CN104596555B - 光学编码器 - Google Patents

光学编码器 Download PDF

Info

Publication number
CN104596555B
CN104596555B CN201410590310.3A CN201410590310A CN104596555B CN 104596555 B CN104596555 B CN 104596555B CN 201410590310 A CN201410590310 A CN 201410590310A CN 104596555 B CN104596555 B CN 104596555B
Authority
CN
China
Prior art keywords
light receiving
receiving element
phase
signal
transverse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410590310.3A
Other languages
English (en)
Other versions
CN104596555A (zh
Inventor
林康
林康一
家城淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Publication of CN104596555A publication Critical patent/CN104596555A/zh
Application granted granted Critical
Publication of CN104596555B publication Critical patent/CN104596555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

一种光学编码器,包括多个光接收元件1‑12,这些光接收元件接收穿过标尺或从标尺反射的光,所述标尺具有晶格间距P,且所述光接收元件输出已经在相位分别偏移了90°(1/4P)的整数倍数的四相信号。12个之间间隙为P/60或2P/60的光接收元件位于横向方向上(标尺的纵向方向),连续相邻布置的任意四个光接收元件全部输出不同相位的信号,输出相同相位的信号的光接收元件具有7P/60、13P/60或20P/60的三种横向宽度。

Description

光学编码器
优先权信息
本申请要求2013年10月30日提交的第2013-225865号日本专利申请的优先权,并通过引用将其包括在内。
技术领域
本发明涉及一种光学编码器,该光学编码器合并入机床、半导体制造装置等,以检测可移动轴的位置。
背景技术
JP 10-132614 A描述了一种光学编码器,如果针对每一相位有多个不同组的光接收元件,通过排布光接收元件,即使标尺发生锈蚀或磨损,也能够获得位移信号,而不会造成位置检测误差,并只有很少的失真。
如果可以使得光接收元件的光接收区域变窄,那么很容易简化光源,从而有可能降低光学编码器的成本。根据JP 10-132614 A中公开的光学编码器的实施例中公开的光接收元件的布置方法,光接收元件间的间隙仍然很宽。因此,还需要光学编码器,其能够获得位移信号,即使标尺发生锈蚀或磨损,也没有位置检测误差,并只有很少的失真,特别是使用光接收元件之间窄得多的间隙。同样,光接收元件之间间隙越宽,增加的无效光越多,光源消耗的损失能量与该无效光成比例地增加。因此,从能量守恒的基本原理出发,光接收元件之间还需要间隙小的编码器。
鉴于上述情形构思出了本发明,本发明的目的在于提供一种高精度光学编码器,通过设计一种光学元件布置方法来获得位移信号,即使标尺被锈蚀或磨损,也没有位置检测误差,并只有很少的失真,并且通过实现在窄的光接收区域的工作,从而通过简化光源实现降低成本和降低功耗。
发明内容
一种光学编码器,包括多个光接收元件,所述光接收元件接收穿过标尺或从标尺反射的光,该标尺具有晶格间距P,所述光接收元件输出已经在相位分别偏移了90°(1/4P)的整数倍数的四相信号,所有的光接收元件都具有相同的纵向宽度,在横向方向(标尺纵向方向)上布置有12N(N为自然数)个之间间隙为P/60或2P/60的光接收元件,连续相邻布置的任意四个光接收元件全部输出不同相位的信号,分别输出相同相位的信号的光接收元件具有7P/60、13P/60或20P/60的三种横向宽度。
同样,根据本发明的光学编码器,所述光接收元件优选地形成为平行四边行,其沿横向方向上下边缘偏移P/7。
根据本发明,采用JP 10-132614 A技术的光学编码器能够获得位移信号,即使标尺被锈蚀或磨损,也没有位置检测误差,并只有很少的失真,其可以用布置在光接收元件之间的P/60或2P/60的窄隙实现,并且,该光接收区域具有小于3P的最小宽度,即168P/60。这样,可以实现低成本和低功耗的高精度光学编码器。
附图说明
下面参照附图的描述有助于更好地理解本发明。
图1为根据本发明的一个实施例的光学编码器的光接收元件的布置示意图;
图2为根据本发明的另一个实施例的光学编码器的光接收元件的布置示意图;
图3为图1所示的光学编码器的输出信号的图表;
图4为图1所示的光学编码器的信号的插值处理后获得的位置检测精度的图表;
图5为图2所示的光学编码器的输出信号的图表;
图6为图2所示的光学编码器的信号的插值处理后获得的位置检测精度的图表。
具体实施方式
图1中的光接收元件1、2、3、4、5、6、7、8、9、10、11和12全都具有相同的纵向宽度(标尺短方向上的长度),并且都布置在的标尺的纵向方向上,各个光接收元件间的间隙为P/60或2P/60。另外,光接收元件的连接状态没有显示在图中,但是光接收元件1、2、3、4、5、6、7、8、9、10、11和12在它们的后表面连接到共同电极。此外,光接收元件1、5和9在前表面具有并联的透明电极,输出A+信号。此外,光接收元件2、6和10在前表面具有并联的透明电极,输出B+信号,该信号的相位与A+信号的相位相差90°(P/4)。此外,光接收元件3、7和11在前表面具有并联的透明电极,输出A-信号,该信号的相位与A+信号的相位相差180°(3P/4)。此外,光接收元件4、8和12在前表面具有并联的透明电极,输出B-信号,,该信号的相位与A+信号的相位相差270°(3P/4)。根据以上结构,任意四个连续相邻的光接收元件的布置使得输出不同相位的信号。此外,光接收元件2、3、5和8具有7P/60的横向宽度。此外,光接收元件1、6、11和12具有13P/60的横向宽度。光接收元件4、7、9和10具有20P/60 (P/3)的横向宽度。
具体地,输出相同相位的信号的光接收元件(例如,输出A+信号的光接收元件1、5和9,输出B+信号的光接收元件2、6和10)具有7P/60、13P/60和20P/60三种横向宽度。此外,相差180°的两组光接收元件(输出A+信号的光接收元件和输出A-信号的光接收元件,或输出B+信号的光接收元件和输出B-信号的光接收元件)具有一系列横向宽度不同的光接收元件,但是具有相同的系列顺序。例如,对于A+的三个光接收元件的横向宽度的顺序是,从左到右,13P/60、7P/60、20P/60,而对于A-的三个光接收元件的横向宽度的顺序是,从左到右,7P/60、20P/20、13P/60。具体地,A+的光接收元件和A-的光接收元件都具有位于横向宽度13P/60的光接收元件之后的横向宽度7P/60的光接收元件(如果横向宽度13P/60的光接收元件位于尾部,那么该横向宽度7P/60的光接收元件置于头部),以及位于横向宽度7P/60.的光接收元件之后的横向宽度20P/60的光接收元件。类似地,B+的光接收元件和B-的光接收元件都具有位于横向宽度7P/60的光接收元件之后的横向宽度13P/60的光接收元件,以及位于横向宽度13P/60的光接收元件之后的横向宽度20P/60的光接收元件(如果横向宽度13P/60的光接收元件位于尾部,那么该横向宽度20P/60的光接收元件置于头部)。
其结果是,通过设置具有如图1所示的三种宽度的光接收元件,接着,如图3所示,可以根据信号A+、B+、A-和B-得到接近正弦波的信号,这些信号在节距P内变化,在节距P/3和P/5内变化的第三谐波和第五谐波被抵消。此外,通过进行这四个相位信号的插值处理,接着,如图4所示,即使对于具有晶格间距2mm的宽节距标尺,也可以得到小于±6 μm范围的高精度位置检测。如上所述,根据本发明可以通过在具有略低于三倍晶格间距P(178P/60)的狭窄区域布置光接收元件来实现高精度位置检测。此外,由于光接收元件占据178P/60区域的大约90%,即160P/60(7P/60×4+13P/60×4+20P/60×4),因此可以将照射到光接收元件的光转化为高效的电信号。本发明除去高频分量的方法采用JP 10-132614 A公开的技术。然而,根据JP 10-132614 A公开的光接收元件的设置,需要具有至少4倍于P或更大的晶格间距的区域。此外,即使在本发明的图2中,具有非常高的光接收元件的占用率,该占用率被限制在大约84%,即在略小于5倍晶格间距P(19P/4)的区域内为4P(P/4×16)。相反地,采用本发明,根据JP 10-132614 A中公开的光接收元件设置,可以减少设置区域25%或更多的总宽,并且可以将设置区域中的光接收元件的占用率提高到接近大约90%的限制水平。此外,相比于JP 10-132614 A的技术,采用本发明,由于用于标尺的每个相位的光接收元件的宽度都非常薄,因此可以在几乎相同的位置执行每个相位的检测。这意味着即使标尺的节距出现锈蚀、细小瑕疵或误差,将对每个相位的作用相等,每个输出信号间没有不平衡,并因此不会发生位置检测错误。进一步地,由于光接收元件的宽度去除了高阶失真分量,因此可以获得位移信号,该位移信号只具有来自少数光接收元件的轻微失真,并且具有足够的平均信号,从而实现了稳定的输出。
图2展示了本发明的另一实施例,其中,图1和图2中的光接收元件1和光接收元件21,以及光接收元件2和光接收元件22,光接收元件3和光接收元件23,光接收元件4和光接收元件24,光接收元件5和光接收元件25,光接收元件6和光接收元件26,光接收元件7和光接收元件27,光接收元件8和光接收元件28,光接收元件9和光接收元件29,光接收元件10和光接收元件30,光接收元件11和光接收元件31,光接收元件12和光接收元件32,设置在相同的相应位置,并且具有相同的横向宽度。此外,图1的光接收元件1、2、3、4、5、6、7、8、9、10、11和12制成矩形,而图2的光接收元件21、22、23、24、25、26、27、28、29、30、31和32制成上下边缘在横向位置偏移P/7的平行四边形。采用这种方式,通过使得光接收元件的形状为具有上下边缘在横向位置偏移P/7的平行四边形,A+、B-、A-和B-信号成为整合了在节距P/7内变化的光量的信号。其结果是,在P/7节距周期内变化的第7谐波分量被抵消了。采用这种方式可以获得非常接近正弦波的信号,如图5所示。此外,通过执行这四个相位信号的插值处理,接着,如图6所示,即使对于具有晶格间距2mm的宽节距标尺,也可以得到小于±1 μm范围的高精度位置检测。其还有一个作用在于衰减高于第7谐波的谐波。采用这种方式,图2所示的光学编码器具有相比与图1的光学编码器增大了P/7的光接收区域,并且实现更高精度的位置检测。
图1和图2展示的例子,其具有13P/60的横向宽度并输出A+信号的光接收元件布置在左侧,但是,由于可以将在左侧的该光接收元件向右侧移动3P,因此可以在左侧布置任意的光接收元件。此外,在该实施例中,展示了一个使用12个光接收元件的例子,但是,由于可以设置间隔3P的带有12个光接收元件构成的单一块的光接收组,因此可以实现数目为12的倍数的本发明的光接收元件,如24个光接收元件或36个光接收元件。此外,还可以使用输出A+信号、A-信号、B+信号和B-信号的各自的光接收元件以这样一种方式来连接串联的具有不同极性的光电二极管,并且在光接收元件一侧转化为相位相差90°的两种相位信号,例如,将差异信号A转化为A+信号和A-信号,将差异信号B转化为B+信号和B-信号。

Claims (2)

1.一种光学编码器,包括:
多个光接收元件,被配置为接收穿过标尺或从标尺反射的光,所述标尺具有晶格间距P,所述光接收元件还被配置为输出第一相的信号、第二相的信号、第三相的信号和第四相的信号,所述第一相、第二相、第三相和第四相彼此偏移1/4P的整数倍数,1/4P等于90°,其中,
所述多个光接收元件全部都具有相同的纵向宽度,
所述多个光接收元件包括在横向方向上布置的、间隔P/60或2P/60的12N个光接收元件,N为自然数,所述横向方向为所述标尺的纵向方向,
所述多个光接收元件布置为使得彼此相邻布置的任意四个光接收元件包括输出所述第一相的信号的光接收元件、输出所述第二相的信号的光接收元件、输出所述第三相的信号的光接收元件和输出所述第四相的信号的光接收元件,
输出所述第一相的信号的所述光接收元件包括限定7P/60的横向宽度的光接收元件、限定13P/60的横向宽度的光接收元件和限定20P/60的横向宽度的光接收元件,
输出所述第二相的信号的所述光接收元件包括限定7P/60的横向宽度的光接收元件、限定13P/60的横向宽度的光接收元件和限定20P/60的横向宽度的光接收元件,
输出所述第三相的信号的所述光接收元件包括限定7P/60的横向宽度的光接收元件、限定13P/60的横向宽度的光接收元件和限定20P/60的横向宽度的光接收元件,
输出所述第四相的信号的所述光接收元件包括限定7P/60的横向宽度的光接收元件、限定13P/60的横向宽度的光接收元件和限定20P/60的横向宽度的光接收元件。
2.根据权利要求1所述的光学编码器,其特征在于,所述光接收元件制成平行四边形,该平行四边形的上下边缘在横向方向偏移P/7。
CN201410590310.3A 2013-10-30 2014-10-29 光学编码器 Active CN104596555B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013225865A JP6138664B2 (ja) 2013-10-30 2013-10-30 光学式エンコーダ
JP2013-225865 2013-10-30

Publications (2)

Publication Number Publication Date
CN104596555A CN104596555A (zh) 2015-05-06
CN104596555B true CN104596555B (zh) 2019-03-12

Family

ID=52811843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410590310.3A Active CN104596555B (zh) 2013-10-30 2014-10-29 光学编码器

Country Status (4)

Country Link
US (1) US9448089B2 (zh)
JP (1) JP6138664B2 (zh)
CN (1) CN104596555B (zh)
DE (1) DE102014114573B4 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6138664B2 (ja) * 2013-10-30 2017-05-31 オークマ株式会社 光学式エンコーダ
JP6879810B2 (ja) * 2017-04-27 2021-06-02 オークマ株式会社 光学式エンコーダ
US10168189B1 (en) * 2017-06-29 2019-01-01 Mitutoyo Corporation Contamination and defect resistant optical encoder configuration for providing displacement signal having a plurality of spatial phase detectors arranged in a spatial phase sequence along a direction transverse to the measuring axis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981942A (en) * 1996-10-25 1999-11-09 Okuma Corporation Optical encoder for detecting relative displacement based on signals having predetermined phase differences
CN1550761A (zh) * 2003-05-16 2004-12-01 ������������ʽ���� 光电式编码器
CN1670486A (zh) * 2004-03-17 2005-09-21 佳能株式会社 光学式编码器
CN1737504A (zh) * 2004-08-20 2006-02-22 夏普株式会社 光编码器及相应的电子设备
CN101988838A (zh) * 2009-07-29 2011-03-23 山洋电气株式会社 光学式编码装置
CN102879023A (zh) * 2011-07-13 2013-01-16 新日本无线株式会社 位置检测装置用光敏器件、使用它的位置检测装置和位置检测方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3616144A1 (de) * 1986-05-14 1987-11-19 Heidenhain Gmbh Dr Johannes Fotoelektrische messeinrichtung
US4979827A (en) * 1988-02-26 1990-12-25 Kabushiki Kaisha Okuma Tekkosho Optical linear encoder
JP2695623B2 (ja) * 1994-11-25 1998-01-14 株式会社ミツトヨ 光学式エンコーダ
JP3327718B2 (ja) * 1995-01-23 2002-09-24 オークマ株式会社 光学式エンコーダ
JP3215289B2 (ja) * 1995-04-17 2001-10-02 オークマ株式会社 スケール及びエンコーダ
JP3209914B2 (ja) * 1996-03-19 2001-09-17 オークマ株式会社 光学式エンコーダ
US6094307A (en) * 1996-05-17 2000-07-25 Okuma Corporation Optical grating and encoder
DE19628602A1 (de) * 1996-07-16 1998-01-22 Heidenhain Gmbh Dr Johannes Vorrichtung zur Filterung von Oberwellen-Signalanteilen
JP3561100B2 (ja) * 1996-10-23 2004-09-02 オークマ株式会社 光学式エンコーダ
DE10020575A1 (de) * 2000-04-28 2001-10-31 Heidenhain Gmbh Dr Johannes Abtasteinheit für eine optische Positionsmesseinrichtung
JP3589621B2 (ja) * 2000-07-03 2004-11-17 株式会社ミツトヨ 光電式エンコーダ及びそのセンサヘッドの製造方法
US6717463B2 (en) 2000-11-03 2004-04-06 Qualcomm Incorporated Circuit for linearizing electronic devices
CA2458964A1 (en) * 2001-08-30 2003-03-13 William G. Thorburn Harmonic suppressing photodetector array
US6956200B2 (en) * 2003-01-31 2005-10-18 Mitsubishi Denki Kabushiki Kaisha Phase-shift photoelectric encoder
JP2004271453A (ja) * 2003-03-11 2004-09-30 Yaskawa Electric Corp 光学式エンコーダ
DE10319609A1 (de) * 2003-05-02 2004-11-18 Dr. Johannes Heidenhain Gmbh Optoelektronische Detektoranordnung
JP2005017116A (ja) * 2003-06-26 2005-01-20 Sharp Corp 光学式エンコーダ用受光素子
US20070024865A1 (en) 2005-07-26 2007-02-01 Mitchell Donald K Optical encoder having slanted optical detector elements for harmonic suppression
JP2007170826A (ja) * 2005-12-19 2007-07-05 Orion Denki Kk 光エンコーダ
US7679533B2 (en) * 2007-10-02 2010-03-16 Renco Encoders Inc. Photodiode array for an optical encoder, photodiode detection system, and optical encoder
DE102009016663A1 (de) * 2009-03-31 2010-10-07 Balluff Gmbh Positions-/Wegmesssystem
JP5562077B2 (ja) * 2010-03-10 2014-07-30 キヤノン株式会社 光学式エンコーダ、エンコーダ、干渉計測装置、計測方法
JP5479255B2 (ja) * 2010-07-20 2014-04-23 キヤノン株式会社 光学式エンコーダ
JP6032924B2 (ja) * 2011-04-13 2016-11-30 キヤノン株式会社 エンコーダ
JP5755010B2 (ja) * 2011-04-14 2015-07-29 キヤノン株式会社 エンコーダ
JP5891921B2 (ja) * 2012-04-16 2016-03-23 富士通株式会社 変位計測装置、変位計測方法及び変位計測プログラム
JP6138664B2 (ja) * 2013-10-30 2017-05-31 オークマ株式会社 光学式エンコーダ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981942A (en) * 1996-10-25 1999-11-09 Okuma Corporation Optical encoder for detecting relative displacement based on signals having predetermined phase differences
CN1550761A (zh) * 2003-05-16 2004-12-01 ������������ʽ���� 光电式编码器
CN1670486A (zh) * 2004-03-17 2005-09-21 佳能株式会社 光学式编码器
CN1737504A (zh) * 2004-08-20 2006-02-22 夏普株式会社 光编码器及相应的电子设备
CN101988838A (zh) * 2009-07-29 2011-03-23 山洋电气株式会社 光学式编码装置
CN102879023A (zh) * 2011-07-13 2013-01-16 新日本无线株式会社 位置检测装置用光敏器件、使用它的位置检测装置和位置检测方法

Also Published As

Publication number Publication date
JP2015087247A (ja) 2015-05-07
US20150115141A1 (en) 2015-04-30
DE102014114573B4 (de) 2019-04-25
JP6138664B2 (ja) 2017-05-31
US9448089B2 (en) 2016-09-20
DE102014114573A1 (de) 2015-04-30
CN104596555A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
CN103591896B (zh) 一种基于交变光场的时栅直线位移传感器
CN104596555B (zh) 光学编码器
CN105300420B (zh) 标尺和光学编码器
JP5887064B2 (ja) 光学式エンコーダ
EP2385354B1 (en) Optical encoder having contamination and defect resistant signal processing
KR101184167B1 (ko) 광 위치 인코더
CN205280099U (zh) 一种绝对式光栅尺的绝对位置测量装置
US10317253B2 (en) Optical encoder
JP5974329B2 (ja) 光電式エンコーダ
CN101782374A (zh) 基于模板近场光投影扫描的齿轮和成型结构轮廓测量方法
CN1979096A (zh) 光电式编码器
CN110617844B (zh) 位移编码器
CN104655023B (zh) 一种基于构造运动光场的单排时栅直线位移传感器
US9829347B2 (en) Capacitance sensation unit of plane position measurement device
US10168189B1 (en) Contamination and defect resistant optical encoder configuration for providing displacement signal having a plurality of spatial phase detectors arranged in a spatial phase sequence along a direction transverse to the measuring axis
JP3327718B2 (ja) 光学式エンコーダ
US10094685B2 (en) Displacement encoder
CN102589447A (zh) 基于双通道光栅的微小线性位移传感器
CN103090799A (zh) 位移检测装置、位移检测方法和计算机可读介质
CN103234457B (zh) 基于数字成像的多光束位移测量方法
CN217465691U (zh) 一种光栅位移测量装置
JP7062488B2 (ja) エンコーダ
DE102016015225A1 (de) Codiereinrichtung
WO2018199076A1 (ja) クリアランス計測装置、クリアランス計測センサ及びクリアランス計測方法
KR101481472B1 (ko) 광학식 인코더 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant