CN104560154B - 一种多产低碳烯烃和轻芳烃的烃类催化转化方法 - Google Patents

一种多产低碳烯烃和轻芳烃的烃类催化转化方法 Download PDF

Info

Publication number
CN104560154B
CN104560154B CN201310485219.0A CN201310485219A CN104560154B CN 104560154 B CN104560154 B CN 104560154B CN 201310485219 A CN201310485219 A CN 201310485219A CN 104560154 B CN104560154 B CN 104560154B
Authority
CN
China
Prior art keywords
reactor
weight
catalyst
hydrocarbon
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310485219.0A
Other languages
English (en)
Other versions
CN104560154A (zh
Inventor
朱根权
谢朝钢
孙益群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201310485219.0A priority Critical patent/CN104560154B/zh
Publication of CN104560154A publication Critical patent/CN104560154A/zh
Application granted granted Critical
Publication of CN104560154B publication Critical patent/CN104560154B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process

Abstract

本发明涉及一种多产低碳烯烃和轻芳烃的烃类催化转化方法,该方法包括:将重质烃类原料与裂化催化剂在第一反应器接触进行催化裂化反应,然后分离得到第一积炭催化剂和第一反应产物;将轻质烃类原料从第二反应器的上游注入,将中质烃类原料从第二反应器的中部注入,进行催化裂化反应;将所述第二反应器中产生的反应混合物引入第三反应器继续进行反应,然后分离得到第二积炭催化剂和第二反应产物;其中,所述裂化催化剂为含有改性β沸石的裂化催化剂,所述改性β沸石为磷和过渡金属M改性的β沸石。根据本发明的方法可以获得较高的丙烯产率和轻芳烃产率。

