CN104603239A - 用于启动气至液工艺的方法 - Google Patents

用于启动气至液工艺的方法 Download PDF

Info

Publication number
CN104603239A
CN104603239A CN201380046234.3A CN201380046234A CN104603239A CN 104603239 A CN104603239 A CN 104603239A CN 201380046234 A CN201380046234 A CN 201380046234A CN 104603239 A CN104603239 A CN 104603239A
Authority
CN
China
Prior art keywords
gas
atr
cpo
recycle
tail gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380046234.3A
Other languages
English (en)
Other versions
CN104603239B (zh
Inventor
P·J·达尔
斯蒂芬·安徒生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN104603239A publication Critical patent/CN104603239A/zh
Application granted granted Critical
Publication of CN104603239B publication Critical patent/CN104603239B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • C01B2203/143Three or more reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • C01B2203/147Three or more purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4031Start up or shut down operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

本发明涉及用于启动气-至-液工艺的方法,该方法包括生产合成气的工艺和下游GTL工艺。所述合成气通过使用自热重整(ATR)或催化性部分氧化(CPO)来生产,且在启动期间,使来自ATR或CPO的逸出气体显著地改变,形成进料到ATR或CPO的尾气回收物。当下游GTL工艺运行时,到ATR或CPO的回收物转变为下游GTL工艺的尾气。

Description

用于启动气至液工艺的方法
技术领域
本发明涉及用于生产液态烃(如柴油和汽油)的合成气的生产工艺。本发明尤其涉及通过使用自热重整或催化性部分氧化来启动气-至-液-工艺(GTL工艺)的方法,其中将来自自热重整器(ATR)或催化性部分氧化反应器(CPO)的逸出合成气(effluent synthesis gas)脱水、与氢分离,然后再循环至ATR或CPO烃类原料。
背景技术
本文中使用的GTL-工艺意指生产H2/CO摩尔比被要求为2.3以下的烃的方法,如通过费-托合成生产柴油的工艺,其中通过费-托反应将合成气转化为液态烃,或等同的工艺,例如生产汽油的工艺,其中首先将合成气转化为甲醇及二甲醚(DME)形式的含氧化合物,随后转化为汽油,这些工艺如在专利US 4520216和US 4481305中所描述的。
EP-A-0287238公开了一种在正常操作下生产热压缩含氢流的工艺,其中将来自催化性部分氧化反应器的热产物气流的回收部分与原料气体合并,以便预热待进料至燃烧催化剂的气体,由此使催化燃烧更容易。回收气体中不仅包含氢而且还包含蒸汽。
EP-A-1400489也公开了一种在正常操作下生产合成气的工艺,其中来自自热重整器的一部分逸出物(effluent)借助热力压缩机喷射器被再循环至进入自热重整器的烃蒸汽混合物,该热力压缩机喷射器采用上述的混合物作为动力流体(motive fluid)。回收物不但包含氢而且还包含蒸汽,以允许自热重整器无烟尘运作,从而避免催化剂床堵塞。
还已知的是,在正常操作下,将来自自热重整器的部分CO2形式的逸出流再循环至进料到自热重整器的天然气。首先将来自自热重整器的逸出流脱水,然后使其通过CO2除去单元,以便形成合成气体流和CO2流。回收CO2流并将其与自热重整器上游的天然气混合。
发明内容
本文中使用的术语“正常操作”意指在工艺启动很久以后,处于稳态或准稳态条件下的操作。
本文中使用的GTL-工艺意指生产H2/CO摩尔比被要求为2.3以下的烃的方法,如通过费-托合成生产柴油的工艺,其中通过费-托反应将合成气转化为液态烃,或等同的工艺,例如生产汽油的工艺,其中首先将合成气转化为甲醇及二甲醚(DME)形式的含氧化合物,随后转化为汽油,这些工艺如专利US 4520216和US 4481305中所描述的。
特别地,对于费-托操作,合成气被要求具有的H2/CO摩尔比为1.7至2.3。已知这些值与在以下情况下时可获得的哪些值是兼容的:在合成气部分中使用ATR或CPO,同时在连续操作下运行并使用来自下游单元(如费-托合成单元)的回收尾气作为部分原料。然而,在尾气无法提供的情况下启动此工艺时,对于典型的天然气,H2/CO摩尔比大于2.3。蒸汽/碳摩尔比为0.6的标准天然气的自热重整通常给出在合成气中大于2.4的H2/CO摩尔比。在正常操作过程中,使来自费-托合成的尾气与原料天然气混合,以确保H2/CO摩尔比低于2.0。将尾气从费-托合成部分回收,并利用循环压缩机将其与天然气合并。
本发明包括:在启动操作过程中,使来自ATR或CPO的逸出合成气转化成尾气回收物(off-gas recycle),该尾气回收物具有相类似的体积流量(volume flow)及其对在正常操作下所获得的来自下游GTL工艺的尾气的H2/CO摩尔比值的影响。
在启动过程中,当费-托合成部分不发生费托反应时,理想的是使用循环压缩机从自热重整器或催化性部分氧化阶段回收脱水合成气。这样会将合成气的H2/CO摩尔比降低至下游费-托合成所需的值,即,2.3以下。然而,我们发现,这种回收气体在启动期间所需的体积流量(flow volume)变得比正常操作期间所需的体积流量高,从而迫使使用更高容量的压缩机,随之而来的是高惩罚性成本。当必须启动几个工艺生产线时,各个工艺生产线都需要更高容量的压缩机。
本发明是一种解决了上述问题的用于启动的方法,根据所附权利要求所描述的,该方法具有以下特征:
1.用于启动气-至-液(GTL)工艺的方法,包括:(a)向烃类原料添加蒸汽,以形成烃和蒸汽的混合物,(b)使所述混合物通过自热重整阶段(ATR)或催化性部分氧化(CPO)阶段,并从ATR或CPO回收热逸出合成气的流,(c)从所述热逸出合成气除去水,以形成脱水合成气,(d)从至少部分所述脱水合成气除去至少部分氢,以形成尾气回收物,(e)直接使至少部分所述尾气回收物再循环进入烃类原料或进入所述烃和蒸汽的混合物,及(f)随后使至少部分所述脱水合成气作为原料通过下游GTL工艺,同时从回收所述尾气回收物气体转变为(shifting)从所述下游GTL工艺回收尾气。
2.根据特征1的方法,其中,当所述脱水合成气的H2/CO摩尔比低于2.3,优选低于2.2,更优选低于2.1时进行步骤(f)。
3.根据特征1或2的方法,其中所述烃类原料是如下气体:已经过至少一个预重整阶段(pre-reforming stage),优选绝热的预重整阶段。
4.根据特征1-3中任一项的方法,其中在与所述尾气回收物合并之前,将所述烃类原料或所述烃和蒸汽的混合物预热,优选在火焰加热器(fired-heater)中进行预热。
5.根据特征1-4中任一项的方法,其中通过循环压缩机将所述尾气回收物引入到烃类原料或烃与蒸汽的混合物中。
6.根据特征5所述的方法,其中所述循环压缩机是用于从下游气-至-液(GTL)工艺回收尾气的现有的(existing)循环压缩机。
7.根据特征6所述的方法,其中在通过所述循环压缩机后,所述尾气回收物被引入到转化阶段,用于除去烯烃,优选通过加氢。
8.根据特征1-7中任一项的方法,其中所述步骤(d)在氢分离膜或压力摆动分离装置(PSA)中进行。
9.根据特征1-8中任一项的方法,其中在ATR或CPO操作时蒸汽与碳的摩尔比为0.2至3.0。
10.根据特征1-9中任一项的方法,其中在进行步骤(c)之前将步骤(b)中来自ATR或CPO的热逸出合成气的流冷却。
11.根据特征10的方法,其中,将所述来自ATR或CPO的热逸出合成气在一个或多个余热锅炉中冷却。
12.根据特征10的方法,其中,所述来自ATR或CPO的热逸出合成气在与ATR或CPO串联地或平行地操作的热交换重整器中用作热交换介质。
13.根据特征1-12中任一项的方法,其中所述气-至-液(GTL)工艺是费-托合成。
附图说明
本发明进一步参照附图来说明,该附图显示本发明具体实施方案的示意图,其中在费-托合成形式的GTL工艺的启动过程中使用贫氢的回收气体。
具体实施方式
本文中使用的术语“自热重整器(ATR)”意指直接用烃类原料进料的单独反应器;或直接用预重整的烃类原料进料的反应器;或二次重整器,其用经初步重整的气体进料,即,使用来自初步重整器如蒸汽甲烷重整器(SMR)或热交换重整器的重整气体作为烃类原料的反应器。
术语“自热重整器(ATR)”和“催化性部分氧化”也指如下反应器,其中重整反应所需的热量由烃类原料与被添加到反应器中的氧气、空气或富氧空气的内燃来提供。重整反应发生在设置在反应器下游的重整催化剂固定床中,催化燃烧只发生在催化性部分氧化反应器中。
在本文中,可互换地使用术语“水”和“蒸汽”,并表示在给定的工艺流中H2O分子的存在。
本文中使用的术语“脱水合成气”表示已除去水的来自ATR或CPO的合成气。因为并不是所有的水可以除去,本文中使用的脱水合成气包含量为1mol%以下的水。
本文中使用的术语“尾气回收”所指的是至少部分氢已被除去的脱水气体。
因为并不是所有的氢都可以被除去,贫氢的回收气体是主要包含CO、CO2,和H2(其浓度为1mol%H2至最高为与脱水合成气中相同的H2含量)。优选地,在尾气回收物中的氢浓度为1-75mol%,更优选10-70mol%,甚至更优选20-65mol%,最优选30-65mol%,例如60或63mol%。压缩机的尺寸和所需的最终H2/CO摩尔比决定所需的H2耗尽程度。
本文中使用的术语“直接回收至少部分所述尾气回收物”意指这种气体被立即回收,而不经过这种气体的组成被进一步明显改变的中间阶段。
本文中使用的术语“在ATR或CPO操作时蒸汽与碳的摩尔比”所指的是添加到进料至ATR或CPO的烃以及添添加到进入ATR或CPO的氧化剂气体的蒸汽的总量,与进料到ATR或CPO的碳分子的量的比。在其他情况下,术语“蒸汽与碳摩尔的比”是指给定的流中碳分子与H2O分子的比。
本文中使用的术语“来自下游GTL工艺的尾气”表示来自下游GTL工艺中的尾气(废气),如费-托废气;这种废气通常含有一氧化碳、二氧化碳、氢气、各种烃(包括烯烃)和一些其它组分。
在启动期间,将在ATR或CPO中产生的合成气于除去水后用作回收气体,然而在下游GTL工艺中不使用合成气。在与上述或下述实施方案有关的具体实施方案中,当脱水合成气的H2/CO摩尔比低于2.3,优选低于2.2,更优选低于2.1时,进行步骤(f)。由此,当在脱水合成气中获得所需的2.3以下,更优选2.2以下,最优选2.1以下的H2/CO摩尔比时,脱水合成气随后被传递到下游工艺,特别是费托合成或要求H2/CO摩尔比在1.8至2.3之间的等效GTL工艺中,从而从回收尾气回收物转变为从所述下游工艺回收尾气。在启动结束时,脱水合成气的H2/CO摩尔比越高,生产出越多的不合格产品(所需规格之外的产品)和来自下游GTL工艺的尾气。结果,总体工艺,即重整和下游GTL工艺的控制变得更加困难。
在与一个或多个上述或下述实施方案有关的具体实施方式中,所述烃类原料是经过至少一个预重整阶段的气体。优选该烃类原料是通常含有比甲烷高的烃类的天然气。在预重整阶段,所有较高的烃类(C2+)被转化成氧化碳、氢和甲烷的混合物。该预重整阶段赋予工艺灵活性,理由是其能够处理具有各种组成的烃类原料,如不同类型的天然气进料到重石脑油。优选地,所述预重整阶段在包含重整催化剂固定床的绝热预重整器中进行。当使用预重整阶段时,根据上述蒸汽与碳的摩尔比范围,该预重整气体的蒸汽与碳的比例优选为0.2-3.0,更优选0.3-1.0,甚至更优选0.4-0.8,最优选0.5或0.6。
在与一个或多个上述或下述实施方案有关的具体实施方式中,在与所述尾气回收物合并之前,将所述烃类原料或所述烃和蒸汽的混合物预热(优选在火焰加热器中)。由此,与正常操作中的情况(其中例如CO2气体可被回收并在预加热器上游被添加)相反,根据本发明,尾气回收物在预加热器(优选为火焰加热器)下游被添加。这样能够保护该火焰加热器并延长该单元的使用寿命。
在与一个或多个上述或下述实施方案有关的具体实施方式中,通过循环压缩机,将尾气回收物引入到烃类原料或烃与蒸汽的混合物中。优选地,该循环压缩机是用于从下游气-至-液(GTL)工艺,更优选费-托合成工艺回收尾气的现有的循环压缩机。这允许以高效和廉价的方式进行整个工艺,因为不需要额外的资本投资来提供回收物以及从启动模式切换到正常操作模式。
应当理解的是,在下游工艺如费-托装置的正常(连续)操作过程中,通常将脱水合成气经过费-托合成以生产液态烃。借助专用的循环压缩机将来自这种合成的尾气(废气)回收至设备的重整部分。在本发明中,通过使尾气回收物在启动操作期间直接经过所述循环压缩机,能够在设备的启动期间使用此种循环压缩机。这不仅仅传达资金成本方面的优势,因为不需要昂贵的仅仅专用于处理启动期间的循环气流的单独压缩机(尤其是如果存在几个工艺生产线),而且还传达了归因于燃烧器在自热重整器中更稳定地操作的更好更经济的工艺:在正常操作下,来自下游工序的尾气通常通过循环压缩机并其后到达设备的转化部分。这种尾气可例如被输送至ATR,因而ATR-燃烧器设计是适应这种气体的使用的。在启动过程中,这种尾气已被“取代”为尾气回收物形式的相似气体,其借助现有的循环压缩机(即在正常操作下使用的循环压缩机)来传送。由于这种ATR燃烧器在启动期间就已经适应设计条件,包括它后来会遇到的在正常操作期间尾气中的体积流。因此,不需要为了启动操作而适应或重新设计ATR燃烧器。
在与一个或多个上述或下述实施方案有关的另一具体实施方式中,将通过循环压缩机后的尾气回收物进行转化阶段,用于除去烯烃,优选通过加氢进行。
在与一个或多个上述或下述实施方案有关的再一具体实施方式中,从所述脱水合成气除去至少部分氢以形成尾气回收物的步骤(d)在氢分离膜或压力摆动分离装置(PSA)中进行,优选在氢分离膜中进行,因为与PSA相比这种装置更支持在更高压力下的尾气操作,因而能够允许更灵活的操作,尤其是当所述压缩器不得不在更高的压力(如20-40atm以上)下操作时,因为例如在ATR中需要高操作压力。
当几个工艺生产线有待启动时,本发明能够在再循环中提供例如单个氢清除单元,而无需增加在各个工艺生产线中的各个循环压缩机的容量。
在与一个或多个上述或下述实施方案有关的另一具体实施方式中,根据上述蒸汽与碳的摩尔比范围,在操作ATR或CPO时蒸汽与碳的摩尔比为0.2至3.0,优选0.3至1.0,更优选0.4-0.8,最优选0.5或0.6。蒸汽与碳的摩尔比越低,工艺节约性越好,因为具有较少的蒸汽需要被运载以穿过设备,由此可减小设备尺寸。
在与一个或多个上述或下述实施方案有关的具体实施方式中,其中在进行步骤(c)之前,将步骤(b)中来自ATR或CPO的热逸出合成气的流冷却。由此,在从所述来自ATR或CPO的热逸出合成气除去水之前,合成气被冷却,优选通过使合成气经过余热锅炉和可选的蒸汽过热器的冷却链。由于逸出合成气的温度通常是大约1000℃,余热锅炉能够回收热量用于生产在工艺中要使用的蒸汽,并准备合成气用于随后在通过循环压缩机之前在例如分离鼓(knock-off drum)中脱水。
在与一个或多个上述或下述实施方案有关的具体实施方式中,热逸出合成气在与ATR或CPO串联列地或平行地操作的热交换重整器中用作热交换介质。这可以实现更高的工艺经济性,因为例如约1000℃下的热逸出气能够被用来在热交换重整器中驱动催化重整反应。
在与上述实施方案中的任何一个有关的具体实施方式中,所述气-至-液(GTL)工艺优选是费-托合成,或是用于生产汽油的工艺,其中首先将合成气转化成甲醇和二甲醚(DME)形式的含氧化合物,并随后将其转化成汽油。
附图显示了本发明的具体实施方式的示意图。将天然气流1在火焰加热器20中预热,使用燃料7作为能量源,然后经过脱硫装置30。脱硫的天然气2与蒸汽3混合,以形成烃和蒸汽的混合物4,将其在同一火焰加热器20中预热,随后与尾气回收物流5合并。将合并的流8传送给包含催化剂固定床41的自热重整器(ATR)40。将蒸汽9与氧气或富氧空气10(>44mol%的氧气)混合,并添加至ATR 40。来自ATR的热逸出合成气11在约1000℃下离开ATR,然后在待用于工艺中的蒸汽12的生产下经过余热锅炉的冷却链42。然后,将冷却的合成气13传送给分离鼓43,以将水作为冷凝物15被除去,由此,生成脱水合成气14。在启动期间,将脱水合成气传送至氢膜45形式的氢清除单元,在此将氢流20除去。至少部分尾气回收物21被直接通过现有的(在正常操作期间使用的)循环压缩机46再循环至加热的烃类和蒸汽的混合物6中。在装置启动期间,脱水合成气14的H2/CO摩尔比高,例如2.5或2.4,所以用于下游工艺的合成气线16将被关闭。在建立2.3以下的适当H2/CO摩尔比后,逐渐开始正常操作,由此,打开合成气线16,进行下游费-托合成44。这种合成产生液态烃17,以及尾气流18,其借助现有的循环压缩机46被循环至设备的重整部分。
实施例
表1和2参考附图总结了在启动过程中从脱水合成气除去部分氢的效果。给出的实施例中具有不变的预重整气流。没有回收的情况下,H2/CO比是2.46。在这两种情况中,ATR逸出流中的H2/CO比通过回收脱水合成气或从氢除去单元(此处为氢膜单元)回收尾气回收物调整至2.25。在氢膜情况下,4317Nm3/H(99.62mol%H2)氢流被除去。可以看出,从脱水回收气体除去该部分氢将所需的回收物流量(recycle flow)从113890Nm3/h减少到84269Nm3/h,清楚地说明本发明的效果。从流量(Nm3/h)方面来说,回收的氢量相对于基础情况(没有H2清除单元)减少了28%。氢在回收物流量中的有效减少(effective reduction)为实际的氢除去量的4.6倍。因此可以将膜保持小尺寸,因而成本较低。将尾气回收物的减少的体积流量调整为类似于在正常操作下来自下游费托工艺的尾气。
因此,不需要用于启动情况的高容量回收-压缩机方面的额外费用。总体效果是在氢膜情况下节省成本。
此外,由于重整气体和回收气体之间的比例接近氢膜情况中的正常操作,因此简化了ATR燃烧器的设计条件,这将对燃烧器的寿命和燃烧器成本产生积极影响。
通过除去更多氢,能够容易地进一步降低H2/CO比。这对于下游GTL设备、缩短启动时间和减少非规范产物来说是有利的。
表1:基本情况(无氢膜起动)
表2:H2膜情况(有氢膜起动)

Claims (13)

1.用于启动气-至-液(GTL)工艺的方法,包括:(a)向烃类原料添加蒸汽,以形成烃和蒸汽的混合物,(b)使所述混合物通过自热重整阶段(ATR)或催化性部分氧化(CPO)阶段,并从ATR或CPO回收热逸出合成气的流,(c)从所述热逸出合成气除去水,以形成脱水合成气,(d)从至少部分所述脱水合成气除去至少部分氢,以形成尾气回收物,(e)直接使至少部分所述尾气回收物再循环进入烃类原料或进入所述烃和蒸汽的混合物,及(f)随后使至少部分所述脱水合成气作为原料通过下游GTL工艺,同时从回收所述尾气回收物气体转变为从所述下游GTL工艺回收尾气。
2.根据权利要求1所述的方法,其中,当所述脱水合成气的H2/CO摩尔比低于2.3,优选低于2.2,更优选低于2.1时进行步骤(f)。
3.根据权利要求1或2所述的方法,其中所述烃类原料是如下气体:已经过至少一个预重整阶段,优选绝热的预重整阶段。
4.根据权利要求1-3中任一项所述的方法,其中在与所述尾气回收物合并之前将所述烃类原料或所述烃和蒸汽的混合物预热,优选在火焰加热器中。
5.根据权利要求1-4中任一项所述的方法,其中通过循环压缩机将所述尾气回收物引入到烃类原料或烃与蒸汽的混合物中。
6.根据权利要求5所述所述的方法,其中所述循环压缩机是用于从下游气-至-液(GTL)工艺回收尾气的现有的循环压缩机。
7.根据权利要求6所述所述的方法,其中在通过所述循环压缩机后,所述尾气回收物被引入到转化阶段,用于除去烯烃,优选通过加氢。
8.根据权利要求1-7中任一项所述的方法,其中所述步骤(d)在氢分离膜或压力摆动分离装置(PSA)中进行。
9.根据权利要求1-8中任一项所述的方法,其中在ATR或CPO操作时蒸汽与碳的摩尔比为0.2至3.0。
10.根据权利要求1-9中任一项所述的方法,其中在进行步骤(c)之前将步骤(b)中来自ATR或CPO的热逸出合成气的流冷却。
11.根据权利要求10所述的方法,其中,将所述来自ATR或CPO的热逸出合成气在一个或多个余热锅炉中冷却。
12.根据权利要求10所述的方法,其中,所述来自ATR或CPO的热逸出合成气在与ATR或CPO串联地或平行地操作的热交换重整器中用作热交换介质。
13.根据权利要求1-12中任一项所述的方法,其中所述气-至-液(GTL)工艺是费-托合成。
CN201380046234.3A 2012-09-05 2013-08-15 用于启动气至液工艺的方法 Active CN104603239B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EPPCT/EP2012/067316 2012-09-05
EP2012067316 2012-09-05
PCT/EP2013/067055 WO2014037201A1 (en) 2012-09-05 2013-08-15 Method for starting-up a gas to liquid process

Publications (2)

Publication Number Publication Date
CN104603239A true CN104603239A (zh) 2015-05-06
CN104603239B CN104603239B (zh) 2017-08-08

Family

ID=46829741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380046234.3A Active CN104603239B (zh) 2012-09-05 2013-08-15 用于启动气至液工艺的方法

Country Status (12)

Country Link
US (1) US9464237B2 (zh)
EP (1) EP2892982B1 (zh)
KR (1) KR101957939B1 (zh)
CN (1) CN104603239B (zh)
AR (1) AR092430A1 (zh)
AU (1) AU2013311966B2 (zh)
BR (1) BR112015004886A2 (zh)
CA (1) CA2883878C (zh)
EA (1) EA027192B1 (zh)
IN (1) IN2015DN01419A (zh)
MX (1) MX346541B (zh)
WO (1) WO2014037201A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106350095A (zh) * 2016-08-24 2017-01-25 内蒙古伊泰煤制油有限责任公司 一种缩短费托合成反应系统开车时间的方法
CN113003537A (zh) * 2019-12-19 2021-06-22 乔治洛德方法研究和开发液化空气有限公司 用于启动自热重整器的工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101920775B1 (ko) * 2011-06-29 2018-11-21 할도르 토프쉐 에이/에스 탄화수소의 개질 방법
WO2014181243A1 (en) * 2013-05-06 2014-11-13 Saudi Basic Industries Corporation Reformed gas as fuel for primary reformer during startup
AR099983A1 (es) 2014-04-08 2016-08-31 Haldor Topsoe As Proceso para calentar un reactor de pruebas avanzado
US9683176B2 (en) * 2015-10-16 2017-06-20 Haldor Topsøe A/S Process for conversion of natural gas to liquid hydrocarbons and a plant for carrying out the process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163919A (zh) * 2005-03-10 2008-04-16 国际壳牌研究有限公司 用于启动燃料的无焰燃烧和处理流体直接加热的直接加热系统的方法
CN102105570A (zh) * 2008-06-20 2011-06-22 Gtl汽油有限公司 用于对氢和一氧化碳进行处理的系统和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK147705C (da) 1982-09-07 1985-05-13 Haldor Topsoe As Fremgangsmaade til fremstilling af carbonhydrider ud fra syntesegas
DK149529C (da) 1983-05-11 1986-12-22 Haldor Topsoe As Fremgangsmaade til fremstilling af syntetiske carbonhydrider ud fra syntesegas
EP0287238B1 (en) 1987-04-13 1991-09-11 Imperial Chemical Industries Plc Process and apparatus for the production of a hot pressurised gas stream by catalytic combustion
US20030050348A1 (en) * 2001-03-26 2003-03-13 Kennedy Paul Edwin Hydrocarbon conversion process using a plurality of synthesis gas sources
US6818198B2 (en) 2002-09-23 2004-11-16 Kellogg Brown & Root, Inc. Hydrogen enrichment scheme for autothermal reforming
EP1413547A1 (en) * 2002-09-26 2004-04-28 Haldor Topsoe A/S Process for the production of synthesis gas
WO2007009954A1 (en) * 2005-07-20 2007-01-25 Shell Internationale Research Maatschappij B.V. Method to start a process for hydrocarbon synthesis
US9988586B2 (en) * 2011-11-08 2018-06-05 Midrex Technologies, Inc. Systems and methods for the use of Fischer-Tropsch tail gas in a gas to liquid process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163919A (zh) * 2005-03-10 2008-04-16 国际壳牌研究有限公司 用于启动燃料的无焰燃烧和处理流体直接加热的直接加热系统的方法
CN102105570A (zh) * 2008-06-20 2011-06-22 Gtl汽油有限公司 用于对氢和一氧化碳进行处理的系统和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106350095A (zh) * 2016-08-24 2017-01-25 内蒙古伊泰煤制油有限责任公司 一种缩短费托合成反应系统开车时间的方法
CN113003537A (zh) * 2019-12-19 2021-06-22 乔治洛德方法研究和开发液化空气有限公司 用于启动自热重整器的工艺
CN113003537B (zh) * 2019-12-19 2023-12-22 乔治洛德方法研究和开发液化空气有限公司 用于启动自热重整器的工艺

Also Published As

Publication number Publication date
CA2883878A1 (en) 2014-03-13
KR101957939B1 (ko) 2019-03-13
MX346541B (es) 2017-03-24
AR092430A1 (es) 2015-04-22
AU2013311966A1 (en) 2015-03-19
EP2892982B1 (en) 2019-05-15
EA027192B1 (ru) 2017-06-30
IN2015DN01419A (zh) 2015-07-03
MX2015002184A (es) 2015-05-07
CN104603239B (zh) 2017-08-08
US9464237B2 (en) 2016-10-11
WO2014037201A1 (en) 2014-03-13
EP2892982A1 (en) 2015-07-15
CA2883878C (en) 2020-06-02
US20150232763A1 (en) 2015-08-20
BR112015004886A2 (pt) 2017-07-04
AU2013311966B2 (en) 2017-08-17
KR20150047617A (ko) 2015-05-04
EA201590480A1 (ru) 2015-08-31

Similar Documents

Publication Publication Date Title
CN104603239A (zh) 用于启动气至液工艺的方法
JP4336554B2 (ja) 水蒸気リフォーミング方法
US7323497B2 (en) Production of hydrocarbons by steam reforming and Fischer-Tropsch reaction
CA2507922C (en) Autothermal reformer-reforming exchanger arrangement for hydrogen production
US9365466B2 (en) Method and system for producing a liquid hydrocarbon product from a Fischer-Tropsch process using a synthesis gas produced from an oxygen transport membrane based reforming reactor
CN104487380B (zh) 重整烃的方法和启动气体液化工艺的方法
WO2009041545A1 (ja) 管式リフォーマーの有効熱利用方法
AU2014363515B2 (en) Process for the production of synthesis gas
KR101330129B1 (ko) 천연가스를 이용한 ft 공정용 합성가스 제조방법 및 제조장치
CN117440926A (zh) 用于co2变换的换热反应器
CN117425618A (zh) 具有减少的金属粉尘化的换热反应器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant