1991-06-14 1994-10-25 Ricoh Company, Ltd. Method of driving ink jet printing head
US5518179A (en) 1991-12-04 1996-05-21 The Technology Partnership Limited Fluid droplets production apparatus and method
AU663543B2 (en) 1992-02-07 1995-10-12 Sherwood Services Ag Ultrasonic surgical apparatus
US5607410A (en) 1993-02-16 1997-03-04 Branch; John D. Vision directed eye wash
JPH0712362A (ja) 1993-06-23 1995-01-17 Matsushita Electric Ind Co Ltd 熱搬送装置
EP0732975B1 (en) * 1993-12-09 1998-09-30 Ttp Group Plc Liquid spray apparatus and method
US6111335A (en) * 1993-12-28 2000-08-29 Beniamin Acatrinei Piezoelectric interface analyzer
GB9405952D0 (en) 1994-03-25 1994-05-11 Zeneca Ltd Aqueous ophthalmic sprays
US6011062A (en) 1994-12-22 2000-01-04 Alcon Laboratories, Inc. Storage-stable prostaglandin compositions
DE69605025T2 (de) * 1995-03-14 2000-07-20 Siemens Ag Ultraschallzerstäuber mit abnehmbarer präzisionsdosiereinheit
EP0810097B1 (en) * 1995-11-21 1999-03-31 Citizen Watch Co., Ltd. Drive circuit and drive method for ink jet head
CA2264663C (en) 1996-08-29 2004-11-09 Bausch & Lomb Surgical, Inc. Dual loop frequency and power control
US5938677A (en) * 1997-10-15 1999-08-17 Alcon Laboratories, Inc. Control system for a phacoemulsification handpiece
IT1299401B1 (it) * 1998-03-27 2000-03-16 Optikon 2000 Spa Procedimento di ottimizzazione del pilotaggio di un attuatore piezoelettrico, in particolare per dispositivi facoemulsificatori,
US6623108B2 (en) 1998-10-16 2003-09-23 Silverbrook Research Pty Ltd Ink jet printhead having thermal bend actuator heating element electrically isolated from nozzle chamber ink
GB2345010B (en) 1998-12-17 2002-12-31 Electrosols Ltd A delivery device
US6530370B1 (en) 1999-09-16 2003-03-11 Instrumentation Corp. Nebulizer apparatus
CO5270018A1 (es) * 1999-12-11 2003-04-30 Glaxo Group Ltd Distribuidor de medicamento
AU2001290283A1 (en) 2000-09-27 2002-04-08 Matsushita Electric Industrial Co., Ltd. Dielectric thin film element, actuator comprising it, ink jet head, and ink jet recorder.
ATE261743T1 (de) 2000-12-29 2004-04-15 Instrumentarium Corp Flüssigkeitsausstossvorrichtung mit magnetisch betätigbares ventil
US20020085067A1 (en) 2000-12-29 2002-07-04 Robert Palifka Ink jet printing module
US6758837B2 (en) 2001-02-08 2004-07-06 Pharmacia Ab Liquid delivery device and method of use thereof
US6550472B2 (en) 2001-03-16 2003-04-22 Aerogen, Inc. Devices and methods for nebulizing fluids using flow directors
US6697207B2 (en) * 2001-06-22 2004-02-24 Iomega Corporation Method and circuit for providing velocity-controlled head loading or unloading
US6976639B2 (en) 2001-10-29 2005-12-20 Edc Biosystems, Inc. Apparatus and method for droplet steering
FR2832987B1 (fr) 2001-12-04 2004-07-09 Valois Sa Distributeur de produit fluide
AU2002230267A1 (en) 2002-02-11 2003-09-04 Sara Lee/De N.V. Liquid spray-head, apparatus comprising a liquid spray-head and container therefore
US7427115B2 (en) 2002-03-28 2008-09-23 Xerox Corporation Fluid ejector including a drop size symbol, a method of disposing a drop size symbol in a fluid ejector, and an image forming device including a marking fluid ejector with a drop size symbol
US20040039355A1 (en) 2002-08-26 2004-02-26 Gonzalez Jose M. Fluid dispensing devices and methods
CA2500252C (en) 2002-09-24 2011-10-04 Duke University Methods and apparatus for manipulating droplets by electrowetting-based techniques
US20070211212A1 (en) 2002-09-26 2007-09-13 Percy Bennwik Eye state sensor
US7074827B2 (en) 2002-10-24 2006-07-11 Sucampo Ag (Usa) Inc. Method for treating ocular hypertension and glaucoma
AU2003295673A1 (en) * 2002-11-15 2004-06-15 American Technology Corp. (Atc) A high intensity directional electroacoustic sound generating system for communications targeting
US7740347B2 (en) * 2002-12-02 2010-06-22 Silverbrook Research Pty Ltd Ink usage tracking in a cartridge for a mobile device
US7726303B2 (en) 2003-02-25 2010-06-01 Hewlett-Packard Development Company, L.P. Controlled medicament ejection
US20100222752A1 (en) 2003-05-20 2010-09-02 Collins Jr James F Ophthalmic fluid delivery system
EP1624938B1 (en) 2003-05-20 2011-03-16 James F. Collins Ophthalmic drug delivery system
US8545463B2 (en) 2003-05-20 2013-10-01 Optimyst Systems Inc. Ophthalmic fluid reservoir assembly for use with an ophthalmic fluid delivery device
US7367334B2 (en) 2003-08-27 2008-05-06 Philip Morris Usa Inc. Fluid vaporizing device having controlled temperature profile heater/capillary tube
JP4677744B2 (ja) * 2003-11-04 2011-04-27 ソニー株式会社 噴流発生装置、電子機器及び噴流発生方法
FR2862009B1 (fr) 2003-11-07 2007-01-05 Valois Sas Tete de pulverisation de produit fluide et pompe de distribution comportant une telle tete.
EP1737517B1 (en) 2004-04-02 2010-10-06 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by the Secretary, Department of Health and Human Services Aerosol delivery systems
US20060039715A1 (en) 2004-08-19 2006-02-23 Eastman Kodak Company Electrostatographic apparatus with cleaning device for controlling release oil transfer
US7658478B2 (en) 2004-10-04 2010-02-09 Kodak Graphic Communications Canada Company Non-conductive fluid droplet forming apparatus and method
CA2597321A1 (en) 2005-02-11 2006-08-17 Battelle Memorial Institute Ehd aerosol dispensing device and spraying method
JP4543284B2 (ja) * 2005-03-18 2010-09-15 富士フイルム株式会社 ミスト噴射装置及び方法並びに画像形成装置
EP1865311A4 (en) * 2005-03-18 2012-03-14 Ngk Insulators Ltd PIEZOELECTRIC ELEMENT INSPECTION METHOD, INSPECTION DEVICE, AND POLARIZATION PROCESSING METHOD
CN1854503B (zh) 2005-04-18 2012-07-04 株式会社电装 具有喷嘴孔的喷射阀
US7828232B2 (en) 2005-04-18 2010-11-09 Denso Corporation Injection valve having nozzle hole
US7954730B2 (en) 2005-05-02 2011-06-07 Hong Kong Piezo Co. Ltd. Piezoelectric fluid atomizer apparatuses and methods
US7819335B2 (en) 2006-01-23 2010-10-26 Kimberly-Clark Worldwide, Inc. Control system and method for operating an ultrasonic liquid delivery device
KR20090004894A (ko) 2006-03-31 2009-01-12 구라시키 보세키 가부시키가이샤 열가소성 폴리이미드층을 갖는 연성 적층판 및 그의 제조 방법
US8672648B2 (en) 2006-05-23 2014-03-18 Nuventix, Inc. Methods for reducing the non-linear behavior of actuators used for synthetic jets
US7455245B2 (en) * 2006-07-14 2008-11-25 S.C. Johnson & Son, Inc. Diffusion device
RU2411047C2 (ru) * 2006-08-01 2011-02-10 Джапан Тобакко Инк. Аэрозольный аспиратор и способ всасывания аэрозоля
CN101479046B (zh) 2006-09-01 2012-06-27 株式会社神户制钢所 加速喷嘴及喷射喷嘴装置
US8376525B2 (en) 2006-09-08 2013-02-19 Canon Kabushiki Kaisha Liquid discharge head and method of manufacturing the same
DE112007002621T5 (de) 2006-11-07 2009-09-17 Tamura Corp. Treiberschaltung für einen piezoelektrischen Transformator
US20080169725A1 (en) * 2007-01-12 2008-07-17 Shan-Yi Yu Piezoelectric actuation system
JP4849338B2 (ja) 2007-03-26 2012-01-11 Tdk株式会社 圧電磁器組成物
US7564165B2 (en) * 2007-10-29 2009-07-21 The Procter & Gamble Company Actuating device having an integrated electronic control circuit
CN101945767B (zh) 2007-12-23 2013-10-30 先进液体逻辑公司 液滴致动器配置以及引导液滴操作的方法
DE102008003838A1 (de) 2008-01-10 2009-07-16 Robert Bosch Gmbh Piezoaktormodul und Piezoinjektor sowie ein Verfahren zur Herstellung eines Piezoaktormoduls
US20090212133A1 (en) 2008-01-25 2009-08-27 Collins Jr James F Ophthalmic fluid delivery device and method of operation
US7891580B2 (en) 2008-04-30 2011-02-22 S.C. Johnson & Son, Inc. High volume atomizer for common consumer spray products
FR2934128B1 (fr) 2008-07-24 2012-12-14 Oreal Tete de diffusion melangeuse.
JP2009056315A (ja) * 2008-10-01 2009-03-19 Olympus Corp 超音波手術装置
US9050317B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
FR2938207B1 (fr) 2008-11-12 2010-12-24 Imaje Sa Imprimante munie d'un generateur de gouttes a jet continu binaire a deflexion et vitesse d'impression optimales
US20100211408A1 (en) 2009-02-17 2010-08-19 Carl Hyunsuk Park Systems and methods for generating medical diagnoses
US8579885B2 (en) 2009-02-20 2013-11-12 University Of Southern California MEMS electrochemical bellows actuator
CN101843944A (zh) 2009-03-25 2010-09-29 德技股份有限公司 医用雾化装置
US8676543B2 (en) 2009-06-23 2014-03-18 Exxonmobil Research And Engineering Company Determining the resonance parameters for mechanical oscillators
BR112012001074A2 (pt) 2009-07-17 2016-02-16 Nektar Therapeutics método para determinar a frequência ressonante de um elemento de um nebulizador, dispositivo para acionar um elemento de um nebulizador, sistema para atomizar líquido, e, método para aerossolizar um líquido
JP2013501565A (ja) * 2009-08-15 2013-01-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 監視されるべき複数の被験者にエアロゾル化した薬の治療送達を可能にするためのシステム及び方法
JP5518437B2 (ja) 2009-11-11 2014-06-11 パナソニック株式会社 弾性表面波霧化装置
WO2011083379A1 (en) 2010-01-11 2011-07-14 Koninklijke Philips Electronics N.V. Magnetic coupling for aerosol generating apparatus
JP5440192B2 (ja) 2010-01-13 2014-03-12 セイコーエプソン株式会社 液体噴射ヘッド及び液体噴射装置
US8205971B2 (en) 2010-01-19 2012-06-26 Xerox Corporation Electrically grounded inkjet ejector and method for making an electrically grounded inkjet ejector
TW201132414A (en) 2010-03-24 2011-10-01 Micro Base Technology Corp Atomizing assembly
JP5585768B2 (ja) 2010-04-14 2014-09-10 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置および圧電素子
EP2569160B1 (en) * 2010-05-14 2020-05-06 Hewlett-Packard Development Company, L.P. Switchable feedback damping of drop-on-demand piezoelectric fluid-ejection mechanism
KR101223723B1 (ko) 2010-07-07 2013-01-18 삼성디스플레이 주식회사 박막 증착 장치, 이를 이용한 유기 발광 디스플레이 장치의 제조방법 및 이에 따라 제조된 유기 발광 디스플레이 장치
US10154923B2 (en) 2010-07-15 2018-12-18 Eyenovia, Inc. Drop generating device
CN103118642B (zh) * 2010-07-15 2015-09-09 艾诺维亚股份有限公司 液滴生成装置
CN103124541B (zh) 2010-07-15 2015-09-30 艾诺维亚股份有限公司 眼药物递送
WO2012009702A1 (en) 2010-07-15 2012-01-19 Corinthian Ophthalmic, Inc. Method and system for performing remote treatment and monitoring
DE102011013192A1 (de) 2011-03-05 2012-09-06 Dietmar Przytulla Palettenbehälter
US8485503B2 (en) 2011-04-14 2013-07-16 Skip A. Lei Multi stream wine aerating device
EP2790619A1 (en) 2011-12-12 2014-10-22 Corinthian Ophthalmic, Inc. Ejector mechanism, ejector device, and methods of use
US20140361095A1 (en) 2012-01-12 2014-12-11 Scentcom Ltd Ultrasonic microvalve array unit for production of mist
CN107970506B (zh) 2012-04-10 2020-06-16 艾诺维亚股份有限公司 具有可控制的微滴电荷的定向微滴流在制备药物中的用途
BR112014026171A2 (pt) 2012-04-20 2017-07-18 Eyenovia Inc dispositivo ejetor por aspersão e métodos de uso
EA201492096A1 (ru) 2012-05-14 2015-08-31 Айновиа, Инк. Устройство и способы применения капельного генератора с ламинарным течением
SG10201602609XA (en) 2012-05-15 2016-05-30 Eyenovia Inc Ejector devices, methods, drivers, and circuits therefor
EP3253433A4 (en) 2015-04-10 2018-08-22 Kedalion Therapeutics, Inc. Piezoelectric dispenser with replaceable ampoule
SG11201911895XA (en) 2017-06-10 2020-01-30 Eyenovia Inc Methods and devices for handling a fluid and delivering the fluid to the eye

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU228923U1 (ru) * 2024-07-09 2024-09-17 Общество с ограниченной ответственностью "СпецмашСоник" Пьезокерамический излучатель

Also Published As

Publication number Publication date
US11260416B2 (en) 2022-03-01
US20170182510A1 (en) 2017-06-29
CN104640708A (zh) 2015-05-20
EA201492094A1 (ru) 2015-04-30
US9539604B2 (en) 2017-01-10
KR20150022823A (ko) 2015-03-04
BR112014028400A2 (pt) 2018-04-24
JP2015522444A (ja) 2015-08-06
WO2013173495A1 (en) 2013-11-21
IN2014DN10575A (zh) 2015-08-28
CA2873508A1 (en) 2013-11-21
KR102234042B1 (ko) 2021-03-30
JP6240170B2 (ja) 2017-11-29
SG10201602609XA (en) 2016-05-30
HK1210111A1 (zh) 2016-04-15
EP2849949A4 (en) 2017-07-26
IL235703A0 (en) 2015-01-29
MX2014013962A (es) 2015-06-17
AU2013262787A1 (en) 2015-01-22
SG11201407431RA (en) 2014-12-30
US20140151457A1 (en) 2014-06-05
US20200094285A1 (en) 2020-03-26
EP2849949A1 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104640708B (zh) 喷射器设备、方法、驱动器及用于其的电路
JP5079003B2 (ja) 超音波圧電アクチュエータのための駆動回路および駆動方法
JP4880275B2 (ja) 静電容量型超音波振動子装置
US9452442B2 (en) Electronic spray device improvements
US8006918B2 (en) Alternating current powered delivery system
CN104640638A (zh) 提供电荷分离和可控制的微滴电荷,和低剂量体积眼的施用的喷雾喷射器机械装置和设备
MX2014012702A (es) Dispositivo eyector de aspersion y metodos de uso.
WO2006051539A2 (en) A miniature infusion pump for a controlled delivery of medication
US10737124B2 (en) Electro-ultrasonic devices for nerve stimulation and treatment
CN106999970A (zh) 用于检测超声波喷雾装置中的液体不足的方法
US20190044459A1 (en) Parametric Resonator for Electrical Transduction
CA2703972C (en) Actuating device having an integrated electronic control circuit
CA2297180A1 (en) Solid state fluid delivery system
US7669478B2 (en) Ultrasonic driving device with multi-frequency scanning
JP4942663B2 (ja) 超音波型圧電アクチュエータ用の電気式駆動装置
Ko et al. Micromachined ultrasound transducer array for cell stimulation with high spatial resolution
Vasan Non-Invasive Neuromodulation Using Ultrasound: Mechanisms of Action and Device Design
Tseng et al. Quasiresonant flyback converter for transdermal drug delivery applications
JP2007185439A (ja) 霧化吸入方法および装置
Lee A novel ultrasonic stimulation system to enhance cell viability using piezoelectric micromachined ultrasonic transducers (pMUTs) with transwells
Zhang An Energy-Efficient High-Voltage Pulser
JPH02258347A (ja) インキジェットプリンタ
JPH03134270A (ja) 微量吐出装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1210111

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1210111

Country of ref document: HK

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20150520

Assignee: Jimu biology Co.,Ltd.

Assignor: CORINTHIAN OPHTHALMIC, Inc.

Contract record no.: X2021990000497

Denomination of invention: Ejector device, method, driver and circuit for the same

Granted publication date: 20171107

License type: Exclusive License

Record date: 20210818