Description

一种多产低碳烯烃和轻芳烃的烃类催化转化方法
技术领域
本发明涉及一种多产低碳烯烃和轻芳烃的烃类催化转化方法。
背景技术
乙烯、丙烯和轻芳烃(苯、甲苯和二甲苯,简称BTX)是基本的化工原料,目前乙烯、丙烯主要来源于乙烷、丙烷、丁烷、LPG、凝析油、石脑油、加氢裂化尾油及粗柴油等蒸汽热裂解和烃油催化裂化,BTX主要来源于轻烃重整工艺和蒸汽热裂解工艺。随着蒸汽裂解采用新的轻质原料,产品分布将会出现变化,如采用乙烷作为蒸汽裂解原料,与以石脑油为原料相比,产物中乙烯比例明显提高,而丙烯和芳烃的产率将会降低。在这样的背景下,利用重质烃油催化转化生产低碳烯烃和轻芳烃,将是蒸汽热裂解制乙烯的一条有效补充措施。
US5009769中公开的烃类裂化方法采用双提提升管反应器裂化不同性质的烃类原料。蜡油和渣油注入第一根提升管,在剂油比5-10、停留时间1-4秒的条件下裂化;直馏汽油、直馏中间馏分油和催化重汽油注入第二根提升管,在剂油比3-12、停留时间1-5秒的条件下裂化。两根提升管末端进入同一个沉降器中,且共用后续分馏系统。
CN1299403A公开了一种由重质烃原料选择性生产C2-C4烯烃的两段催化裂化方法。该方法包括:在常规大孔沸石催化裂化催化剂存在下,在由催化裂化装置组成的第一反应段中将重质原料转化成较低沸点产物。将所生成的较低沸点产物中的石脑油馏分进入由反应区、汽提区、催化剂再生区和分馏区组成的第二反应段中,在500-600℃温度下与含约10-50重量%平均孔径小于约0.7纳米的沸石催化剂接触形成裂化产物。
US7323099公开了一种选择性生产低碳烯烃的两段催化裂化方法。在第一反应区,重质原料在含大孔和中孔分子筛催化剂的催化转化下,生产富含烯烃的汽油组分,第一反应区生成的富含烯烃汽油组分再在第二反应区在含中孔分子筛催化剂的催化转化下,生成低碳烯烃。
CN101362961A公开了一种制取芳烃和低碳烯烃的催化转化方法,馏程为160-260℃的原料与催化裂解催化剂接触,在温度450-750℃、重时空速0.1-800h-1、反应压力0.10-1.0MPa、催化裂解催化剂与原料的重量比1-150、水蒸汽与原料的重量比为0.05-1.0的条件下,在流化床反应器内进行裂化反应,分离待生催化剂和反应油气,待生催化剂经再生后返回反应器,分离反应油气经分离得到目的产物低碳烯烃和芳烃。该方法乙烯、丙烯产率和选择性大幅增加,汽油的收率和汽油中芳烃的产率均很高,仅有少量重油生成,并且焦炭产率较低。
在重质烃油催化裂解多产低碳烯烃的同时,得到部分裂解轻油,其含有大量的芳烃,十六烷值很低,这部分轻油无法调和到成品柴油中。对裂解轻油进行加氢处理,并进一步进行转化,可生成汽油等产品。对裂解轻油加氢,可使其中的双环芳烃饱和生成萘满,萘满可以在催化裂解装置中发生再裂化,但条件选取不合适时,萘满容易通过氢转移反应再生成双环芳烃。
以上技术虽然在增加催化裂化丙烯产率方面取得了比较明显的进步,然而其增加催化裂化丙烯选择性和产率的局限性依然很大,并且未涉及提高裂解轻油生成低碳烯烃和轻芳烃的选择性。
发明内容
本发明的目的是为了克服现有的重质烃油生产丙烯和轻芳烃的催化转化方法存在的上述缺陷,提供一种新的多产低碳烯烃和轻芳烃的烃类催化转化方法。
本发明提供了一种多产低碳烯烃和轻芳烃的烃类催化转化方法,该方法包括以下步骤:
(1)将重质烃类原料与裂化催化剂在第一反应器接触进行催化裂化反应,然后分离得到第一积炭催化剂和第一反应产物;
(2)在裂化催化剂的存在下,将轻质烃类原料从第二反应器的上游注入,将中质烃类原料从第二反应器的中部注入,进行催化裂化反应;
(3)将所述第二反应器中产生的反应混合物引入第三反应器继续进行反应,然后分离得到第二积炭催化剂和第二反应产物;
(4)将所述第一反应产物和所述第二反应产物进行分馏,将所述第一积炭催化剂和所述第二积炭催化剂依次进行汽提和再生,并将得到的再生催化剂引入所述第一反应器和所述第二反应器中循环利用;
其中,所述裂化催化剂为含有改性β沸石的裂化催化剂,所述改性β沸石为磷和过渡金属M改性的β沸石。
在本发明提供的烃类催化转化方法中,在第二反应器的上游引入轻质烃类原料进行反应,一方面可以使裂化催化剂少量积炭,覆盖部分强酸性中心,另一方面,向上的反应物流中含有大量正碳离子。这两个方面可以用来优化中质烃类原料(特别是富含环烷烃的中质烃类原料)的反应,由于裂化催化剂上的强酸性中心被覆盖,同时反应物流中含有大量正碳离子,这样既可以抑制中质烃类原料的氢转移反应,还可以快速引发中质烃类原料发生正碳离子裂化反应,生成低碳烯烃和轻芳烃。
而且,本发明中使用的含有改性β沸石的裂化催化剂有助于增产丙烯和轻芳烃。
另外,在本发明中,在不同的反应器中,或者在同一反应器的不同部位,可以使用不同的烃类原料,使得本发明的方法的工艺灵活度相对较高。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是实施本发明的方法的催化裂化装置的一种实施方式的结构示意图。
附图标记说明
1 第一反应器
11 向第一反应器输送再生的裂化催化剂的输送管
12 输送管11上的再生催化剂流量控制阀
13 第一反应器的原料油进料喷嘴
43 第一反应器出口的气固快速分离装置
2 第二反应器
21 向第二反应器输送再生的裂化催化剂的输送管
22 输送管21上的再生催化剂流量控制阀
23 第二反应器的轻质烃类进料喷嘴
24 第二反应器的中质烃类进料喷嘴
25 第二反应器的出口分布器
3 第三反应器
31 第三反应器的环形器壁
32 第三反应器的上部防撞挡板
33 第三反应器的上部集气罩
34 第三反应器与汽提器5的通道
35 第三反应器的上部集气罩的升气管
4 沉降器
41 第三反应器的快速分离器
42 单级旋风分离器
43 第一反应器的粗旋
44 单级旋风分离器
5 汽提器
51 汽提器5的挡板
52 汽提器5的待生催化剂输送管
53 输送管52上的待生催化剂流量控制阀
6 再生器
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明上下文中,除非有特殊的说明,术语“低碳烯烃”均指C2-C4烯烃,“轻芳烃”均指苯、甲苯和二甲苯。C4表示烃分子中碳原子数为4,依此类推。
本发明提供的所述多产低碳烯烃和轻芳烃的烃类催化转化方法包括以下步骤:
(1)将重质烃类原料与裂化催化剂在第一反应器接触进行催化裂化反应,然后分离得到第一积炭催化剂和第一反应产物;
(2)在裂化催化剂的存在下,将轻质烃类原料从第二反应器的上游注入,将中质烃类原料从第二反应器的中部注入,进行催化裂化反应;
(3)将所述第二反应器中产生的反应混合物引入第三反应器继续进行反应,然后分离得到第二积炭催化剂和第二反应产物;
(4)将所述第一反应产物和所述第二反应产物进行分馏,将所述第一积炭催化剂和所述第二积炭催化剂依次进行汽提和再生,并将得到的再生催化剂引入所述第一反应器和所述第二反应器中循环利用;
其中,所述裂化催化剂为含有改性β沸石的裂化催化剂,所述改性β沸石为磷和过渡金属M改性的β沸石。
在步骤(1)中,所述第一反应器可以是提升管反应器、流化床反应器、下行式输送线反应器或者由多个上述反应器经过串联和/或并联组成的复合反应器,其中的每个反应器可以根据需要分成两个或两个以上的反应区。优选情况下,所述第一反应器为提升管反应器。所述提升管反应器可以为等直径提升管反应器、等线速提升管反应器和变直径提升管反应器中的一种或多种。
在一种优选实施方式中,所述第一反应器为提升管反应器,且该提升管反应器的反应条件包括:温度为460-550℃(反应器的出口温度),优选为490-530℃;剂油重量比(引入第一反应器的催化剂与重质烃油原料的重量比)为4-15;油气停留时间为0.1-5s,优选为1-4s;反应区的绝压为0.15-0.30MPa(反应器的出口压力),优选为0.18-0.28MPa。
在步骤(1)中,优选向所述第一反应器中注入稀释剂,以降低所述重质烃油原料的分压。该稀释剂可以选自水蒸气、C1-C4低碳烷烃和氮气中的一种或多种,优选为水蒸气。稀释剂与第一烃类原料的用量的重量比可以为0.01-2:1,优选为0.05-0.20:1。
在步骤(2)中,所述第二反应器可以是提升管反应器、流化床反应器、下行式输送线反应器或者由多个上述反应器经过串联和/或并联组成的复合反应器,其中的每个反应器可以根据需要分成两个或两个以上的反应区。优选情况下,所述第二反应器为提升管反应器。所述第二反应器可以是一个提升管反应器,也可以是多个提升管反应器并联或串联。所述提升管反应器可以选自等直径提升管反应器、等线速提升管反应器和变直径提升管反应器中的一种或多种。
在一种优选实施方式中,所述第二反应器为提升管反应器,且该提升管反应器的上游的反应条件包括:温度为580-680℃,剂油重量比(引入第二反应器的催化剂与轻质烃类原料的重量比)为15-80,油气停留时间为0.1-3s反应区的绝压为0.15-0.30MPa(反应器的出口压力);该提升管反应器的下游的反应条件包括:温度为550-650℃,剂油重量比(引入第二反应器的催化剂与中质烃类原料的重量比)为15-70,油气停留时间为0.1-3s,反应区的绝压为0.15-0.30MPa(反应器的出口压力)。
在作为所述第二反应器的提升管反应器中,轻质烃类原料的进料口与中质烃类原料的进料口的距离优选为该提升管反应器的总高度的30-60%。
进一步优选地,所述第二反应器为提升管反应器,该提升管反应器从下至上依次包括预提升段、提升段和反应段,所述轻质烃类原料在预提升段的上部且在提升段的底部注入,所述中质烃类原料在提升段的中部或者反应段的底部注入。更进一步优选地,所述轻质烃类原料与所述中质烃类原料的用量的重量比为1:0.5-2,优选为1:0.6-1.8。所述轻质烃类原料和所述中质烃类原料的总用量满足上述剂油重量比范围,即15-70。
在步骤(2)中,优选向所述第二反应器中注入稀释剂,以降低其中烃类原料的分压。该稀释剂可以选自水蒸气、C1-C4低碳烷烃和氮气中的一种或多种,优选为水蒸气。稀释剂与第三烃类原料的重量比可以为0.01-2:1,优选为0.05-0.20:1。
在步骤(3)中,所述第三反应器优选为流化床反应器。所述第三反应器可以是一个或者多个并联或串联的流化床反应器。所述流化床反应器可以选自散式流化床反应器、鼓泡床反应器、湍动床反应器、快速床反应器和密相流化床反应器中的一种或多种。
在一种优选实施方式中,所述第三反应器为流化床反应器,且该流化床反应器的反应条件包括:温度为480-600℃(床层温度),优选为500-580℃;重时空速为0.2-30h-1,优选为0.5-20h-1;反应区的绝压为0.15-0.30MPa。
在本发明中,重质烃油原料、中质烃类原料和轻质烃类原料是相对而言的,其中的“重”、“中”和“轻”是基于各自的分馏温度而划分的,也即三者中分馏温度最高的为重质烃油原料,分馏温度最低的为轻质烃类原料。
在本发明中,所述重质烃油原料可以选自减压瓦斯油、常压渣油和减压渣油中一种或多种。
在本发明中,所述轻质烃类可以为C4烃馏分和/或轻汽油馏分。所述C4烃馏分优选含有不低于35重量%的C4烯烃,更优选含有不低于50重量%的C4烯烃。所述C4烃馏分可以是本发明方法的后续分馏过程中得到的C4烃馏分,也可以来自于其它裂化过程,例如,所述C4烃馏分可以来自于催化裂化、蒸汽裂解、焦化、MTO等过程产生的C4馏分。所述轻汽油馏分的终馏点优选不超过70-90℃,更优选不超过70-85℃。进一步优选地,所述轻汽油馏分含有30-90重量%的烯烃。更进一步优选地,所述轻汽油馏分中的烯烃含量不低于45重量%,更进一步优选不低于55重量%。该轻汽油馏分可以是本发明方法的后续分馏过程中得到的轻汽油馏分,也可以是来自于其它裂化过程,例如,轻汽油馏分可以是催化裂化轻汽油、蒸汽裂解轻汽油、焦化轻汽油等。优选情况下,所述轻质烃类中的至少部分来自本发明方法的后续分馏过程得到的轻汽油馏分和C4烃馏分。
为了提高低碳烯烃特别是丙烯的产率、以及轻芳烃的产率,更优选地,所述轻质烃类原料在注入所述第二反应器之前经过选择性加氢处理,以将其中的二烯烃和炔烃转化为单烯烃。该选择性加氢处理的条件可以包括:温度为20-90℃,反应压力为0.2-1MPa(绝压),氢气和烯烃的摩尔比为1-5:1。所使用的催化剂可以为各种常规的加氢催化剂,如含镍的加氢催化剂,该加氢催化剂可以为各种市售的产品,如中石化长岭催化剂分公司生产的牌号为RDD-1的加氢催化剂。
在本发明中,所述中质烃类原料可以为馏程为200-390℃的烃油馏分,优选为馏程为240-370℃的烃油馏分。所述中质烃类原料可以是本发明方法的后续分馏装置所得到的中质烃类原料,也可以来自于其它裂化过程,优选地,所述中质烃类原料中的至少部分来自本发明方法的后续分馏过程得到的中质烃类原料。
为了提高低碳烯烃特别是丙烯的产率、以及轻芳烃的产率,更优选地,所述中质烃类原料在注入所述第二反应器之前经过选择性加氢处理,以将其中的芳烃饱和成环烷烃。该选择性加氢处理的过程在200-480℃、优选在300-450℃的温度范围内进行。氢分压优选在0.7-21MPa、更优选在2-10MPa的范围内。体积空速优选为0.1-6h-1,更优选为0.3-2h-1,其中,体积空速定义为单位时间内通过单位催化剂体积的油的体积。氢油体积比为100-2600,更优选为120-1000。适用于芳烃饱和、脱硫、脱氮或其任何组合的加氢处理催化剂可用于中质烃类原料的加氢处理。优选地,所述加氢处理的催化剂含有无机载体(优选为氧化铝或氧化铝-氧化硅)和负载在该无机载体上的至少一种第VIII族金属(可选地与第VI族金属组合)。所述第VIII族和第VI族金属为本领域技术人员公知,在元素周期表中有明确定义。第VIII族金属的含量优选为3-25重量%,更优选为5-15重量%。优选地,第VIII族金属选自Pt、Co、Ni和Fe,最优选选自Pt、Co和Ni。优选地,第VI族金属为Mo,其含量可以为5-50重量%,优选为10-40重量%,更优选为20-30重量%。
在本发明所述的方法中,步骤(1)得到的第一反应产物和步骤(3)得到的第二反应产物优选引入同一分馏装置中进行分馏。分馏得到低碳烯烃、汽油、轻油、重油及其它低分子饱和烃类,其中,所得到的C4烃馏分和/或轻汽油馏分可以部分或全部返回至第二反应器的上游进行催化裂化反应。所述轻质烃类原料优选不含二烯烃或炔烃;当将裂化轻汽油和裂化C4烃馏分作为轻质烃类原料时,所述的轻质烃类原料优选经过选择性加氢除去其中的二烯烃和炔烃后再引入第二反应器中进行反应。选择性加氢可以采用常规的方法实施,例如可以采用专利申请CN1035775A中公开的方法实施,具体地,实施过程可以包括将C4烃馏分和催化裂化的汽油全馏分或切割后的汽油馏分(例如,馏程处于30℃至85℃之间的轻汽油馏分、C4烃馏分)在温度为20-90℃、绝压为0.2-1MPa、氢气和烯烃的摩尔比为1-5:1的条件下,在含镍催化剂的存在下进行接触反应,脱除其中的二烯烃和炔烃。
在本发明所述的方法中,所述第一反应器和所述第二反应器中加入的裂化催化剂可以相同或不同,优选为相同。所述裂化催化剂为含有改性β沸石的裂化催化剂。优选地,以所述裂化催化剂的总重量为基准,所述裂化催化剂含有1-60重量%的沸石混合物、5-99重量%的耐热无机氧化物和0-70重量%的粘土;更优选地,所述裂化催化剂含有10-50重量%的沸石混合物、10-70重量%的耐热无机氧化物和0-60重量%的粘土。其中,以所述沸石混合物的总重量为基准,所述沸石混合物含有1-75重量%的改性β沸石和25-99重量%的具有MFI结构的沸石;更优选地,所述沸石混合物含有10-70重量%的改性β沸石和30-90重量%的具有MFI结构的沸石。
在本发明中,所述改性β沸石为磷和过渡金属M改性的β沸石。该改性β沸石可以采用各种常规方法进行制备,例如,可以在合成β沸石的过程中引入磷和过渡金属M,或者在合成β沸石后采用铵交换、磷改性、过渡金属M改性及焙烧处理等步骤来引入磷和所述过渡金属M。所述的过渡金属M可以选自Fe、Co、Ni和Cu中的一种或多种,优选为Fe和/或Cu。
在本发明中,所述具有MFI结构的沸石可以为具有pentasil结构的高硅沸石,选自ZSM-5和ZRP系列沸石中的一种或多种。优选地,具有MFI结构的沸石为含稀土的ZRP沸石(参见CN1052290A、CN1058382A、US5232675)、含磷的ZRP沸石(参见CN1194181A、US5951963)、含磷和稀土的ZRP沸石(参见CN1147420A)、含磷和碱土金属的ZRP沸石(参见CN1211469A、CN1211470A、US6080698)以及含磷和过渡金属的ZRP沸石(参见CN1465527A、CN1611299A)中的一种或多种。
所述β沸石和所述具有MFI结构的沸石可以采用市售品,也可以采用本领域公知的各种方法进行制备,在此不再赘述。
在本发明中,所述耐热无机氧化物可以选自SiO2和/或Al2O3
在本发明中,所述粘土可以为本领域常规使用的各种粘土,如高岭土和/或多水高岭土。
在本发明中,所述烃类催化转化方法还可以包括将所得到的催化裂化的汽油全馏分或将其切割后的馏程在70-180℃之间(优选在80-170℃之间)的汽油馏分(富含芳烃的汽油组分)加氢精制得到精制汽油;然后将精制汽油进行溶剂抽提,得到苯、甲苯、二甲苯的步骤。所述加氢精制可以采用常规的方法实施,通常可以包括将所述汽油馏分与加氢催化剂以及氢气接触,在氢分压为2.0-15.0MPa、温度为200-400℃、氢油体积比为100-1000、体积空速为0.5-5h-1的条件下反应,饱和其中的烯烃、二烯烃和炔烃,同时脱除硫氮等杂质,得到精制汽油。所述加氢催化剂可以是负载在氧化铝和/或无定型硅铝上的第VIB和/或VIII族非贵金属催化剂,所述第VIB非贵金属可以选自Mo或/和W,所述第VIII族非贵金属可以选自Co或/和Ni(参见CN1109495A、CN1631529A、CN1631526A、CN1632071A)。优选地,所述加氢催化剂含有0-10重量%的添加剂、1-9重量%的至少一种第VIII族金属、12-39重量%的至少一种第VIB族金属以及氧化铝和/或无定型硅铝载体,其中,所述添加剂可以选自氟、磷等非金属元素和钛等金属元素。
所述溶剂抽提可以采用常规的方法实施,例如可以包括将加氢精制得到的精制汽油与溶剂接触,在温度为80-120℃、溶剂与精制汽油之间的体积比为2-6的条件下抽提,得到苯、甲苯、二甲苯(参见专利CN1393507A、CN1258717A)。其中,溶剂抽提的溶剂可以选自环丁砜、N-甲基吡咯烷酮、二乙二醇醚、三乙二醇醚、四乙二醇、二甲基亚砜和N-甲酰基吗啉醚中的一种或多种,溶剂回收后可循环使用。抽余油即非芳烃可以作为蒸汽裂解原料,也可以引入催化裂化反应器进行裂化反应例如可以引入第一反应器、第二反应器、第三反应器进行裂化反应,还可以用于调和汽油。
本发明提供的所述多产低碳烯烃和轻芳烃的烃类催化转化方法可以在图1所示的催化裂化装置中实施,具体地,该催化裂化装置包括第一提升管反应器1(即第一反应器)、第二提升管反应器2(即第二反应器)和流化床反应器3(即第三反应器),所述第一提升管反应器1与所述第二提升管反应器2并列排布,所述第二提升管反应器2位于所述流化床反应器3的下方,所述流化床反应器3出口的正上方设置有集气罩33。在这种情况下,可以避免第一反应器中的积炭催化剂进入第三反应器中,这样有利于提高丙烯产率和降低干气产率;而且,通过在第三反应器的正上方设置集气罩,可快速将反应油气和催化剂分离,并快速引出反应器,从而大幅减少反应油气停留时间,避免生成的目标产物(即低碳烯烃和轻芳烃)进一步消耗,同时可以明显降低干气产率。
在优选情况下,如图1所示,实施本发明的方法的催化裂化装置包括:第一提升管反应器1、第二提升管反应器2、流化床反应器3、沉降器4和汽提器5,所述汽提器5位于所述流化床反应器3的下方,第二提升管反应器2的出口25和所述流化床反应器3的下部任意位置连通,且所述流化床反应器3与沉降器4的器壁之间设有挡板31(或称为流化床反应器3的器壁),流化床反应器3的顶部设有防撞挡板32,在防撞挡板32上部设有集气罩33。集气罩33的油气出口与所述沉降器4内的气固分离设备41的入口连通。集气罩33底部通过通道34与汽提器5连通。更优选地,汽提器5与流化床反应器3同轴,并位于流化床反应器3的下方,其中,第一提升管反应器1和第二提升管反应器2均选自等直径的圆管、锥台形筒体或1-6段直径不同的直筒体通过变径段连接而成的组合体的至少一种;所述流化床反应器3选自等直径的筒体、锥台形筒体或1-6段直径不同的直筒体通过变径段连接而成的组合体的至少一种。
所述催化裂化装置还可以包括再生器6,汽提后的积炭催化剂,通过催化剂输送通路52在待生催化剂流量控制阀53的控制下输送至再生器6;再生的裂化催化剂可以通过输送管11在再生催化剂流量控制阀12的控制下输送至第一提升管反应器1,也可以通过输送管21在再生催化剂流量控制阀22的控制下输送至第一提升管反应器2,以对再生的裂化催化剂进行循环利用。
以下结合图1对本发明提供的所述多产低碳烯烃和轻芳烃的烃类催化转化方法进行进一步说明,但并不因此限制本发明。
图1中示出了实施本发明方法的催化裂化装置的一种具体实施方式,虽然该示意图为简化流程,但这并不影响本领域技术人员对本发明的理解。具体地,该催化裂化装置包括提升管反应器1(第一反应器)、提升管反应器2(第二反应器)、流化床反应器3(第三反应器)、沉降器4、汽提器5和再生器6,沉降器4、汽提器5、提升管反应器2和流化床反应器3同轴,其中汽提器5位于流化床反应器3的下方,提升管反应器2的出口和流化床反应器3的底部任意位置连通,流化床反应器3还设有挡板31(流化床反应器3的环形器壁),流化床反应器3的反应床层在挡板31内。流化床反应器3的上部设有防撞挡板32,流化床反应器3防撞挡板上部设有集气罩33,集气罩33上部设有升气管35,与快速分离器41的入口连通,集气罩33底部通过通道34与汽提器5连通。
重质烃油原料预热至180-340℃后,与水蒸气一起通过喷嘴13喷入提升管反应器1,在温度为460-550℃(优选为480-540℃)、绝压为0.15-0.30MPa(优选为0.18-0.28MPa)、催化剂与重质烃油原料的重量比为4-15、油气停留时间为0.1-5s(优选为1-4s)的条件下,与由来自管线11的热的再生裂化催化剂接触并反应。反应物流和催化剂通过快分装置43和单级旋风分离器44分离,分离的积炭催化剂进入汽提器5,分离得到的反应油气物流引入分馏装置。
来自本发明分馏装置的轻质烃类原料在580-680℃、反应区绝压为0.15-0.30MPa、剂油重量比为15-80、油气停留时间为0.1-3s的条件下在提升管反应器2的下部与裂化催化剂接触并反应。来自本发明分馏装置的中质烃类原料在经过加氢处理后,在550-650℃、反应区绝压为0.15-0.30MPa、剂油重量比为15-70、油气停留时间为0.1-3s的条件下在提升管反应器2的上部与裂化催化剂接触并反应。反应油气和催化剂直接进入流化床反应器3的底部,在流化床反应器3中继续反应。为了提高低碳烯烃特别是丙烯的产率、以及轻芳烃的产率,本发明优选,将分馏装置得到的富含烯烃的C4烃类、轻汽油组分(终馏点不超过85℃,优选为70-85℃),在反应温度为20-90℃、绝压为0.2-1MPa、氢气和烯烃的摩尔比为1-5:1的条件下,在含镍催化剂上经过选择性加氢反应将二烯烃和炔烃转化为烯烃后,通过喷嘴23喷入提升管反应器2底部,与来自管线21的热的再生裂化催化剂接触并反应。喷嘴23的位置位于提升管反应器2的预提升段的上方。本发明还优选,将分馏装置得到的中质烃类原料在反应温度为300-450℃、氢分压为2-10MPa、体积空速为0.3-2h-1、氢油体积比为120-1000的条件下进行加氢处理,将其中的双环芳烃和三环芳烃饱和,加氢处理后的中质烃类原料通过喷嘴24喷入提升管反应器2的中部,与裂化催化剂接触并反应。喷嘴24的位置设置在提升管反应器2的中部,喷嘴23与喷嘴24之间的距离为提升管反应器的总高度的30-60%。来自提升管反应器2的反应物流和催化剂不经分离,直接进入流化床反应器3,在温度为480-600℃(优选为500-590℃)、绝压为0.15-0.30MPa(优选为0.18-0.28MPa)、重时空速为0.2-30h-1(优选为0.5-20h-1)的条件下反应。在流化床反应器3内反应后,油气和催化剂经过流化床反应器3的出口,在防撞板32的作用下,大部分催化剂落入集气罩33的底部,进入汽提器5。而携带部分催化剂的油气通过集气罩33上方的生气管35进入快速分离器41和单级旋风分离器42,催化剂与油气分离,催化剂进入汽提器5分离掉催化剂的油气进入分馏装置。在分馏装置得到气体(包括二氧化碳、一氧化碳、干气和液化气)、轻汽油、富含轻芳烃重汽油、柴油和重油。气体产品通过本领域技术人员熟知的分离技术,得到丙烯等低碳烯烃。待生催化剂在汽提器5(其中设置有挡板51)中汽提出吸附的烃类产物,由管线52送至再生器6进行再生,再生后热的再生裂化催化剂返回到提升管反应器重复使用。
下面的实施例将对本方法予以进一步的说明,但并不因此限制本方法。试验是在中型试验装置上进行,其流程如图1所示,其中提升管反应器1的内径(直径)是18毫米,高度6米,提升管反应器2的内径(直径)是12毫米,高度5米,流化床反应器3出口处的内径64毫米,高度0.2米~0.5米,沉降器内径300毫米。
实施例1
本实施例中使用的裂化催化剂为:以裂化催化剂的总重量为基准,所用裂化催化剂含有10重量%的β沸石、20重量%的ZSM-5沸石(硅铝比为40)、45重量%的高岭土和25重量%的氧化铝粘结剂,其中,β沸石中含以元素计1重量%的铁和1.5重量%的磷。裂化催化剂于800℃、100%水蒸汽气氛下老化10小时,装置中催化剂的装量(系统催化剂藏量)为60千克。
将重质烃油原料(其性质如表1所示)引入提升管反应器1,与来自再生器6的热催化剂接触反应后,反应油气与催化剂分离,反应油气离开反应器引入分馏装置,分离得到的积炭催化剂引入汽提器5,经过汽提后输送到再生器6进行再生,反应油气引入分馏系统;C4馏分和轻汽油馏分(组成见表2,该轻汽油馏程为35-85℃)引入提升管反应器2的底部,与来自再生器的热催化剂接触反应;加氢处理的柴油馏分(组成见表3,该柴油馏分馏程为240-370℃)引入提升管反应器2的中部,与催化剂接触反应;反应油气和催化剂引入流化床反应器3继续反应,油气和催化剂经过流化床反应器3的出口,在防撞板的作用下,大部分催化剂落入集气罩33的底部,进入汽提器5。而携带部分催化剂的油气通过集气罩上方的升气管35进入快速分离器41和单级旋风分离器42,催化剂与油气分离,积炭催化剂进入汽提器5,分离掉催化剂的油气进入分馏装置。积炭催化剂经过汽提后输送到再生器进行再生。引入提升管反应器2的C4和轻汽油总量与引入提升管反应器1的重质烃油原料的重量之比为0.10,引入提升管反应器2的柴油馏分与引入提升管反应器1的重质烃油原料的重量之比为0.15,反应条件以及反应结果见表4。
实施例2
本实施例的流程和使用的裂化催化剂同实施例1,不同的是,轻汽油(性质见表2)于反应温度40℃、反应压力0.5MPa、氢气和烯烃的摩尔比为4:1下,在加氢催化剂(购自中石化长岭催化剂分公司,牌号为RDD-1)上经过选择性加氢反应,将二烯烃和炔烃转换成单烯烃后引入提升管反应器2,其余反应条件以及反应结果见表4。
对比例1
该反应装置不包括图1所示的集气罩33。将重质烃油原料(其性质如表1所示)引入提升管反应器1,与来自再生器的热催化剂接触反应后,反应油气与催化剂分离,反应油气离开反应器引入分馏装置,分离得到的积炭催化剂引入汽提器5,经过汽提后输送到再生器6进行再生,反应油气引入分馏系统;C4馏分和轻汽油馏分(组成见表2,该轻汽油馏程为35-85℃)引入提升管反应器2的底部,与来自再生器的热催化剂接触反应;加氢处理的柴油馏分(组成见表3,该柴油馏分馏程为240-370℃)引入提升管反应器2的中部,与催化剂接触反应;反应油气和催化剂引入流化床反应器3继续反应,油气和催化剂经过流化床反应器3的出口,油气进入沉降器4,通过两级旋风分离器分离掉其中携带的催化剂,催化剂与油气分离,积炭催化剂进入汽提器5,分离掉催化剂的油气进入分馏装置。积炭催化剂经过汽提后输送到再生器进行再生。引入提升管反应器2的C4和轻汽油总量与引入提升管反应器1的重质烃油原料的重量之比为0.10,引入提升管反应器2的柴油馏分与引入提升管反应器1的重质烃油原料的重量之比为0.15,反应条件以及反应结果见表5。
对比例2
将重质烃油原料(其性质如表1所示)引入提升管反应器1,与来自再生器的热催化剂接触反应后,反应油气与催化剂分离,反应油气离开反应器引入分馏装置,分离得到的积炭催化剂引入汽提器5,经过汽提后输送到再生器进行再生,反应油气引入分馏系统;C4馏分和轻汽油馏分(组成见表2,该轻汽油馏程为35-85℃)引入提升管反应器2的底部,与来自再生器的热催化剂接触反应,反应油气和催化剂引入流化床反应器3继续反应,油气和催化剂经过流化床反应器3的出口,在防撞板的作用下,大部分催化剂落入集气罩33的底部,进入汽提器5。而携带部分催化剂的油气通过集气罩上方的生气管35进入快分41和单级旋风分离器42,催化剂与油气分离,积炭催化剂进入汽提器5,分离掉催化剂的油气进入分馏装置。积炭催化剂经过汽提后输送到再生器进行再生。引入提升管反应器2的C4和轻汽油总量与引入提升管反应器1的重质烃油原料的重量之比为0.10,反应条件以及反应结果见表5。
实施例3
本实施例的流程同实施例1,不同的是,使用的裂化催化剂为:以裂化催化剂的总重量为基准,所用裂化催化剂含有15重量%的β沸石、15重量%的ZSM-5沸石(硅铝比为40)、45重量%的高岭土和25重量%的氧化铝粘结剂,其中,β沸石中含以元素计1重量%的铁和1.5重量%的磷;而且,反应条件以及反应结果见表6。
实施例4
本实施例的流程同实施例1,不同的是,使用的裂化催化剂为:以裂化催化剂的总重量为基准,所用裂化催化剂含有20重量%的β沸石、10重量%的ZSM-5沸石(硅铝比为40)、45重量%的高岭土和25重量%的氧化铝粘结剂,其中,β沸石中含以元素计1.5重量%的铁和1.0重量%的磷;而且,反应条件以及反应结果见表6。
表1
表2
轻汽油族组成 重量%
烷烃 30
烯烃 63
环烷烃 3
芳烃 2
二烯烃和炔烃含量 2
C4组成 重量%
烯烃 65
烷烃 33
二烯烃和炔烃含量 2
表3
链烷烃,重量% 8.5
一环烷烃,重量% 6.5
二环烷烃,重量% 39.7
三环烷烃,重量% 7.7
总环烷烃,重量% 53.9
烷基苯,重量% 13.2
茚满或四氢萘,重量% 10.8
茚类,重量% 4.1
总单环芳烃,重量% 28.1
萘,重量% 0.2
萘类,重量% 3.6
苊类,重量% 1.6
苊烯类,重量% 0.5
总双环芳烃,重量% 5.9
三环芳烃,重量% 3.6
总重量,重量% 100
表4
表5
表6
*表4-6中,A指提升管反应器1,B指流化床反应器2,C指提升管反应器3,D指流化床反应器4。
*表4-6中,剂油比是指催化剂与反应器进料的重量比。物料平衡是以重质烃油原料为基准计算得到的,丙烯产率是以产物中的丙烯重量除以重质烃油原料的重量得到的,轻芳烃产率以产物中的轻芳烃重量除以重质烃油的重量得到的。
*表4-6中,反应压力是指沉降器出口压力。
由表4-6的数据可见,根据本发明的方法可以获得较高的丙烯产率和轻芳烃产率。

Claims (24)

1.一种多产低碳烯烃和轻芳烃的烃类催化转化方法,该方法包括以下步骤:
(1)将重质烃类原料与裂化催化剂在第一反应器接触进行催化裂化反应,然后分离得到第一积炭催化剂和第一反应产物;
(2)在裂化催化剂的存在下,将轻质烃类原料从第二反应器的上游注入,将中质烃类原料从第二反应器的中部注入,进行催化裂化反应;
(3)将所述第二反应器中产生的反应混合物引入第三反应器继续进行反应,然后分离得到第二积炭催化剂和第二反应产物;
(4)将所述第一反应产物和所述第二反应产物进行分馏,将所述第一积炭催化剂和所述第二积炭催化剂依次进行汽提和再生,并将得到的再生催化剂引入所述第一反应器和所述第二反应器中循环利用;
其中,所述裂化催化剂为含有改性β沸石的裂化催化剂,所述改性β沸石为磷和过渡金属M改性的β沸石;
所述轻质烃类原料与所述中质烃类原料的用量的重量比为1:0.5-2;
所述中质烃类原料为馏程为200-390℃的烃类馏分。
2.根据权利要求1所述的方法,其中,所述裂化催化剂含有1-60重量%的沸石混合物、5-99重量%的耐热无机氧化物和0-70重量%的粘土,其中,以所述沸石混合物的总重量为基准,所述沸石混合物含有1-75重量%的改性β沸石和25-99重量%的具有MFI结构的沸石。
3.根据权利要求2所述的方法,其中,所述裂化催化剂含有10-50重量%的沸石混合物、10-70重量%的耐热无机氧化物和0-60重量%的粘土。
4.根据权利要求1-3中任意一项所述的方法,其中,所述改性β沸石中的过渡金属M选自Fe、Co、Ni和Cu中的至少一种。
5.根据权利要求4所述的方法,其中,所述改性β沸石中的过渡金属M为Fe和/或Cu。
6.根据权利要求1所述的方法,其中,在步骤(1)中,所述第一反应器为提升管反应器,所述第一反应器的反应条件包括:温度为460-550℃,剂油重量比为4-15,油气停留时间为0.1-5s。
7.根据权利要求1或6所述的方法,其中,所述重质烃类原料为减压瓦斯油、常压渣油和减压渣油中的至少一种。
8.根据权利要求1所述的方法,其中,在步骤(2)中,所述第二反应器为提升管反应器,该提升管反应器的上游的反应条件包括:温度为580-680℃,剂油重量比为15-80,油气停留时间为0.1-3s;该提升管反应器的下游的反应条件包括:温度为550-650℃,剂油重量比为15-70,油气停留时间为0.1-3s。
9.根据权利要求8所述的方法,其中,在作为所述第二反应器的提升管反应器中,轻质烃类原料的进料口与中质烃类原料的进料口的距离为该提升管反应器的总高度的30-60%。
10.根据权利要求1或9所述的方法,其中,所述轻质烃类原料与所述中质烃类原料的用量的重量比为1:0.6-1.8。
11.根据权利要求1或9所述的方法,其中,所述轻质烃类原料为C4烃馏分和/或轻汽油馏分,所述轻汽油馏分的终馏点不超过90℃,且所述轻汽油馏分中的烯烃含量为30-90重量%。
12.根据权利要求11所述的方法,其中,所述轻汽油馏分的终馏点不超过70℃,且所述轻汽油馏分中的烯烃含量为45-90重量%。
13.根据权利要求10所述的方法,其中,所述轻质烃类原料为C4烃馏分和/或轻汽油馏分,所述轻汽油馏分的终馏点不超过90℃,且所述轻汽油馏分中的烯烃含量为30-90重量%。
14.根据权利要求13所述的方法,其中,所述轻汽油馏分的终馏点不超过70℃,且所述轻汽油馏分中的烯烃含量为45-90重量%。
15.根据权利要求1、9和12-14中的任意一项所述的方法,其中,所述轻质烃类原料在注入所述第二反应器之前经过选择性加氢处理。
16.根据权利要求10所述的方法,其中,所述轻质烃类原料在注入所述第二反应器之前经过选择性加氢处理。
17.根据权利要求11所述的方法,其中,所述轻质烃类原料在注入所述第二反应器之前经过选择性加氢处理。
18.根据权利要求1或9所述的方法,其中,所述中质烃类原料为馏程为240-370℃的烃类馏分。
19.根据权利要求10所述的方法,其中,所述中质烃类原料为馏程为240-370℃的烃类馏分。
20.根据权利要求1、9和19中任意一项所述的方法,其中,所述中质烃类原料在注入所述第二反应器之前经过选择性加氢处理。
21.根据权利要求10所述的方法,其中,所述中质烃类原料在注入所述第二反应器之前经过选择性加氢处理。
22.根据权利要求18所述的方法,其中,所述中质烃类原料在注入所述第二反应器之前经过选择性加氢处理。
23.根据权利要求1所述的方法,其中,在步骤(3)中,所述第三反应器为流化床反应器,所述第三反应器的反应条件包括:温度为480-600℃,重时空速为0.2-30h-1
24.根据权利要求1所述的方法,其中,所述第一反应器为第一提升管反应器(1),所述第二反应器为第二提升管反应器(2),所述第三反应器为流化床反应器(3),所述第一提升管反应器(1)与所述第二提升管反应器(2)并列排布,所述第二提升管反应器(2)位于所述流化床反应器(3)的下方,所述流化床反应器(3)出口的正上方设置有集气罩(33)。
CN201310485219.0A 2013-10-16 2013-10-16 一种多产低碳烯烃和轻芳烃的烃类催化转化方法 Active CN104560154B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310485219.0A CN104560154B (zh) 2013-10-16 2013-10-16 一种多产低碳烯烃和轻芳烃的烃类催化转化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310485219.0A CN104560154B (zh) 2013-10-16 2013-10-16 一种多产低碳烯烃和轻芳烃的烃类催化转化方法

Publications (2)

Publication Number Publication Date
CN104560154A CN104560154A (zh) 2015-04-29
CN104560154B true CN104560154B (zh) 2016-11-02

Family

ID=53077243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310485219.0A Active CN104560154B (zh) 2013-10-16 2013-10-16 一种多产低碳烯烃和轻芳烃的烃类催化转化方法

Country Status (1)

Country Link
CN (1) CN104560154B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106609147B (zh) * 2015-10-22 2018-07-31 中国石油化工股份有限公司 一种增产低碳烯烃和制取高品质汽油的催化转化方法
CN106609152B (zh) * 2015-10-22 2018-07-31 中国石油化工股份有限公司 一种多产丁烯和轻芳烃的烃类催化转化方法
CN107971010B (zh) * 2016-10-21 2020-09-22 中国石油化工股份有限公司 一种生产低碳烯烃和轻芳烃的催化裂解方法
CN107974286B (zh) * 2016-10-21 2020-11-13 中国石油化工股份有限公司 一种生产低碳烯烃和轻芳烃的催化裂解方法
CN106622353B (zh) * 2016-11-22 2019-05-28 新奥生态环境治理有限公司 一种具有高温水汽稳定性的垃圾处理用催化剂
CN109694726B (zh) * 2017-10-24 2021-07-09 中国石油化工股份有限公司 一种多产丙烯和轻芳烃的催化转化方法
CN109694728B (zh) * 2017-10-24 2021-07-09 中国石油化工股份有限公司 一种劣质原料油的催化转化方法
CN109704904B (zh) * 2017-10-25 2021-07-09 中国石油化工股份有限公司 一种多产低碳烯烃和轻芳烃的方法
CN109705904B (zh) * 2017-10-25 2020-12-04 中国石油化工股份有限公司 多产乙烯和丙烯的烃油加工方法及加工系统
CN109705917B (zh) * 2017-10-25 2020-12-04 中国石油化工股份有限公司 多产乙烯和丙烯的烃油加工方法及加工系统
CN109705894B (zh) * 2017-10-25 2021-03-12 中国石油化工股份有限公司 多产乙烯和丙烯的烃油加工方法及加工系统
CN109722283B (zh) * 2017-10-30 2021-06-11 中国石油化工股份有限公司 降低干气和焦炭产率的催化转化方法
CN110305694B (zh) * 2018-03-20 2021-07-09 中国石油化工股份有限公司 一种多产低碳烯烃和轻芳烃的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340595A (zh) * 2000-08-30 2002-03-20 中国石油化工股份有限公司 一种催化裂化烃油进料方法
CN102206509A (zh) * 2010-03-31 2011-10-05 中国石油化工股份有限公司 一种生产丙烯和轻芳烃的烃类催化转化方法
CN102286294A (zh) * 2010-06-18 2011-12-21 中国石油化工股份有限公司 一种生产丙烯和轻芳烃的烃类催化转化方法
CN102373079A (zh) * 2010-08-19 2012-03-14 中国石油化工股份有限公司 一种增产低碳烯烃的催化转化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104334691B (zh) * 2012-02-14 2018-06-05 信实工业公司 低值烃流向轻烯烃催化转化的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340595A (zh) * 2000-08-30 2002-03-20 中国石油化工股份有限公司 一种催化裂化烃油进料方法
CN102206509A (zh) * 2010-03-31 2011-10-05 中国石油化工股份有限公司 一种生产丙烯和轻芳烃的烃类催化转化方法
CN102286294A (zh) * 2010-06-18 2011-12-21 中国石油化工股份有限公司 一种生产丙烯和轻芳烃的烃类催化转化方法
CN102373079A (zh) * 2010-08-19 2012-03-14 中国石油化工股份有限公司 一种增产低碳烯烃的催化转化方法

Also Published As

Publication number Publication date
CN104560154A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN104560154B (zh) 一种多产低碳烯烃和轻芳烃的烃类催化转化方法
CN101531558B (zh) 一种制取丙烯和芳烃的催化转化方法
CN102137914B (zh) 具有可变的收率结构的将重质进料转化成汽油和丙烯的方法
CN102071054B (zh) 一种催化裂化方法
CN102051213B (zh) 一种催化裂解方法
CN107663462B (zh) 一种催化转化的方法和系统
CN102206509B (zh) 一种生产丙烯和轻芳烃的烃类催化转化方法
CN102286294B (zh) 一种生产丙烯和轻芳烃的烃类催化转化方法
CN103131463B (zh) 一种多产丙烯的烃类催化转化方法
CN102373084B (zh) 一种从劣质渣油制取轻质燃料油和丙烯的方法
CN106609152B (zh) 一种多产丁烯和轻芳烃的烃类催化转化方法
CN103627434B (zh) 一种与加氢处理组合生产丙烯的催化裂化方法
WO2019038777A1 (en) FLUID CATALYTIC CRACKING PROCESS (FCC) AND PRODUCTION APPARATUS FOR LIGHT OLEFINS
CN109705917A (zh) 多产乙烯和丙烯的烃油加工方法及加工系统
CN109705904A (zh) 多产乙烯和丙烯的烃油加工方法及加工系统
CN102086402B (zh) 一种增产丙烯并改善汽油性质的催化裂化方法和装置
CN103525458B (zh) 一种催化转化方法
CN104418686B (zh) 一种生产低碳烯烃和轻芳烃的催化转化方法
CN113897215B (zh) 重质原料催化裂解的方法和系统
CN104557395B (zh) 一种生产丙烯的催化转化方法
CN105567307B (zh) 一种由费托合成油生产低碳烯烃的方法
CN109423333B (zh) 一种催化裂化方法
CN106609147B (zh) 一种增产低碳烯烃和制取高品质汽油的催化转化方法
CN106609151B (zh) 一种生产低碳烯烃的方法
CN113897216B (zh) 一种催化裂解的方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant