CN104583658B - 增强的气体流率控制的方法及设备 - Google Patents

增强的气体流率控制的方法及设备 Download PDF

Info

Publication number
CN104583658B
CN104583658B CN201380044160.XA CN201380044160A CN104583658B CN 104583658 B CN104583658 B CN 104583658B CN 201380044160 A CN201380044160 A CN 201380044160A CN 104583658 B CN104583658 B CN 104583658B
Authority
CN
China
Prior art keywords
ratio controller
flow ratio
flow
gas
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380044160.XA
Other languages
English (en)
Other versions
CN104583658A (zh
Inventor
麻里乌斯·格雷戈尔
约翰·W·莱恩
迈克尔·罗伯特·赖斯
贾斯汀·霍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN104583658A publication Critical patent/CN104583658A/zh
Application granted granted Critical
Publication of CN104583658B publication Critical patent/CN104583658B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K21/00Fluid-delivery valves, e.g. self-closing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0664Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged for the control of a plurality of diverging flows from a single flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0379By fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87885Sectional block structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Flow Control (AREA)

Abstract

本发明提供用于控制气体流动至半导体处理腔室的方法与设备。方法和设备包括:使流量比率控制器中的比率设定点反馈控制无效;启动气体流动经过所述流量比率控制器;当上游压力达到储存的上游压力值时,移动所述流量比率控制器的阀门至基于储存位置的预设位置,其中所述储存位置与所述储存的上游压力值于前期处理运行期间被储存;确定稳态流量比率控制器输出的流动已达到;及使所述流量比率控制器中的比率设定点反馈控制有效。公开了许多额外的特征。

Description

增强的气体流率控制的方法及设备
相关申请
本申请案主张2012年8月21日申请的美国专利申请案第13/591,212号,发明名称为“METHODS AND APPARATUS FOR ENHANCED GAS FLOW RATE CONTROL(增强的气体流率控制的方法及设备)”的优先权(律师文案第16437USA/FEG/SYNX/CROCKER S号),将美国专利申请案全部内容经由引用并于本案中,以为各目的之用。
技术领域
本发明一般涉及用于电子装置制造的气体流率控制,并且特别是针对用于增强气体流率控制得更精确的方法及设备。
背景技术
半导体处理过程对流率的变化和扰动可能特别敏感。因而,用于半导体处理腔室的气体输送系统尝试在精确的速率及压力下,输送稳定流动。现有技术中的气体输送系统使用分流法,以于多注入点及多腔室结构中改良混合比率的准确性、可重复性和再现性,而前述的结构共享气体的供应端。在数种应用里,分流也显著地降低了气体输送系统的成本。分流装置的范围由简易的Y型管道,到实时流量反馈比率控制器(FRC)。所述流量反馈比率控制器积极地尝试控制经由所述流量反馈比率控制器的输出通道分配的气体的相对流率。然而,随着新科技持续实现较小的关键尺寸,较高程度的流量控制精确性成了追求的目标,因而需要用来增强气体流率控制更为精确的方法与设备。
发明内容
发明的方法与设备被用于一种控制气体流动至半导体处理腔室中的方法。所述方法包括以下步骤:使流量比率控制器中的比率设定点反馈控制无效;启动气体流动经过所述流量比率控制器;当上游压力达到储存的上游压力值时,移动所述流量比率控制器的阀门至基于储存位置的预设位置,其中所述储存位置与所述储存的上游压力值于前期处理运行期间被储存;确定稳态流量比率控制器输出的流动已达到;及使所述流量比率控制器中的比率设定点反馈控制有效。
在某些实施例中,该发明提供了一种流量比率控制器组件。所述组件包括:控制器;输入气体线路;压力传感器,所述压力传感器耦接至所述输入气体线路,并适于测出在所述输入气体线路内的上游气体压力;四散歧管,所述四散歧管具有耦接至所述输入气体线路的输入端,及多个输出端;多个质量流量传感器,每一质量流量传感器操作地耦接至所述四散歧管的所述多个输出端中的不同的输出端,且适于测出经过各个输出端的气体流量;及多个可调整阀门,每一阀门操作地耦接至所述四散歧管的所述多个输出端中的不同的输出端,且适于控制经过各个输出端的气体流量。所述控制器操作地耦接至所述多个可调整阀门,且适于控制所述阀门的每一位置,以基于储存的位置,设定所述阀门至预定位置。
在其它实施例中,本发明提供一种用于一或多个处理腔室的气体输送系统。所述系统包括:气体供应面板,所述气体供应面板包括多个质量流量控制器;流量比率控制器组件,所述流量比率控制器组件具有输入气体线路,所述输入气体线路耦接至所述气体供应面板,所述流量比率控制器组件包括多个输出气体线路,适于耦接至一或多个处理腔室。所述流量比率控制器组件包括:控制器;压力传感器,所述压力传感器耦接至所述输入气体线路,并适于测出在所述输入气体线路中的上游气体压力;四散歧管,所述四散歧管具有输入端,所述输入端耦接至所述输入气体线路与所述多个输出气体线路;多个质量流量传感器,每一质量流量传感器操作地耦接至所述四散歧管的所述多个输出气体线路中不同的输出气体线路,且适于测出经过各别输出气体线路的气体流量;及多个可调整阀门,每一阀门操作地耦接至所述四散歧管的所述多个输出气体线路中不同的输出气体线路,且适于控制经过各个输出气体线路的气体流量。所述控制器操作地耦接至所述多个可调整阀门,且适于控制所述阀门的每一位置,以设定所述阀门至基于储存的位置的预定位置。
提供了许多其它的方面。本发明的其它特征与方面,根据下列详细的描述、随附的权利要求与附图,将显得更加清楚。
附图简单说明
图1为示意方块图,描绘依照本发明某些实施例的示例性的气体输送系统。
图2为示意方块图,描绘依照本发明某些实施例的示例性的流量反馈比率控制器(FRC)。
图3为描绘示例性的控制气体流量方法的流程图,所述方法使用依照本发明某些实施例的流量反馈比率控制器。
图4为曲线图,所述曲线图描绘经过常规的流量反馈比率控制器的气体流率随时间关系,与经过依照本发明某些实施例的流量反馈比率控制器的气体流率随时间关系的示例性比较。
图5为曲线图,所述曲线图描绘常规的流量反馈比率控制器的上游气体压力随时间关系,与依照本发明某些实施例的流量反馈比率控制器的上游气体压力随时间关系的示例性比较。
具体描述
本发明提供用于控制气体流动至处理腔室的改良的方法与设备。特别是本发明减少用以找出进入处理腔室的流率的设定时间,所述流率以在所述气体流动中最少的扰动提供期望的气体量。改良气体流量控制的方法的现有技术中并未尝试实现经过流量比率控制器的稳态流动。依照本发明通过减少所述设定时间,瞬时流动被消除或最小化,并且因为气体运送至所述腔室被较佳地界定且短暂的停留时间显著地减少,较严格的工艺控制能因此实现。
由本身基于反馈的控制存在着某些固有的局限性。直到控制的变量发生偏离后,才会采取纠正措施。因而,完美控制(在干扰发生期间所述控制的变量没有自设定点偏离或设定点改变)理论上不可行。反馈控制没有提供预测控制作用以补偿已知的(即,可预料的)或可测量的干扰的效果。在某些例子中,工艺制作方法具有严格容限,对于工艺而言,反馈控制可能不甚满意。如果一个显著的或重复的干扰发生,所述工艺可能于延长时间内,在一瞬态下操作,速度不够快以达到所需的稳态。
本发明使用由前期处理运行得到的前馈信息,在适当的时间,从使用常规的流量比率设定点反馈控制器,直接切换设定流量控制器的阀门开口至基于所述前期处理运行的预定位置。
本发明也包括一种新颖的流量比率控制器,所述流量比率控制器能在两种不同的模式下操作以实现本发明的方法。在反馈模式中,所述流量比率控制器的阀门基于测出的流量,而由所述控制器继续地调整,以实现基于特定设定点的所需的流量比率。在前馈模式中,所述流量比率控制器的阀门被设定至预先储存的位置,所述位置是在前期处理运行期间确定的。因而,在某些实施例中,本发明新颖的流量比率控制器可包括(1)质量流量传感器以便于在所述反馈模式中操作(例如,基于反馈数据重复地调整所述阀门位置)与(2)阀门位置传感器与存储器,用来检测及储存由前期处理运行得来的阀门位置,以便于在所述前馈模式中操作(例如,基于所述前馈数据设定所述阀门至最终位置)两者。此外,所述新颖的流量比率控制器可包括多个阀门,所述阀门能同时(1)相对于彼此被调整以寻找实现所需的流量比率的位置以及(2)被设定于基于先前储存的位置的绝对的位置。
请翻到图1,图1描述依照本发明的示例性的气体输送系统100。所述系统100包括气体供应面板102,所述气体供应面板102包括多个质量流量控制器(MFC)104(仅三个用于表示)。所述质量流量控制器104与本发明的新颖的流量比率控制器(FRC)组件106流体连通。根据在处理过程中执行的工艺制作方法,由所述质量流量控制器104供应至所述流量比率控制器组件106的不同气体的数量会变化。所述流量比率控制器组件106经由输出线路歧管耦接至一或多个处理腔室108、110。在某些实施例中,所述处理腔室108、110可适于在所述处理腔室108、110内的一个以上的区域中接收气体,并因而所述歧管可包括流入单一处理腔室108、110的数个线路。虽然未图标于图1,系统100的各组成部分可包括控制器、传感器、仪表及/或至中央控制系统的连接件。其它数量的质量流量控制器、区域、腔室等,可被采用。
图2描绘依照本发明某些实施例的示例性的流量反馈比率控制器(FRC)组件106的细节。所述流量比率控制器组件106包括流量比率控制器202,所述流量比率控制器202在控制器204的程序化控制下操作。线路压力传感器206提供来自气体供应面板102中的质量流量控制器104的气体上游线路压力Pup的读值。输入线路Qin被馈送至在所述流量比率控制器202内的四散歧管,以在多个质量流量传感器(MFS)208、210、212、214之间(例如,热质量流量传感器)分流气体流动,多个质量流量传感器208、210、212、214也在所述流量比率控制器202内。在控制器204控制下,分流气体线路的每一分支接着经由各个处理线路或分支,通往各个可调整阀门216、218、220、222。可调整阀门216、218、220、222的输出端,Q1至Q4可被耦接至处理腔室108、110的进口。
控制器204适于设定可调整阀门216、218、220、222的每一阀门位置,及读取(及储存)所述可调整阀门216、218、220、222的每一当前位置。所述控制器也适于读取及储存质量流量传感器208、210、212、214的每一流率值及来自所述线路压力传感器206的Pup。在某些实施例中,所述控制器可体现为与所述流量比率控制器202分离的离散的计算机,且在某些实施例中,所述控制器204可被整合或嵌入所述流量比率控制器202中。其它数量的质量流量控制器、阀门、输出端等,可被采用。任何合适的质量流量控制器及/或可调整阀门可被使用。
图3为描绘使用依照本发明某些实施例的流量比率控制器组件106,控制气体流动的示例性迭代法300的流程图。最初,当稳态流动达成时,处理制作方法的步骤被执行且用于Pup与阀门位置的值被储存,接着所述储存的信息前馈至所述处理随后的运行中。当Pup达到时,所述前馈信息被用来设定流量比率控制器阀门位置。在这种方式下,所述流量比率控制器组件106避免必须使用反馈法供每一个新的处理运行,以寻求正确的稳态阀门位置。
需要注意的是虽然下列示例性的方法300被描述为一系列离散的步骤,但该发明并未因而受限。描述于下的步骤仅供作说明用途,便于理解该发明。任何数量的额外步骤可被包括,数个步骤可被忽略或合并,下列步骤的任何部分可被分散至子步骤中。此外,特定序列中显示的步骤仅为便于理解该发明,但应当理解这些步骤,或任何合并或子步骤,可以任何可行的顺序来执行。
方法300起始于步骤302,步骤中,在最初处理运行中的当前步骤,开始气体流动。所述流量比率控制器组件106被设定在比率设定点模式有效下操作。所述组件106适于找到阀门位置,而所述阀门位置由反馈达成设定点比率。于步骤304中,流量比率控制器组件106继续调整阀门216、218、220、222,直到对于当前的处理步骤实现来自所述流量比率控制器组件106的稳态流动。在步骤306中,所述稳态流动流量比率控制器202阀门位置随着用于当前的处理步骤的Pup由控制器204读取及储存。在步骤308中,方法300确定在最初处理运行中是否有额外的处理步骤。若如此,流程进行到步骤310,在步骤310,所述最初处理运行中的下一个步骤开始(例如,成为当前步骤)且上述步骤重复用于下一个处理步骤。如果所述最初处理运行已完成,流程进行到步骤312,在步骤312,下一个处理运行开始。
随着数个其它常规的步骤(即,排空、净化、抽空),在步骤312开始下一个处理运行涉及从腔室移除处理过的基板及放置新基板至所述腔室中。一旦基板在腔室中已被取代且所述腔室准备好开始再一次的处理,所述方法300移至步骤314。在步骤314中,随着所述比率设定点反馈操作模式无效,对于当前的处理步骤,气体流动开始。换句话说,阀门216、218、220、222不会再被调整。在某些实施例中,阀门216、218、220、222被设定在适宜的开始或最初位置。所述开始位置可被选择以允许所需的Pup达成或反之尽量减少所述气体流动中的扰动。举例而言,在某些实施例中,所有的阀门216、218、220、222,最初是关闭的,可能是开启的(例如,到预定位置,比如到相同或相近的阀门位置)。然而,因为线路长度,弯曲及处理线路的整体体积可能会变化,在其它的实施例里,用于具有较大线路长度、更多弯曲及/或较大体积处理线路的阀门可先被打开及/或多次打开。通常来说,工艺性能可被用来确定阀门216、218、220、222所需的开始/最初位置。
在处于开始位置的气体流动与阀门的情况下,所述方法300进行至步骤316,所述步骤中Pup被监控。在这时,流量比率控制器组件106可被考虑在前馈模式下操作。当Pup达到于前期处理运行期间(例如,于所述最初处理运行或随后的运行期间,但早于所述当前运行)储存的稳态Pup值,所述前期处理运行对应于当前运行的当前步骤时,则阀门216、218、220、222被移动至当在前期处理运行期间实现稳态流动时所储存的阀门位置。也就是说,来自于前期运行的阀门位置前馈至当前运行中。在步骤318中,控制器204使用质量流量传感器208、210、212、214,确定于当前处理运行的当前步骤稳态流量比率控制器输出的流动何时已经实现。一旦稳态流动已经实现,在步骤320中,由使比率设定点反馈控制有效,所述流量比率控制器组件106被切换至反馈操作模式。在所述步骤中,如果检测出流量比率已由设定点变化,在所述比率设定点阀门由所述控制器所调整。在步骤322中,用于当前的处理步骤的当前流量比率控制器阀门位置与Pup的值被储存,以被使用于随后的处理运行中。
在步骤324中,方法300确定在所述当前处理运行中是否有额外的处理步骤。若如此,流程进行步骤326,在所述步骤326,当前处理运行的下一个步骤开始(例如,成为当前步骤),步骤314至324重复用于下一个处理步骤。如果所述当前处理运行已完成,流程进行步骤312,在所述步骤312,下一个处理运行起始。
现在请翻到图4,提供曲线图400,描绘了经过常规的流量比率控制器的气体流率随时间关系(绘制于402)与经过依照本发明某些实施例的流量比率控制器组件的气体流率随时间关系(绘制于404)的示例性比较。经过常规的流量比率控制器绘制图402的气体流率随时间关系(绘制于402)包括短暂的突波与渐变过渡至稳态流动,所述稳态流动由绘制图402的水平部分所指出。相反地,经过依照本发明某些实施例的流量比率控制器组件的气体流率随时间关系(绘制于404)似乎几乎为具有非常快(即,几乎垂直的)由零流动到稳态流动过渡的阶梯函数,所述稳态流动由绘制图404的水平部分所指出。在某些实施例中,可能会约50%更快达到稳态流率,在某些情况下约75%更快,利用本发明的流量比率控制器组件在某些情况下会约100%更快。
图5说明将常规的反馈流量比率控制器与依照本发明某些实施例的流量比率控制器组件之间的上游气体压力反应进行比较,相似的相对高程度的精确控制。图5为曲线图500,描绘常规的流量比率控制器上游气体压力随时间关系(绘制于502)与依照本发明某些实施例的流量比率控制器上游气体压力随时间关系(绘制于504)之间的示例性比较。正如所述流率绘制图402、404,所述上游压力绘制图502、504说明由依照本发明某些实施例的流量比率控制器所达成的更高层次精确度。通过常规的流量比率控制器的上游气体压力随时间关系(绘制于502)包括短暂的突波与渐变过渡至稳态压力,所述稳态压力由绘制图502的水平部分所指出。相反地,通过依照本发明某些实施例的流量比率控制器组件的上游气体压力随时间关系(绘制于504)似乎几乎为具有非常快(例如,相对地垂直的)由零压力到稳态压力过渡的阶梯函数,所述稳态压力由绘制图504的水平部分所指出。在某些实施例中,可能会约50%更快达到稳态压力,在某些情况下约75%更快,利用本发明的流量比率控制器组件在某些情况下会约100%更快。
于是,虽然本发明已结合相关示例性的实施例公开,应当理解的是其它实施例可能落于由以下权利要求书所限定的本发明的范围内。

Claims (15)

1.一种控制气体流动至半导体处理腔室的方法,所述方法包含以下步骤:
使流量比率控制器中的比率设定点反馈控制无效;
启动气体流动经过所述流量比率控制器;
当上游压力达到储存的上游压力值时,移动所述流量比率控制器的阀门至基于储存位置的预设位置,其中所述储存位置与所述储存的上游压力值于满足稳态条件之后的所述流量比率控制器的所述比率设定点反馈控制的前期运行期间被储存;
确定稳态流量比率控制器输出的流动已达到;及
使所述流量比率控制器中的比率设定点反馈控制有效。
2.如权利要求1所述的方法,进一步包含以下步骤:
在启动气体流动经过所述流量比率控制器之前,设定所述流量比率控制器的所述阀门于最初起始位置。
3.如权利要求1所述的方法,进一步包含以下步骤:
使所述流量比率控制器中的比率设定点反馈控制有效后,储存当前流量比率控制器阀门位置。
4.如权利要求1所述的方法,进一步包含以下步骤:
使所述流量比率控制器中的比率设定点反馈控制有效后,储存当前上游压力值。
5.如权利要求1所述的方法,进一步包含以下步骤:
在启动气体流动经过所述流量比率控制器前,设定所述流量比率控制器的所述阀门于最初起始位置;
使所述流量比率控制器中的比率设定点反馈控制有效后,储存当前流量比率控制器阀门位置;及
使所述流量比率控制器中的比率设定点反馈控制有效后,储存当前上游压力值。
6.一种在电子装置制造处理中执行的控制气体流动的方法:对于所述电子装置制造处理中的每个步骤,重复以下步骤:
使流量比率控制器中的比率设定点反馈控制无效;
在启动气体流动经过所述流量比率控制器前,设定所述流量比率控制器的阀门于起始位置;
启动气体流动经过所述流量比率控制器;
当上游压力达到储存的上游压力值时,移动所述流量比率控制器的所述阀门至基于储存位置的预设位置,其中所述储存位置与所述储存的上游压力值于满足稳态条件之后的所述流量比率控制器的所述比率设定点反馈控制的前期运行期间被储存;
确定稳态流量比率控制器输出的流动已达到;
使所述流量比率控制器中的比率设定点反馈控制有效;
使所述流量比率控制器中的比率设定点反馈控制有效后,储存当前流量比率控制器阀门位置;及
使所述流量比率控制器中的比率设定点反馈控制有效后,储存当前上游压力值。
7.一种在多个电子装置制造处理运行中执行的控制气体流动的方法,对于每个电子装置制造处理运行中的每个步骤,重复以下步骤:
使流量比率控制器中的比率设定点反馈控制无效;
在启动气体流动经过所述流量比率控制器前,设定所述流量比率控制器的阀门于起始位置;
启动气体流动经过所述流量比率控制器;
当上游压力达到储存的上游压力值时,移动所述流量比率控制器的所述阀门至基于储存位置的预设位置,其中所述储存位置与所述储存的上游压力值于满足稳态条件之后的所述流量比率控制器的所述比率设定点反馈控制的前期运行期间被储存;
确定稳态流量比率控制器输出的流动已达到;
使所述流量比率控制器中的比率设定点反馈控制有效;
使所述流量比率控制器中的比率设定点反馈控制有效后,储存当前流量比率控制器阀门位置;及
使所述流量比率控制器中的比率设定点反馈控制有效后,储存当前上游压力值。
8.一种流量比率控制器组件,包含:
控制器;
输入气体线路;
压力传感器,所述压力传感器耦接至所述输入气体线路,并适于测出在所述输入气体线路内的上游气体压力;
四散歧管,所述四散歧管具有耦接至所述输入气体线路的输入端,及多个输出端;
多个质量流量传感器,每一质量流量传感器操作地耦接至所述四散歧管的所述多个输出端中的不同的输出端,且适于测出经过各个输出端的气体流动;及
多个可调整阀门,每一阀门操作地耦接至所述四散歧管的所述多个输出端中的不同的输出端,且适于控制经过各个输出端的气体流动,
其中所述控制器操作地耦接至所述多个可调整阀门,且适于控制所述阀门的每一个阀门的位置,以基于储存的位置,设定所述阀门至预定位置,然后使比率设定点反馈控制有效。
9.如权利要求8所述的流量比率控制器组件,其中所述控制器进一步适于读取及储存由所述压力传感器测出的所述上游气体压力。
10.如权利要求8所述的流量比率控制器组件,其中所述控制器进一步适于确定是否稳态气体流动已经实现。
11.如权利要求8所述的流量比率控制器组件,其中所述控制器进一步适于反馈模式与前馈模式中,操作所述流量比率控制器组件。
12.如权利要求8所述的流量比率控制器组件,其中所述控制器进一步适于执行包含以下步骤的方法:
使所述流量比率控制器组件中的比率设定点反馈控制无效;
启动气体流动经过所述流量比率控制器组件;
当当前上游压力值达到储存的上游压力值时,移动所述流量比率控制器组件的所述可调整阀门至基于储存位置的预设位置,其中所述储存位置与所述储存的上游压力值于满足稳态条件之后的所述流量比率控制器组件的所述比率设定点反馈控制的前期运行期间被储存;
确定稳态流量比率控制器组件输出的流动已经实现;及
使所述流量比率控制器组件中的比率设定点反馈控制有效。
13.如权利要求12所述的流量比率控制器组件,其中所述方法进一步包含:
使所述流量比率控制器组件中的比率设定点反馈控制有效后,储存当前流量比率控制器阀门位置。
14.如权利要求12所述的流量比率控制器组件,其中所述方法进一步包含:
使所述流量比率控制器组件中的比率设定点反馈控制有效后,储存所述当前上游压力值。
15.一种用于一或多个处理腔室的气体输送系统,所述系统包含:
气体供应面板,所述气体供应面板包括多个质量流量控制器;
流量比率控制器组件,所述流量比率控制器组件具有输入气体线路,所述输入气体线路耦接至所述气体供应面板,所述流量比率控制器组件包括多个输出气体线路,适于被耦接至一或多个处理腔室,所述流量比率控制器组件包括:
控制器;
压力传感器,所述压力传感器耦接至所述输入气体线路,并适于测出在所述输入气体线路中的上游气体压力;
四散歧管,所述四散歧管具有输入端,所述输入端耦接至所述输入气体线路,及所述多个输出气体线路;
多个质量流量传感器,每一质量流量传感器操作地耦接至所述四散歧管的所述多个输出气体线路中的不同的输出气体线路,且适于测出经过各个输出气体线路的气体流动;及
多个可调整阀门,每一阀门操作地耦接至所述四散歧管的所述多个输出气体线路中的不同的输出气体线路,且适于控制经过各个输出气体线路的气体流动,
其中所述控制器操作地耦接至所述多个可调整阀门,且适于控制所述阀门的每一个阀门的位置,以设定所述阀门至基于储存的位置的预定位置,然后使比率设定点反馈控制有效。
CN201380044160.XA 2012-08-21 2013-08-12 增强的气体流率控制的方法及设备 Active CN104583658B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/591,212 US9004107B2 (en) 2012-08-21 2012-08-21 Methods and apparatus for enhanced gas flow rate control
US13/591,212 2012-08-21
PCT/US2013/054522 WO2014031378A1 (en) 2012-08-21 2013-08-12 Methods and apparatus for enhanced gas flow rate control

Publications (2)

Publication Number Publication Date
CN104583658A CN104583658A (zh) 2015-04-29
CN104583658B true CN104583658B (zh) 2018-05-22

Family

ID=50146939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380044160.XA Active CN104583658B (zh) 2012-08-21 2013-08-12 增强的气体流率控制的方法及设备

Country Status (6)

Country Link
US (1) US9004107B2 (zh)
JP (1) JP6360480B2 (zh)
KR (1) KR102104883B1 (zh)
CN (1) CN104583658B (zh)
TW (1) TWI575349B (zh)
WO (1) WO2014031378A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9934956B2 (en) * 2015-07-27 2018-04-03 Lam Research Corporation Time multiplexed chemical delivery system
US10394256B2 (en) * 2015-11-25 2019-08-27 Critical Systems, Inc Gas management system and controller
US10269600B2 (en) 2016-03-15 2019-04-23 Applied Materials, Inc. Methods and assemblies for gas flow ratio control
US10453721B2 (en) 2016-03-15 2019-10-22 Applied Materials, Inc. Methods and assemblies for gas flow ratio control
FR3056314B1 (fr) * 2016-09-21 2018-09-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de regulation de plusieurs fluides
CA3069503A1 (en) 2017-07-10 2019-01-17 Exxonmobil Upstream Research Company Methods for deep reservoir stimulation using acid-forming fluids
DK3428767T3 (da) * 2017-07-11 2020-03-02 Siemens Schweiz Ag Automatisering af styreforstærkning
US11053591B2 (en) * 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
JP7238461B2 (ja) * 2019-02-25 2023-03-14 株式会社島津製作所 バルブ制御装置および真空バルブ
CN116658672B (zh) * 2023-07-28 2023-10-31 华能济南黄台发电有限公司 一种电厂用汽轮机疏水阀门流量特性辨识系统

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3105968B2 (ja) * 1991-11-15 2000-11-06 トキコ株式会社 塗料流量制御装置
JPH0962368A (ja) * 1995-08-24 1997-03-07 Sumitomo Chem Co Ltd プロセス流量の制御方法
US6125710A (en) * 1997-04-15 2000-10-03 Phoenix Controls Corporation Networked air measurement system
EP1096351A4 (en) * 1999-04-16 2004-12-15 Fujikin Kk FLUID SUPPLY DEVICE OF THE PARALLEL BYPASS TYPE, AND METHOD AND DEVICE FOR CONTROLLING THE FLOW OF A VARIABLE FLUID TYPE PRESSURE SYSTEM USED IN SAID DEVICE
US6333272B1 (en) 2000-10-06 2001-12-25 Lam Research Corporation Gas distribution apparatus for semiconductor processing
EP1399789A1 (en) * 2001-05-24 2004-03-24 Unit Instruments, Inc. Method and apparatus for providing a determined ratio of process fluids
US20020189681A1 (en) * 2001-06-13 2002-12-19 Applied Materials, Inc. Mass flow controller soft start activator
US20040250600A1 (en) * 2003-05-12 2004-12-16 Bevers William Daniel Method of mass flow control flow verification and calibration
JP4186831B2 (ja) * 2004-02-03 2008-11-26 日立金属株式会社 質量流量制御装置
US7072743B2 (en) * 2004-03-09 2006-07-04 Mks Instruments, Inc. Semiconductor manufacturing gas flow divider system and method
US7621290B2 (en) * 2005-04-21 2009-11-24 Mks Instruments, Inc. Gas delivery method and system including a flow ratio controller using antisymmetric optimal control
US7673645B2 (en) * 2005-04-21 2010-03-09 Mks Instruments, Inc. Gas delivery method and system including a flow ratio controller using a multiple antisymmetric optimal control arrangement
WO2007067645A2 (en) * 2005-12-05 2007-06-14 Fisher-Rosemount Systems, Inc. Multi-objective predictive process optimization with concurrent process simulation
JP4895167B2 (ja) 2006-01-31 2012-03-14 東京エレクトロン株式会社 ガス供給装置,基板処理装置,ガス供給方法
US8997791B2 (en) 2006-04-14 2015-04-07 Mks Instruments, Inc. Multiple-channel flow ratio controller
US7603186B2 (en) * 2006-04-28 2009-10-13 Advanced Energy Industries, Inc. Adaptive response time closed loop control algorithm
AU2007247895A1 (en) * 2006-05-05 2007-11-15 Plascoenergy Ip Holdings, S.L., Bilbao, Schaffhausen Branch A gas homogenization system
WO2008072614A1 (ja) * 2006-12-12 2008-06-19 Horiba Stec, Co., Ltd. 流量比率制御装置
US7706925B2 (en) 2007-01-10 2010-04-27 Mks Instruments, Inc. Integrated pressure and flow ratio control system
US8074677B2 (en) * 2007-02-26 2011-12-13 Applied Materials, Inc. Method and apparatus for controlling gas flow to a processing chamber
JP4464979B2 (ja) * 2007-03-05 2010-05-19 東京エレクトロン株式会社 処理システム、処理方法、及び、プログラム
JP5001757B2 (ja) * 2007-08-31 2012-08-15 シーケーディ株式会社 流体混合システム及び流体混合装置
US8386083B2 (en) * 2008-06-16 2013-02-26 Mks Instruments, Inc. Systems and methods for updating valve cracking current in mass flow controllers
US7930045B2 (en) * 2008-10-07 2011-04-19 Emerson Process Management Power & Water Solutions, Inc. Two-stage model predictive control technique
EP2175484A1 (en) * 2008-10-07 2010-04-14 Koninklijke Philips Electronics N.V. Power semiconductor device adaptive cooling assembly
US8195312B2 (en) * 2009-08-27 2012-06-05 Hitachi Metals, Ltd Multi-mode control loop with improved performance for mass flow controller
CN102053617B (zh) * 2009-10-28 2013-11-13 北京北方微电子基地设备工艺研究中心有限责任公司 流量比例控制器在线校准方法、系统及等离子体处理设备
US8321060B2 (en) * 2010-04-27 2012-11-27 Hitachi Metals, Ltd Method and system of on-tool and on-site MFC optimization providing consistent response
US8131400B2 (en) * 2010-06-10 2012-03-06 Hitachi Metals, Ltd. Adaptive on-tool mass flow controller tuning

Also Published As

Publication number Publication date
KR20150044934A (ko) 2015-04-27
JP6360480B2 (ja) 2018-07-18
JP2015531137A (ja) 2015-10-29
KR102104883B1 (ko) 2020-04-27
US9004107B2 (en) 2015-04-14
TWI575349B (zh) 2017-03-21
TW201421185A (zh) 2014-06-01
CN104583658A (zh) 2015-04-29
WO2014031378A1 (en) 2014-02-27
US20140053912A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
CN104583658B (zh) 增强的气体流率控制的方法及设备
CN1809794A (zh) 从具有流量控制装置的气体供给设备向容器分流地供给气体的气体分流供给装置及气体分流供给方法
CN100426169C (zh) 从备有流量控制装置的气体供给设备向腔室的气体分流供给方法
JP4102564B2 (ja) 改良型圧力式流量制御装置
CN101646803B (zh) 气体供给方法和气体供给装置
JPWO2018180745A1 (ja) 圧力式流量制御装置および流量制御方法
KR20100105906A (ko) 유체유동측정 및 비례유체유동 제어장치
WO2001004717A1 (en) System and method for a variable gain proportional-integral (pi) controller
WO2007123576A1 (en) Pressure regulation in remote zones
EP2089679A1 (en) Controller gain scheduling for mass flow controllers
CN103520786B (zh) 一种血液净化蠕动泵流量的控制方法
CN103361608A (zh) 蒸镀装置
CN100520657C (zh) 腔室气体供给装置及采用它的腔室内压控制方法
CN1451528A (zh) 用于调节流体的流量和/或压力的装置
EP3791242A1 (en) Methods and apparatus for multiple channel mass flow and ratio control systems
CN107152551A (zh) 一种调压控制方法及调压控制装置
CN101244306A (zh) 一种呼吸机的流量和氧浓度的控制方法及其装置
JP2008517466A (ja) ウェハ温度制御のための方法およびシステム
JP2013532391A (ja) プロセスチャンバの圧力制御システムおよび制御方法
CN217404531U (zh) 一种检测及控制tft-lcd基板玻璃偏移量的装置
CN109183003B (zh) 压力控制方法
CN116520902B (zh) 一种用于具有磁悬浮装置的半导体腔室压力的控制方法及设备
CN219260275U (zh) 一种碳化硅外延设备反应腔压力稳定的控制系统
KR100431092B1 (ko) 수지 이송 성형에 이용되는 수지 주입 압력 제어 장치
CN117646198B (zh) 一种原子级精度的cvd设备压力自动控制方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant