CN104629358A - 一种尼龙1111/聚偏氟乙烯铁电复合薄膜及其制备方法 - Google Patents

一种尼龙1111/聚偏氟乙烯铁电复合薄膜及其制备方法 Download PDF

Info

Publication number
CN104629358A
CN104629358A CN201510071107.XA CN201510071107A CN104629358A CN 104629358 A CN104629358 A CN 104629358A CN 201510071107 A CN201510071107 A CN 201510071107A CN 104629358 A CN104629358 A CN 104629358A
Authority
CN
China
Prior art keywords
nylon
film
pvdf
polyvinylidene difluoride
ferro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510071107.XA
Other languages
English (en)
Other versions
CN104629358B (zh
Inventor
赵清香
刘少兵
刘民英
付鹏
崔喆
张玲丽
李会亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201510071107.XA priority Critical patent/CN104629358B/zh
Publication of CN104629358A publication Critical patent/CN104629358A/zh
Application granted granted Critical
Publication of CN104629358B publication Critical patent/CN104629358B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

本发明属于高分子共混复合材料制备领域,公开了一种尼龙1111/聚偏氟乙烯铁电复合薄膜及其制备方法。本发明所述的铁电复合薄膜是由20-80份尼龙1111和80-20份聚偏氟乙烯制备而成。其制备方法是先将尼龙1111与聚偏氟乙烯在熔融混炼设备中共混,然后由热压设备热压成薄膜,接着将熔融态薄膜淬火,最后经拉伸设备单轴拉伸得到。所制备的复合薄膜剩余极化强度均要高于纯聚偏氟乙烯薄膜。该法制备方法简单,设备工业常见,容易操作。铁电复合薄膜成本低,有望在压电、热电和铁电材料领域制备器件。

Description

一种尼龙1111/聚偏氟乙烯铁电复合薄膜及其制备方法
技术领域
本发明属于高分子共混复合材料制备领域,具体涉及一种尼龙与聚偏氟乙烯复合铁电薄膜及其制备方法。
背景技术
铁电材料是指存在自发极化,且其极化方向能随着外加电场的反转而反转的材料。铁电材料同时具有压电、热释电、声光、电光、非线性光学和光折变效应,因而在光电子、微电子和集成光学等领域获得了大量的应用。聚合物铁电材料比铁电陶瓷密度低、柔性高、易大面积成型、可裁剪、介电击穿强度高,在换能器和传感器应用上占有十分独特的地位。聚合物铁电体比较稀少,主要有聚偏氟乙烯及其共聚物和奇数尼龙等。聚偏氟乙烯及其共聚物压电和铁电活性高,是目前唯一能够商业应用的铁电聚合物,但是聚偏氟乙烯价格昂贵。
聚合物共混是降低成本的一种方法。由于活性高的铁电聚合物种类很少,再加上奇数尼龙11比聚偏氟乙烯成本低,有关聚偏氟乙烯共混复合铁电体材料的研究就集中在尼龙11上,如中国专利CN102888102B通过引入离子液体制备了尼龙11/聚偏氟乙烯复合铁电体材料。Yongjin Li等通过挤出法制备了尼龙11/聚偏氟乙烯复合薄片,再辊压得到复合铁电薄膜(参见非专利文献Journal of Polymer Science Part B: Polymer Physics. 2007, 45(19): 2707-2714)。奇-奇尼龙是另一类铁电聚合物。非专利文献已经证实奇-奇尼龙1111是活性很高的铁电体(Appl. Phys. Lett., 2014, 104: 172906.)。奇-奇尼龙1111的物理机械性能与尼龙11相近。同时,用石油炼制的副产物轻蜡经微生物发酵得到十一碳二元胺为主要原料制备尼龙1111合成步骤少,生产周期短,条件温和,成本比尼龙11还要低很多(中国专利CN1184251C)。因此,奇-奇尼龙1111与聚偏氟乙烯复合能降低聚偏氟乙烯的成本。然而迄今为止,奇-奇尼龙与聚偏氟乙烯复合制备铁电材料未有文献报道。
发明内容
本发明目的是提供一种成本低、性能优异的奇-奇尼龙1111/聚偏氟乙烯复合铁电薄膜,并且提供一种简单易行的制备方法。
为实现本发明的目的,采用以下技术方案来实现:
本发明所述奇-奇尼龙1111/聚偏氟乙烯复合铁电薄膜,由一定质量的尼龙1111与聚偏氟乙烯为原料制备而成,其制备工艺包括:原料烘干、熔融共混、热压和单轴拉伸等步骤。
进一步优选包括以下步骤:
(1)称量原料尼龙1111与聚偏氟乙烯,尼龙1111与聚偏氟乙烯重量份为20~80份和80~20份,于80~100℃真空干燥。
(2)将干燥后的原料混合,在熔融混炼设备上共混,温度200~240℃,得到尼龙1111/聚偏氟乙烯共混物。
(3)将尼龙1111/聚偏氟乙烯共混物用铝箔包裹在热压设备上热压成厚度为30~50微米薄膜,热压温度210~230℃。
(4)将处在熔融状态的薄膜迅速在冰水混合物或冰盐水中淬火,得到淬火薄膜。
 (5)强碱溶液溶解淬火薄膜两面的铝箔得到初始薄膜,自然干燥。
(6)初始薄膜在拉力机上拉伸,拉伸温度20~100℃,拉伸比n为0.5~5,得到厚度10~30微米的铁电复合薄膜。
所述步骤(2)熔融混炼设备包括哈克(Haake)转矩流变仪、双螺杆挤出机、密炼机、开炼机等熔融混炼设备。
所述步骤(3)的压力机包括热压机、硫化机等工业常见热压设备。
所述步骤(5)的强碱溶液为氢氧化钠和氢氧化钾,溶液质量浓度范围5%~30%。溶解时的温度优选保持在30℃以下。
所述步骤(6)拉伸比n是指拉伸之后的长度与拉伸之前长度的比值,按照公式(1)计算。
                                                
分别是薄膜拉伸之后和拉伸之前的长度。
本发明所制备的尼龙1111/聚偏氟乙烯复合铁电薄膜与纯聚偏氟乙烯相比剩余极化强度有很大的提高。其原理在于聚偏氟乙烯CF2偶极子和尼龙1111酰胺键偶极子之间有相互作用,发生了协同效应。
本发明使用的原料之一尼龙1111工业化成本低廉,复合薄膜的总体成本比聚偏氟乙烯更低。
本发明所述的一种尼龙1111/聚偏氟乙烯复合铁电薄膜制备方法简单,工业设备常见,容易操作,适合工业化生产。
附图说明
图1是对比例1纯尼龙1111的电滞回线曲线。
图2是对比例2聚偏氟乙烯的电滞回线曲线。
图3是实施例1的电滞回线曲线。
图4是实施例2的电滞回线曲线。
图5是实施例3的电滞回线曲线。
图6是实施例4的电滞回线曲线。
图7是实施例5的电滞回线曲线。
具体实施方式
为了进一步理解本发明,下面结合实例对本发明进行进一步描述,但本发明的保护范围不仅限于此。此外应理解,在阅读了本发明内容之后,有关技术人员可以对本发明做各种改动或者修改,如热压压力和热压时间,混炼机转速等,这些等价形式同样属于本发明技术方案所限定的范围。
实施例1
将尼龙1111和聚偏氟乙烯颗粒100°C真空干燥24小时,按照重量份将30份尼龙1111颗粒和70份聚偏氟乙烯加入Haake流变仪中共混,共混温度210°C,螺杆转速60r/min,共混时间5min。取共混料夹在两张铝箔之间,在热压机上热压成厚度50μm左右的薄膜。热压温度为210°C,热压压力6MPa,热压时间8min。再将处在熔融状态的薄膜迅速转移到冰水混合物中淬火,于20℃温度下,用质量浓度5%的氢氧化钠强碱溶液溶解淬火薄膜两面的铝箔,得到初始薄膜,自然干燥。室温下拉伸得到厚度30微米的拉伸薄膜样品,拉伸比n=3。
实施例2
将尼龙1111和聚偏氟乙烯颗粒80°C真空干燥24小时,按照按照重量份将50份尼龙1111颗粒和50份聚偏氟乙烯加入Haake流变仪中共混,共混温度210°C,螺杆转速60r/min,共混时间5min。取共混料夹在两张铝箔之间,热压机上热压成厚度50μm左右的薄膜。热压温度为210°C,热压压力6MPa,热压时间8min。再将处在熔融状态的薄膜迅速转移到冰水混合物中淬火,于10℃温度下,用质量浓度30%的氢氧化钾强碱溶液溶解淬火薄膜两面的铝箔,得到初始薄膜,自然干燥。室温下拉伸比n=3,拉伸得到厚度30微米的铁电复合薄膜样品。
实施例3
将尼龙1111和聚偏氟乙烯颗粒100°C真空干燥24小时,按照重量份将70份尼龙1111颗粒和30份聚偏氟乙烯加入Haake流变仪中共混,共混温度240°C,螺杆转速60r/min,共混时间5min。取共混料夹在两张铝箔之间,在热压机上热压成厚度50μm左右的薄膜。热压温度为220°C,热压压力6MPa,热压时间8min。再将处在熔融状态的薄膜迅速转移到冰水混合物中淬火,于0℃温度下,用质量浓度20%的氢氧化钠强碱溶液溶解淬火薄膜两面的铝箔,得到初始薄膜,自然干燥。50°C温度下在拉力机上拉伸,拉伸比n=3,拉伸得到厚度30微米的铁电复合薄膜样品。
实施例4
将尼龙1111和聚偏氟乙烯颗粒90°C真空干燥24小时,按照重量份将50份尼龙1111颗粒和50份聚偏氟乙烯加入Haake流变仪中共混,共混温度220°C,螺杆转速60r/min,共混时间5min。取共混料夹在两张铝箔之间,在热压机上热压成厚度50μm左右的薄膜。热压温度为230°C,热压压力6MPa,热压时间8min。再将处在熔融状态的薄膜迅速转移到冰盐水混合物中淬火,于10℃温度下,用质量浓度15%的氢氧化钾强碱溶液溶解淬火薄膜两面的铝箔,得到初始薄膜,自然干燥。80°C温度下在拉力机上拉伸,拉伸比n=4,拉伸得到厚度20微米的铁电复合薄膜样品。
实施例5
将尼龙1111和聚偏氟乙烯颗粒80°C真空干燥24小时,按照重量份将50份尼龙1111颗粒和50份聚偏氟乙烯加入Haake流变仪中共混,共混温度200°C,螺杆转速60r/min,共混时间5min。取共混料夹在两张铝箔之间,在热压机上热压成厚度50μm左右的薄膜。热压温度为230°C,热压压力6MPa,热压时间8min。室温下再将处在熔融状态的薄膜迅速转移到冰水混合物中淬火,于30℃温度下,用质量浓度10%的氢氧化钾强碱溶液溶解淬火薄膜两面的铝箔,得到初始薄膜,自然干燥。100°C温度下在拉力机上拉伸,拉伸比n=3,拉伸得到厚度30微米的铁电复合薄膜样品。
对比例1
将聚偏氟乙烯颗粒100°C真空干燥24小时后,加入Haake流变仪中共混,共混温度210°C,螺杆转速60r/min,共混时间5min。取共混料夹在两张铝箔之间,热压机上热压成厚度50μm左右的薄膜。热压温度为210°C,热压压力6MPa,热压时间8min。再将处在熔融状态的薄膜迅速转移到冰水混合物中淬火,于20℃温度下,用质量浓度5%的氢氧化钠强碱溶液溶解淬火薄膜两面的铝箔得到初始薄膜,自然干燥。室温下拉伸得到厚度30微米的拉伸薄膜样品,拉伸比n=3。
对比例2
将尼龙1111颗粒80°C真空真空干燥24小时后,加入Haake流变仪中共混,共混温度210°C,螺杆转速60r/min,共混时间5min。取共混料夹在两张铝箔之间,热压机上热压成厚度50μm左右的薄膜。热压温度为210°C,热压压力6MPa,热压时间8min。再将处在熔融状态的薄膜迅速转移到冰水混合物中淬火,于10℃温度下,用质量浓度30%的氢氧化钾强碱溶液溶解淬火薄膜两面的铝箔得到初始薄膜,自然干燥。室温下拉伸比n=3,拉伸得到厚度30微米的薄膜样品。
按以下方法测试样品薄膜的铁电性能,获得样品的剩余极化强度(P r )和矫顽电场(E c ),结果如表1所示。
在真空镀膜机中将样品薄膜两面蒸镀直径Φ=4.5mm的铝电极。铁电性能于室温下在德国aixACT公司产TF2000铁电测试系统上完成测试。测试时将样品浸在硅油中,施加正弦电场,频率为1Hz。
表1  样品的剩余极化强度和矫顽电场
样品及编号 剩余极化强度 (mC/m2) 矫顽电场 (MV/m)
对比例1:PA1111 39 85
对比例2:PVDF 38 55
实施例1:30/70 42 73
实施例2:50/50 53 88
实施例3:70/30 48 76
实施例4:50/50-n 52 83
实施例5:  50/50-T 55 89
图1和图2分别是奇-奇尼龙1111和聚偏氟乙烯的电滞回线,表明它们都具有铁电性。由表1可知,纯尼龙1111与聚偏氟乙烯的剩余极化强度相当,分别为39 mC/m2和38 mC/m2。尼龙1111矫顽电场值85MV/m高于聚偏氟乙烯的55MV/m。
图3-7分别是实施例1-5不同条件制备的复合薄膜的电滞回线曲线。电滞回线表明复合薄膜都具有铁电性。样品的剩余极化强度和矫顽电场值列于表1中。从表1中可知,复合薄膜的剩余极化强度比纯尼龙1111和聚偏氟乙烯薄膜的剩余极化强度要大,复合后的P r 都得到提高;复合后薄膜的矫顽电场有所增加。实施例2、实施例4和实施例5剩余极化强度均在50 mC/m2以上,远高于同样条件下聚偏氟乙烯薄膜的剩余极化强度。这说明尼龙1111和聚偏氟乙烯复合后产生了协同效应。
尼龙1111和聚偏氟乙烯的配比会影响铁电性。尼龙1111和聚偏氟乙烯配比为50/50效果较好。
拉伸比能影响铁电性能。拉伸比增大,铁电微区更容易取向,矫顽电场降低。但剩余极化强度变化不大。
较高温度下拉伸,结晶度增大,剩余极化强度增加;但是铁电微区取向变得困难,矫顽电场增大。

Claims (6)

1.一种尼龙1111/聚偏氟乙烯铁电复合薄膜,其特征在于,通过以下方法制备而成:
(1)称量原料尼龙1111与聚偏氟乙烯,尼龙1111与聚偏氟乙烯重量份为20~80份和80~20份,于80~100℃真空干燥;
(2)将干燥后的原料混合,在熔融混炼设备上共混,温度200~240℃,得到尼龙1111/聚偏氟乙烯共混物;
(3)将尼龙1111/聚偏氟乙烯共混物用铝箔包裹在热压设备上热压成厚度为30~50微米薄膜,热压温度210~230℃;
(4)将处在熔融状态的薄膜迅速在冰水混合物或冰盐水中淬火,得到淬火薄膜;
(5)强碱溶液溶解淬火薄膜两面的铝箔得到初始薄膜,自然干燥;
(6)将初始薄膜在拉力机上拉伸,拉伸温度20~100℃,拉伸比n为0.5~5,得到厚度10~30微米的铁电复合薄膜。
2.如权利要求1所述的一种尼龙1111/聚偏氟乙烯铁电复合薄膜,其特征在于,尼龙1111和聚偏氟乙烯重量份选50/50。
3.如权利要求1或2所述的一种尼龙1111/聚偏氟乙烯铁电复合薄膜,其特征在于,步骤(5) 所述的强碱溶液为氢氧化钠或氢氧化钾,溶液质量浓度范围5%~30%。
4.制备权利要求1所述的尼龙1111/聚偏氟乙烯铁电复合薄膜方法,其特征在于,通过以下方法实现:
(1)称量原料尼龙1111与聚偏氟乙烯,尼龙1111与聚偏氟乙烯重量份为20~80份和80~20份,于80~100℃真空干燥;
(2)将干燥后的原料混合,在熔融混炼设备上共混,温度200~240℃,得到尼龙1111/聚偏氟乙烯共混物;
(3)将尼龙1111/聚偏氟乙烯共混物用铝箔包裹在热压设备上热压成厚度为30~50微米薄膜,热压温度210~230℃;
(4)将处在熔融状态的薄膜迅速在冰水混合物或冰盐水中淬火,得到淬火薄膜;
(5)强碱溶液溶解淬火薄膜两面的铝箔得到初始薄膜,自然干燥;
(6)将初始薄膜在拉力机上拉伸,拉伸温度20~100℃,拉伸比n为0.5~5,得到厚度10~30微米的铁电复合薄膜。
5.如权利要求4所述的尼龙1111/聚偏氟乙烯铁电复合薄膜的制备方法,其特征在于,尼龙1111和聚偏氟乙烯重量份选50/50。
6.如权利要求4或5所述的尼龙1111/聚偏氟乙烯铁电复合薄膜的制备方法,其特征在于,步骤(5) 所述的强碱溶液为氢氧化钠或氢氧化钾,溶液质量浓度范围5%~30%。
CN201510071107.XA 2015-02-11 2015-02-11 一种尼龙1111/聚偏氟乙烯铁电复合薄膜及其制备方法 Active CN104629358B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510071107.XA CN104629358B (zh) 2015-02-11 2015-02-11 一种尼龙1111/聚偏氟乙烯铁电复合薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510071107.XA CN104629358B (zh) 2015-02-11 2015-02-11 一种尼龙1111/聚偏氟乙烯铁电复合薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN104629358A true CN104629358A (zh) 2015-05-20
CN104629358B CN104629358B (zh) 2017-04-12

Family

ID=53208620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510071107.XA Active CN104629358B (zh) 2015-02-11 2015-02-11 一种尼龙1111/聚偏氟乙烯铁电复合薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN104629358B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041521A (zh) * 2019-05-15 2019-07-23 洛阳理工学院 一种压电聚合物及其制备方法
CN110218310A (zh) * 2019-07-16 2019-09-10 洛阳理工学院 一种铁电聚合物及其制备方法
CN111635522A (zh) * 2020-07-10 2020-09-08 四川大学 一种简单热加工可制得铁电尼龙薄膜的共聚聚酰胺及其制备方法
CN113043633A (zh) * 2021-03-22 2021-06-29 华中科技大学 一种能够自发产生静电的薄膜材料、其制备方法和应用
CN113755967A (zh) * 2021-09-10 2021-12-07 湖南省美程陶瓷科技有限公司 一种聚偏氟乙烯基柔性压电材料及其制备方法
CN114479321A (zh) * 2022-03-09 2022-05-13 中海石油(中国)有限公司 一种高气体阻隔的尼龙和聚偏氟乙烯共混物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1289788A (zh) * 1999-09-29 2001-04-04 郑州大学 石油发酵尼龙1111及其合成工艺
JP2006241195A (ja) * 2005-02-28 2006-09-14 National Institute Of Advanced Industrial & Technology 強誘電体フィルム及びその製造方法
CN102492353A (zh) * 2011-11-28 2012-06-13 江苏兰陵高分子材料有限公司 新型快速固化防腐耐磨环氧粉末涂料及其制备工艺
CN102888102A (zh) * 2012-11-06 2013-01-23 东华理工大学 一种尼龙11/聚偏氟乙烯组合物及其制备方法
CN103467894A (zh) * 2013-08-23 2013-12-25 中国科学院宁波材料技术与工程研究所 一种聚偏氟乙烯/石墨烯复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1289788A (zh) * 1999-09-29 2001-04-04 郑州大学 石油发酵尼龙1111及其合成工艺
JP2006241195A (ja) * 2005-02-28 2006-09-14 National Institute Of Advanced Industrial & Technology 強誘電体フィルム及びその製造方法
CN102492353A (zh) * 2011-11-28 2012-06-13 江苏兰陵高分子材料有限公司 新型快速固化防腐耐磨环氧粉末涂料及其制备工艺
CN102888102A (zh) * 2012-11-06 2013-01-23 东华理工大学 一种尼龙11/聚偏氟乙烯组合物及其制备方法
CN103467894A (zh) * 2013-08-23 2013-12-25 中国科学院宁波材料技术与工程研究所 一种聚偏氟乙烯/石墨烯复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHAOBING LIU ET AL: "Piezoelectricity and ferroelectricity in odd-odd nylons with long alkane segments", 《APPLIED PHYSICS LETTERS》 *
YONGJIN LI ET AL: "Crystal Forms and Ferroelectric Properties of Poly(vinylidene fluoride)/Polyamide 11 Blends Prepared by High-Shear Processing", 《JOURNAL OF POLYMER SCIENCE: PART B: POLYMER PHYSICS》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041521A (zh) * 2019-05-15 2019-07-23 洛阳理工学院 一种压电聚合物及其制备方法
CN110041521B (zh) * 2019-05-15 2021-05-11 洛阳理工学院 一种压电聚合物及其制备方法
CN110218310A (zh) * 2019-07-16 2019-09-10 洛阳理工学院 一种铁电聚合物及其制备方法
CN110218310B (zh) * 2019-07-16 2021-09-10 洛阳理工学院 一种铁电聚合物及其制备方法
CN111635522A (zh) * 2020-07-10 2020-09-08 四川大学 一种简单热加工可制得铁电尼龙薄膜的共聚聚酰胺及其制备方法
CN113043633A (zh) * 2021-03-22 2021-06-29 华中科技大学 一种能够自发产生静电的薄膜材料、其制备方法和应用
CN113043633B (zh) * 2021-03-22 2022-08-05 华中科技大学 一种能够自发产生静电的薄膜材料、其制备方法和应用
CN113755967A (zh) * 2021-09-10 2021-12-07 湖南省美程陶瓷科技有限公司 一种聚偏氟乙烯基柔性压电材料及其制备方法
CN113755967B (zh) * 2021-09-10 2023-05-23 湖南省美程陶瓷科技有限公司 一种聚偏氟乙烯基柔性压电材料及其制备方法
CN114479321A (zh) * 2022-03-09 2022-05-13 中海石油(中国)有限公司 一种高气体阻隔的尼龙和聚偏氟乙烯共混物及其制备方法
CN114479321B (zh) * 2022-03-09 2023-03-14 中海石油(中国)有限公司 一种高气体阻隔的尼龙和聚偏氟乙烯共混物及其制备方法

Also Published As

Publication number Publication date
CN104629358B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
CN104629358A (zh) 一种尼龙1111/聚偏氟乙烯铁电复合薄膜及其制备方法
Jurczuk et al. Orientation of PVDF α and γ crystals in nanolayered films
Tang et al. The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites
Ramesan et al. Preparation, characterization, electrical and antibacterial properties of sericin/poly (vinyl alcohol)/poly (vinyl pyrrolidone) composites
Guo et al. Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field
Wang et al. Effect of MWCNTs and P [MMA-IL] on the crystallization and dielectric behavior of PVDF composites
Chiu et al. Binary and ternary nanocomposites based on PVDF, PMMA, and PVDF/PMMA blends: polymorphism, thermal, and rheological properties
CN102875938A (zh) 一种极性晶型聚偏氟乙烯及其复合材料的制备方法
Ma et al. Formation of an interconnected lamellar structure in PVDF membranes with nanoparticles addition via solid‐liquid thermally induced phase separation
US9458344B2 (en) Semicrystalline polymer/graphene oxide composite film and method for fabricating the same
He et al. Effect of multiwalled carbon nanotubes on crystallization behavior of poly (vinylidene fluoride) in different solvents
EP3110856A2 (en) Process for preparing thermally conductive oriented uhmwpe products and products obtained therefrom
Chiu et al. Comparison of PVDF/MWNT, PMMA/MWNT, and PVDF/PMMA/MWNT nanocomposites: MWNT dispersibility and thermal and rheological properties
Feng et al. High-energy-density flexible dielectric film via one-step extrusion processing
Ding et al. Influence of oriented β‐lamellae on deformation and pore formation in β‐nucleated polypropylene
EP3576171B1 (en) Piezoelectric film and method for producing same
Yang et al. Controllable high dielectric permittivity of poly (arylene ether nitriles)/copper phthalocyanine functional nanohybrid films via chemical interaction
Yang et al. Fabrication of poly (ε‐caprolactone)(PCL)/poly (propylene carbonate)(PPC)/ethylene‐α‐octene block copolymer (OBC) triple shape memory blends with cycling performance by constructing a co‐continuous phase morphology
Atorngitjawat Effects of processing conditions and crystallization on dynamic relaxations in semicrystalline poly (vinylidene fluoride) films
Bertolini et al. Development of poly (vinylidene fluoride)/thermoplastic polyurethane/carbon black‐polypyrrole composites with enhanced piezoelectric properties
Lipsa et al. Influence of Hot‐Press Temperature on β‐Phase Formation and Electrical Properties of Solvent‐Casted PVDF‐HFP Co‐Polymer Films Prepared from Two Different Solvents: A Comparison Study
CN115522276A (zh) 一种导电、增强的pbt纤维的制备方法
Su et al. Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly (vinylidene fluoride)/polyacrylonitrile blends
Li et al. High dielectric performance of polyamide 11/poly (vinylidene fluoride) blend films induced by interfacial glycidyl methacrylate
Li et al. Electrical and mechanical properties of the dielectric capacitor film based on polyvinylidene fluoride and aromatic polythiourea

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20150520

Assignee: Zhengzhou University Industrial Technology Research Institute Co Ltd

Assignor: Zhengzhou University

Contract record no.: 2017410000015

Denomination of invention: Nylon 1111/ poly (vinylidene fluoride) ferroelectric composite film and preparation method thereof

Granted publication date: 20170412

License type: Exclusive License

Record date: 20171102