CN104558353A - 一种复乳法制备磁性高分子微球的方法 - Google Patents

一种复乳法制备磁性高分子微球的方法 Download PDF

Info

Publication number
CN104558353A
CN104558353A CN201410614746.1A CN201410614746A CN104558353A CN 104558353 A CN104558353 A CN 104558353A CN 201410614746 A CN201410614746 A CN 201410614746A CN 104558353 A CN104558353 A CN 104558353A
Authority
CN
China
Prior art keywords
emulsion
magnetic
preparing
mixed solution
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410614746.1A
Other languages
English (en)
Inventor
华文蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410614746.1A priority Critical patent/CN104558353A/zh
Publication of CN104558353A publication Critical patent/CN104558353A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

一种复乳法制备磁性高分子微球的方法,具有以下的工艺过程和步骤:A.首先制备三氯化铁溶液;B.然后在超声波条件下将聚合单体甲基丙烯酸甲酯、苯乙烯和丙烯腈在有机溶剂中制成混合液,然后将混合液在剧烈搅拌条件下加入表面活性剂、交联剂和引发剂;C.混合A和B步骤的溶液,使用超声破碎法,制成W/O型稳定的初乳乳液;加入到聚乙烯醇含量为1%的水溶液W2中,制备成W/O/W2型复乳;升温,使单体共聚;将1%的氨水加入到外水相W2中,搅拌,OH-扩散到内水相中,与铁离子反应生成磁性颗粒;继续聚合,并将复乳乳滴中的有机溶剂蒸发,复乳乳滴固化,从而生成磁性高分子微球;加磁场分离磁性微球,并用稀酸、乙醇和去离子水反复洗涤并干燥,得到成品。

Description

一种复乳法制备磁性高分子微球的方法
技术领域
本发明涉及一种复乳法制备磁性高分子微球的方法。
背景技术
磁性高分子微球是指通过适当的方法将磁性颗粒包埋在高分子微球内形成具有一定磁响应性及特殊结构的微球。它是20世纪70年代后期发展起来的一种新型功能高分子复合材料。一方面,它具有高分子微球的特性,可通过共聚、表面改性等化学反应使高分子微球表面带有多种功能基团,从而可以结合多种生物活性物质;另一方面,它又具有磁性,在外加磁场下可以快速和其它不具有磁性的物质分离,而且能量消耗小。因此,磁性高分子微球作为新型功能高分子材料,在生物医学(临床诊断、靶向药物)、细胞学(细胞分离)、固定化酶、亲和分离及磁共振图象的造影剂等领域有着广泛的应用。
目前,文献和专利中已有的磁性高分子微球的制备方法共有四种:悬浮聚合法[1,2,3]、活化溶胀法[4,5]、界面沉积法[6,7]、反相微乳法[8,9]。(1)悬浮聚合法或乳液--溶剂蒸发法,将磁性流体或磁性小颗粒分散在高分子溶液或单体中制成混合溶液后,将该混合溶液与水混合制成O/W型(水包油型)乳液,然后采用抽去溶剂或聚合单体的方法得到固化微球。其缺点是磁性颗粒与高分子材料之间的亲和性差,而且磁性颗粒的亲水性强,在单体聚合或抽去溶剂时,磁性小颗粒容易逃逸到表面和外水相中,不仅包埋率低,而且微球表面吸附着大量磁性颗粒,难以洗脱,用于生物活性物质分离或固定时,影响生物活性物质的活性。(2)活化溶胀法,1993年Ugelstad提出的活化溶胀法是迄今报道的制备磁性高分子微球的较好方法。具体步骤是用乳液聚合法制备均一尺寸的聚(苯乙烯-2-羟乙基甲基丙烯酸酯)微球后,继而再用溶胀法制成较大的微球。然后,将苯乙烯硝化,再利用硝基与铁离子的亲和作用,使微球吸收二价铁和三价铁离子水溶液。将吸附了铁离子的微球分离出来后,与碱性溶液混合,使微球内的铁离子转换为Fe3O4颗粒而沉淀在微球内。但该法存在耗时长、反应步骤多、反应条件苛刻等问题,从而导致成本过高,因此限制了磁性高分子微球在生物化工、医药工业和临床上的应用。(3)界面沉积法,先使带正电的磁性小颗粒吸附在带负电的高分子微球表面,然后再在其表面镀上一层高分子材料。因为一个高分子微球表面只能吸附一层磁性颗粒,磁体的包埋量很低。(4)反相微乳液法,在氧化还原或热引发体系中,对丙烯酰胺类和丙烯酸类等亲水性单体,加入乳化剂、引发剂、交联剂、不同价态的铁盐,控制反应在一定的投料范围内,在反相微乳液中一步直接合成具有超顺磁性的磁性高分子微球。但此方法只适用于亲水性单体,微球的粒径也比较小(在200nm以下),反应条件也不易控制。综上所述,现有制备方法只适用于实验室或小规模工业生产,因此,有必要开发新的制备磁性高分子微球的方法,以期制备性价比更高的磁性高分子微球。
理想磁性高分子微球微球应具有如下特点:磁性颗粒具有超顺磁性;微球粒径均一;微球含磁量高;化学稳定性好,磁性颗粒无泄露,无污染;机械强度高;生物相容性好;工艺简单、重复性好,易于规模化生产,价格低。
通过上文对现有的制备方法的介绍,不难看出现有的方法中没有一种方法制备的微球可以达到理想微球的要求,这也限制了磁性高分子微球在医疗和生物分离中的应用。本发明提供一种新型制备方法——复乳法,以期达到制备理想磁性高分子微球的要求,从而产生重大的经济效益和社会效益。
磁性纳米微粒由于其在生物技术中如生物分离、药物释放、高热法制癌症、磁性共振显像等方面具有广阔的应用前景而到广泛的研究。优势包括:粒径可以与病毒、蛋白质和基因相媲美;因为具有磁性,磁性纳米微粒可在外加磁场的作用下方便地被定位、导向和分离;微粒可以通过表面改性带有多种活性的功能基团(如-0H,-COOH等)应用于生物技术。用作制备功能化磁性微球的磁性纳米颗粒应具有良好的单分散性,以确保其具有均一的物理、化学和生物性能,其合成方法主要有共沉淀法、氧化沉淀法、微乳液法、溶胶-凝胶法和机械球磨法。然而纯的磁性纳米微粒在实际应用并不可行,当它们暴露在生物系统中,微粒之间容易发生磁性团聚而且极易被微生物分解。因此,通过共聚合和表面改性的方法加以保护,根据无机磁性纳米粒子与提供活性功能基团的材料形成的方式不同,可分为四种不同的结构类型,即核壳型,包括磁性核或磁性壳型、混合型和多层型。
单体聚合法合成磁性微球的方法主要有:悬浮聚合、分散聚合和乳液聚合(包括乳液聚合、种子聚合)等,具体方法是将磁性粒子均匀分散到含有单体的溶液或乳液中,利用引发剂引发单体进行聚合反应,即可得到内部包有一定量磁性微粒的高分子微球。
超浓乳液又称高内相比乳液,凝胶乳液,烃类胶质,它的外观似胶冻。此时,分散相的液滴不再是球形,而是变形为被含有表面活性剂的连续相薄液膜隔离的“多面液胞”,结构与传统的低液体含量的液-气泡膜相似,具有包括高粘度、粘弹流变行为的很多独特而有魅力的性质液胞表面吸附的表面活性剂产生双层静电斥力,保证超浓乳液有足够的稳定性。与传统乳液一样,超浓乳液也有O/W型和W/O型。前者以疏水性物质为分散相,水或水溶性物质的水溶液为连续相;后者以水溶性物质为分散相,有机溶剂或疏水性质物作连续相。由于超浓乳液具有许多特殊性能与应用前景,因此从60年代中期,国外在理论和实践上对超浓乳液的形成机理、液滴几何形状、数学模型、热力学性质等进行了大量研究。到1988年,纽约州立大学的Ruckenstein教授和他的助手们首次采用超浓乳液体系进行聚合,获得了高转化率、高分子量的聚合物。超浓乳液聚合有良好的应用前景,除了制备高固含量乳胶外,可以直接用于制备疏水-亲水(或亲水-疏水)性复合聚合物渗透膜。另外,超浓乳液聚合还可用于制备高分子量单分散性聚合物乳胶粒子,可广泛用于物理、化学、医药、生物等领域。此外,超浓乳液聚合在制备共混物合金、互穿网络、分离膜等方面获得了广泛的应用。
发明内容
本发明的目的在于提出一种复乳法制备磁性高分子微球的方法。
为达此目的,本发明采用以下技术方案:
一种复乳法制备磁性高分子微球的方法,其特征在于具有以下的工艺过程和步骤:
A、首先制备将三氯化铁溶液;三氯化铁的浓度为0.1-10%;
B、然后在超声波条件下将聚合单体甲基丙烯酸甲酯、苯乙烯和丙烯腈在有机溶剂中制成混合液,该混合液中重量配比为甲基丙烯酸甲酯∶苯乙烯∶丙烯腈=1∶2∶1;然后将混合液在剧烈搅拌条件下加入表面活性剂、交联剂和引发剂,引发剂为过氧化苯甲酰,含量为0.1-1%;表面活性剂为吐温80;
C、混合A和B步骤的溶液,使用超声破碎法,制成W/O型稳定的初乳乳液;将W/O初乳乳液加入到聚乙烯醇含量为1%的水溶液W2中,使用均质乳化法,制备成W/O/W2型复乳;升温,使单体共聚;将1%的氨水加入到外水相W2中,搅拌,OH-扩散到内水相中,与铁离子反应生成磁性颗粒;继续聚合,并将复乳乳滴中的有机溶剂蒸发,复乳乳滴固化,从而生成磁性高分子微球;加磁场分离磁性微球,并用稀酸、乙醇和去离子水反复洗涤并干燥,得到成品。
本发明提供一种快捷、高效、磁含量可控的制备磁性高分子微球的方法,此方法完全不同于已报道的所有方法。此种方法可以单体或者高分子作为原料来制备磁性高分子微球。
本发明方法的优点是工艺简单,操作方便,反应效率高,所需时间较短。本发明方法制得的磁性高分子微球可用于生物、医药、磁性共振显像等多方面领域。
具体实施方式
实施例1
首先制备将三氯化铁溶液;三氯化铁的浓度为0.1-10%;然后在超声波条件下将聚合单体甲基丙烯酸甲酯、苯乙烯和丙烯腈在有机溶剂中制成混合液,该混合液中重量配比为甲基丙烯酸甲酯∶苯乙烯∶丙烯腈=1∶2∶1;然后将混合液在剧烈搅拌条件下加入表面活性剂、交联剂和引发剂,引发剂为过氧化苯甲酰,含量为1%;表面活性剂为吐温80;混合上述溶液,使用超声破碎法,制成W/O型稳定的初乳乳液;将W/O初乳乳液加入到聚乙烯醇含量为1%的水溶液W2中,使用均质乳化法,制备成W/O/W2型复乳;升温,使单体共聚;将1%的氨水加入到外水相W2中,搅拌,OH-扩散到内水相中,与铁离子反应生成磁性颗粒;继续聚合,并将复乳乳滴中的有机溶剂蒸发,复乳乳滴固化,从而生成磁性高分子微球;加磁场分离磁性微球,并用稀酸、乙醇和去离子水反复洗涤并干燥,得到成品
实施例2
首先制备将三氯化铁溶液;三氯化铁的浓度为10%;然后在超声波条件下将聚合单体甲基丙烯酸甲酯、苯乙烯和丙烯腈在有机溶剂中制成混合液,该混合液中重量配比为甲基丙烯酸甲酯∶苯乙烯∶丙烯腈=1∶2∶1;然后将混合液在剧烈搅拌条件下加入表面活性剂、交联剂和引发剂,引发剂为过氧化苯甲酰,含量为1%;表面活性剂为吐温80;混合上述溶液,使用超声破碎法,制成W/O型稳定的初乳乳液;将W/O初乳乳液加入到聚乙烯醇含量为1%的水溶液W2中,使用均质乳化法,制备成W/O/W2型复乳;升温,使单体共聚;将1%的氨水加入到外水相W2中,搅拌,OH-扩散到内水相中,与铁离子反应生成磁性颗粒;继续聚合,并将复乳乳滴中的有机溶剂蒸发,复乳乳滴固化,从而生成磁性高分子微球;加磁场分离磁性微球,并用稀酸、乙醇和去离子水反复洗涤并干燥,得到成品。

Claims (1)

1.一种复乳法制备磁性高分子微球的方法,其特征在于具有以下的工艺过程和步骤:
A、首先制备将三氯化铁溶液;三氯化铁的浓度为0.1-10%;
B、然后在超声波条件下将聚合单体甲基丙烯酸甲酯、苯乙烯和丙烯腈在有机溶剂中制成混合液,该混合液中重量配比为甲基丙烯酸甲酯∶苯乙烯∶丙烯腈=1∶2∶1;然后将混合液在剧烈搅拌条件下加入表面活性剂、交联剂和引发剂,引发剂为过氧化苯甲酰,含量为0.1-1%;表面活性剂为吐温80;
C、混合A和B步骤的溶液,使用超声破碎法,制成W/O型稳定的初乳乳液;将W/O初乳乳液加入到聚乙烯醇含量为1%的水溶液W2中,使用均质乳化法,制备成W/O/W2型复乳;升温,使单体共聚;将1%的氨水加入到外水相W2中,搅拌,OH-扩散到内水相中,与铁离子反应生成磁性颗粒;继续聚合,并将复乳乳滴中的有机溶剂蒸发,复乳乳滴固化,从而生成磁性高分子微球;加磁场分离磁性微球,并用稀酸、乙醇和去离子水反复洗涤并干燥,得到成品。
CN201410614746.1A 2014-11-04 2014-11-04 一种复乳法制备磁性高分子微球的方法 Pending CN104558353A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410614746.1A CN104558353A (zh) 2014-11-04 2014-11-04 一种复乳法制备磁性高分子微球的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410614746.1A CN104558353A (zh) 2014-11-04 2014-11-04 一种复乳法制备磁性高分子微球的方法

Publications (1)

Publication Number Publication Date
CN104558353A true CN104558353A (zh) 2015-04-29

Family

ID=53075498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410614746.1A Pending CN104558353A (zh) 2014-11-04 2014-11-04 一种复乳法制备磁性高分子微球的方法

Country Status (1)

Country Link
CN (1) CN104558353A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892827A (zh) * 2015-05-13 2015-09-09 北京中科紫鑫科技有限责任公司 一种制备磁性复合微球的方法
CN106834204A (zh) * 2017-01-16 2017-06-13 西北民族大学 一种细胞培养用sfl微载体及其制备方法和应用
CN112871097A (zh) * 2021-01-19 2021-06-01 苏州为度生物技术有限公司 基于超声雾化法制备的超亲水磁性微球

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1616524A (zh) * 2003-11-11 2005-05-18 中国科学院过程工程研究所 复乳法制备磁性高分子微球
CN1834120A (zh) * 2005-03-17 2006-09-20 中国科学院过程工程研究所 复乳法(w1/o/w2型)制备磁性高分子微球
CN101670255A (zh) * 2009-09-25 2010-03-17 上海大学 超浓乳液法制备功能化磁性高分子微球的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1616524A (zh) * 2003-11-11 2005-05-18 中国科学院过程工程研究所 复乳法制备磁性高分子微球
CN1834120A (zh) * 2005-03-17 2006-09-20 中国科学院过程工程研究所 复乳法(w1/o/w2型)制备磁性高分子微球
CN101670255A (zh) * 2009-09-25 2010-03-17 上海大学 超浓乳液法制备功能化磁性高分子微球的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892827A (zh) * 2015-05-13 2015-09-09 北京中科紫鑫科技有限责任公司 一种制备磁性复合微球的方法
CN104892827B (zh) * 2015-05-13 2016-06-08 北京中科紫鑫科技有限责任公司 一种制备磁性复合微球的方法
CN106834204A (zh) * 2017-01-16 2017-06-13 西北民族大学 一种细胞培养用sfl微载体及其制备方法和应用
CN106834204B (zh) * 2017-01-16 2020-10-02 西北民族大学 一种细胞培养用sfl微载体及其制备方法和应用
CN112871097A (zh) * 2021-01-19 2021-06-01 苏州为度生物技术有限公司 基于超声雾化法制备的超亲水磁性微球

Similar Documents

Publication Publication Date Title
CN1215902C (zh) 一种具有核壳结构的磁性荧光双功能微球及其制备方法
CN111375360B (zh) 一种粒径均一的磁性微球的制备方法
CN107200812A (zh) 一种磁性分子印迹材料的制备方法
CN101256864A (zh) 一种超顺磁性介孔二氧化硅复合球及其制备方法
CN101220187A (zh) 一种具有核壳结构的磁性复合微球及其制备方法
CN101380559B (zh) Fe3O4表面改性方法及制备聚合苯乙烯磁性微球的方法
JP2003513093A (ja) 複合ナノスフェアおよびそれらの生体分子との複合体
CN102861541B (zh) 表面修饰的荧光磁性高分子复合微球的制备方法
CN109225084B (zh) 能大量富集糖蛋白的核壳式硼基化磁性微球的制备方法
CN102532408B (zh) 一种温敏型磁性蛋白质印迹纳米球的制备方法
CN110713609A (zh) 一种基于Janus纳米材料制备自修复水凝胶的方法
CN104558353A (zh) 一种复乳法制备磁性高分子微球的方法
CN101670255B (zh) 超浓乳液法制备功能化磁性高分子微球的方法
CN103980519B (zh) 一种磁性琼脂糖微球的制备方法
CN100412093C (zh) 复乳法(w1/o/w2型)制备磁性高分子微球
CN103772598B (zh) 一种单分散功能聚合物微球表面粗糙度的调控方法
CN105175652A (zh) 一种超顺磁性聚合物单分散微球及其制备方法
JP4548598B2 (ja) 磁性粒子およびその製造方法、ならびに生化学用担体
CN104741048B (zh) 一种n‑异丙基丙烯酰胺红色微凝胶球的制备方法
CN106430222A (zh) 一种纳米二氧化硅微球及其制备方法
CN1193383C (zh) 具有强磁场响应能力的磁性核壳微粒及其制备方法
CN105403694A (zh) 一种用于探测百草枯分子的PS@SiO2人工抗体的制备方法
CN107812500A (zh) 一种磁性聚合物微球及其制备方法
CN109456507B (zh) 一种高外表面磁性多孔树脂球及制备方法
Zhang et al. Preparation and application of magnetic microsphere carriers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150429

RJ01 Rejection of invention patent application after publication