CN104470976B - 高强度高抗冲击性高流动性osu顺从性的聚醚酰亚胺‑碳纤维复合物 - Google Patents

高强度高抗冲击性高流动性osu顺从性的聚醚酰亚胺‑碳纤维复合物 Download PDF

Info

Publication number
CN104470976B
CN104470976B CN201380036864.2A CN201380036864A CN104470976B CN 104470976 B CN104470976 B CN 104470976B CN 201380036864 A CN201380036864 A CN 201380036864A CN 104470976 B CN104470976 B CN 104470976B
Authority
CN
China
Prior art keywords
compound
dalton
pei
amount
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380036864.2A
Other languages
English (en)
Other versions
CN104470976A (zh
Inventor
穆罕默德·穆尼鲁扎曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
SABIC Innovative Plastics IP BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABIC Innovative Plastics IP BV filed Critical SABIC Innovative Plastics IP BV
Publication of CN104470976A publication Critical patent/CN104470976A/zh
Application granted granted Critical
Publication of CN104470976B publication Critical patent/CN104470976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • C08G77/455Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences containing polyamide, polyesteramide or polyimide sequences

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了具有期望的物理性能,如高强度、高抗冲击性和高流动性并且同时保持OSU热释放顺从性的纤维增强热塑性复合物。

Description

高强度高抗冲击性高流动性OSU顺从性的聚醚酰亚胺-碳纤维 复合物
技术领域
本发明涉及纤维增强热塑性复合物及其制造方法,其中,纤维增强热塑性复合物包括连续的热塑性聚合物相以及包含分散于连续的热塑性聚合物相中的多个碳纤维的分散相,以及连续的热塑性聚合物相包含热塑性树脂、流动改性剂以及聚醚酰亚胺-硅氧烷共聚物。
背景技术
用轻重量的材料替换金属是航空业中的主要的焦点以获得燃料的经济性。碳纤维增强的热塑性复合物是飞机中的承载部件的吸引人的替代物,因为碳纤维可以极大改善用于复合物中的热塑性树脂的机械性能。需要在热塑性材料中的高负载的碳纤维以满足承载部件的硬度和强度的要求,其中,目前正使用的是铝或其他金属。然而,高负载的碳纤维导致复合物的熔体粘度极大增加,这造成加工困难。
聚醚酰亚胺是非晶型热塑性树脂,由于其较高的玻璃化转变温度、较高的耐热性、优良的机械性能、低翘曲以及固有的阻燃性能,已经发现其应用于航空业中使用的热塑性复合物中。与半晶体热塑性树脂复合物,如聚苯硫醚、聚醚醚酮等相比较,聚醚酰亚胺复合物的熔体流动速率是非常低的,这阻碍了它们在大尺寸的承载部件,如飞机座椅靠背框架中的应用。存在某些应用,其中,相比目前使用的,聚醚酰亚胺复合物的升高的熔体流动速率是合乎需要的。低分子量的聚醚酰亚胺提供了更高的流动性,但是代价是其他的性能,如抗冲击强度。
除了加工要求外,在航空业中使用的热塑性树脂必须通过特定的易燃性试验,这包括垂直Bunsen(本生)燃烧器试验、热释放试验以及冒烟试验。历史地看,热塑性材料的热释放试验,也称为OSU(俄亥俄州立大学)试验,是最难通过的试验。因此,开发热塑性复合物的挑战在于处理热塑性复合物以获得优良的机械性能(如,高强度、高抗冲击性)以及高流动性的组合,同时保持OSU热释放顺从性(OSU heat release compliancy)。
因此,存在对于包含碳纤维的高流动性聚醚酰亚胺复合物、它的装置、它的方法的需要,其中,该聚醚酰亚胺复合物具有高强度,如,与印模压铸铝(die-cast aluminum)相似或更大的强度、高抗冲击性;并且符合OSU 65/65热释放参数。本文说明了这类热塑性复合物,包含热塑性复合物的装置,及其相关的方法。
发明内容
根据本发明的目的,如本文所体现的和广泛描述的,在一方面,本发明涉及包含连续的热塑性聚合物相以及包含分散于连续的热塑性聚合物相中的多个碳纤维的分散相的纤维增强热塑性复合物(复合材料,composite),并且涉及制备该纤维增强热塑性复合物的方法。在另一方面,纤维增强热塑性复合物具有高强度、高抗冲击性(impact)、高流动性并且符合OSU 65/65标准,即,当根据俄亥俄州立大学(OSU)热释放试验测量时,该复合物表现出特征为小于约65kW min/m2的2分钟的总热释放,以及小于约65kW/m2的峰值热释放率的热释放曲线。在又一方面,本发明涉及包括纤维增强热塑性复合物的制造的制品。
本发明公开了纤维增强热塑性复合物,包含:a)含有以下各项的连续的热塑性聚合物相:i)具有小于或等于约40,000道尔顿的分子量的热塑性树脂;ii)流动改性剂;以及iii)聚醚酰亚胺-硅氧烷共聚物;以及b)包含分散于连续的热塑性聚合物相中的具有约500至约1,2000千磅每平方英寸(KSI)范围的拉伸强度的多个碳纤维的分散相;其中,复合物表现出至少约240MPa的拉伸强度;其中,复合物表现出至少约75J/m的缺口悬臂梁冲击强度;其中,复合物表现出至少约500J/m的无缺口悬臂梁冲击强度;其中,当根据俄亥俄州立大学(OSU)热释放试验测量时,复合物表现出特征为小于约65KW/m2的2分钟的总热释放以及小于约65kW/m2的峰值热释放率的热释放曲线。
本发明还公开了纤维增强热塑性复合物,包含:含有以下各项的连续的热塑性聚合物相:a)具有小于或等于约40,000道尔顿分子量的聚醚酰亚胺;当在400℃以及1000/s的剪切速率的条件下测定时,具有小于约150帕斯卡-秒(Pa-s)的熔体粘度的聚醚醚酮;以及聚醚酰亚胺-硅氧烷共聚物;以及b),包含分散于连续的热塑性聚合物相中的具有约500至约1,200千-磅每平方英寸(“KSI”)的拉伸强度的多个碳纤维的分散相;以及其中,复合物表现出至少约75J/m的缺口悬臂梁冲击强度;其中,复合物表现出至少约500J/m的无缺口悬臂梁冲击强度;其中,当根据ASTM D1238在380℃以及6.6kg质量的条件下测定时,复合物表现出至少约40g/10min的熔体质量-流动速率(MFR)。并且其中,当根据俄亥俄州立大学(OSU)热释放试验测量时,复合物表现出特征为小于约65KW/m2的2分钟总的热释放以及小于约65kW/m2的峰值热释放率的热释放曲线。
本发明还公开了纤维增强热塑性复合物,包含:a)含有以下各项的连续的热塑性聚合物相:i)具有小于或等于约40,000道尔顿的分子量的聚醚酰亚胺,其中,聚醚酰亚胺树脂以不超过复合物约70wt%的量存在于复合物中;ii)当在400℃以及1000/s的剪切速率的条件下测定时,具有小于约150帕斯卡-秒(Pa-s)的熔体粘度的聚醚醚酮,其中,聚醚醚酮以连续的热塑性聚合物相的约10wt%至约40wt%的范围的量存在于复合物中;以及iii)聚醚酰亚胺-硅氧烷共聚物;其中,聚醚酰亚胺-硅氧烷共聚物以复合物的至少约1wt%的量存在;以及b)包含分散于连续的热塑性聚合物相中的具有约500至约1,2000千磅每平方英寸(KSI)范围的拉伸强度的多个碳纤维的分散相;其中,多个碳纤维以复合物总重量的至少约20wt%的量存在。
还公开了用于制造纤维增强热塑性组合物的方法,包括以下步骤:a)提供热塑性树脂组合物,包含:i)具有小于或等于约40,000道尔顿的分子量的热塑性树脂;ii)流动改性剂;以及iii)聚醚酰亚胺-硅氧烷共聚物;以及b)将具有拉伸强度约500至约1,2000千磅每平方英寸(KSI)范围的多个碳纤维引入至热塑性树脂组合物以形成纤维增强热塑性复合物前体组合物;以及c)由前体组合物形成纤维增强热塑性复合物;并且其中,形成的纤维增强热塑性复合物表现出至少约240MPa的拉伸强度;其中,复合物表现出至少约75J/m的缺口悬臂梁冲击强度;其中,复合物表现出至少约500J/m的无缺口悬臂梁冲击强度;其中,当根据ASTM D1238在380℃和6.6kg质量的条件下测定时,复合物表现出至少约40g/10min的熔体质量-流动速率(“MFR”);其中,当根据俄亥俄州立大学(OSU)热释放试验测量时,复合物表现出特征为小于约65KW/m2的2分钟总的热释放以及小于约65kW/m2的峰值热释放率的热释放曲线。
本发明还公开了包含本文描述的纤维增强热塑性复合物的制造的制品。
本发明的另外的优点将在以下描述中部分地阐明,并且部分地由以下说明可以清楚,或者可通过本发明的实践来了解。通过所附权利要求中具体指出的元素和组合来实现和得到本发明的优点。应当理解的是,如所要求保护的,前面的一般性描述和以下具体实施方式都是示例性的而且仅用于举例说明,而并非限制本发明。
具体实施方式
通过参考本发明以下的具体实施方式和其中包括的实施例,可以更容易地理解本发明。
在公开和描述本发明的化合物、组合物、制品、系统、装置、和/或方法之前,应理解的是,除非另有说明,它们不限于特定的合成方法,或者,除非另有说明它们不限于具体的试剂,因为这些当然可以改变。还应理解的是,本文使用的术语仅是为了描述具体方面的目的,而并非旨在进行限制。尽管与本文描述的那些相似或等效的任何方法和材料可以用于本发明的实践或试验中,现在描述实例方法和材料。
本文中提到的所有出版物通过引用结合于此以便公开和描述与出版物所引用的内容相关联的这些方法和/或材料。提供本文讨论的出版物仅用于在本申请的提交日期之前的它们的公开。在本文中没有任何内容应被解释为承认本发明没有资格先于利用现有技术发明的此类公开。进一步来说,在本文中提供的公开日期可以与实际公开日期不同,这可能需要独立确认。
尽管本发明的多个方面可以在特定的法定类别中描述和要求权利,但这仅仅是为了方便的目的,而且本领域技术人员将会了解,本发明的每个方面都可以在任何法定类别中描述和要求权利。除非另外清楚地说明,否则并非旨在将在本文中阐明的任何方法或方面解释为需要以特定顺序进行其步骤。因此,在方法权利要求没有在权利要求和说明书中明确地说明将步骤限制为特定顺序的情况下,并非旨在在任何方面推断出顺序。这表明了用于解释的任何可能的非表达基础,包括与步骤或操作流程的安排有关的逻辑事件,源自语法组织或标点的普通含义,或者在说明书中描述的方面的数量和类型。
除非另有定义,本文中使用的所有技术与科学术语具有与本发明所属领域普通技术人员通常理解的相同含义。尽管与本文描述的那些相似或等效的任何方法和材料可以用于本发明的实践或试验中,现在描述实例方法和材料。
如在说明书和所附权利要求中使用的,除非上下文明确地另外指出,单数形式“一个”、“一种”和“该”包括复数指称。因此,例如,提到“纳米复合物”包括两种或更多种纳米复合物的混合物,等等。
在本文中范围可以表示为从“大约”一个特定值和/或至“大约”另一个特定值。当表示这样的范围时,另一个方面包括从一个特定值和/或至其他特定值。类似地,当值表示为近似值时(通过使用先行词“约”),应理解的是特定值形成了另一个方面。将进一步理解的是,每个范围的端点明显地与其他端点相关且独立于其他端点。还应理解的是,存在本文中公开的许多值,并且本文中还将每个值公开为除了该值本身外“约”该特定值。例如,如果公开了值“10”,则也公开了“约10”。还应理解的是,还公开了两个具体单元之间的每个单元。例如,如果公开了10和15,则也公开了11、12、13、和14。
在本文中可互换地使用术语“纤维增强热塑性复合物”以及“复合物”。
如在本文中使用的,术语“可选的”或“可选地”是指随后描述的事件或情况可以出现或不出现,并且该描述包括所述事件或情况出现的实例和没有出现的实例。
公开了用于制备本发明的组合物的组分以及用于本文公开的方法中的组合物本身。本文公开了这些材料和其他材料,并且应理解的是,当公开这些材料的组合、子集、相互作用、组等时,尽管不能明确地公开这些化合物的每种不同的单独和集体的组合以及改变的具体参考,但是本文明确地考虑并描述了它们的每一种。例如,如果公开和讨论了特定的化合物并且讨论了能够对包括该化合物的许多分子进行的许多修饰,除非明确地指出相反,否则明确考虑的是化合物的每种和所有的组合与改变以及可能的变更。因此,如果公开了一类分子A、B、和C以及一类分子D、E、和F并且公开了组合分子的实例A-D,那么即使没有单独地述及每一种,也设想了单独的和结合的每一种意味着认为公开了组合A-E、A-F、B-D、B-E、B-F、C-D、C-E、和C-F。同样地,还公开了这些的任何的子集和组合。因此,例如,可以认为公开了子集A-E、B-F、和C-E。这个概念适用于本申请的所有方面,包括但不限于制造和使用本发明组合物的方法中的步骤。因此,如果存在许多额外的可以进行的步骤,应理解的是,这些额外的步骤中的每一个都可以利用本发明的方法的任何具体实施方式或实施方式的组合来进行。
在说明书和所附的权利要求中提到的在组合物或制品中具体要素或组分的重量份数(pbw),意味着在组合物或制品中表示为重量份数的要素或组分与任何其他要素或组分之间的重量关系。因此,在包含以重量计2份的成分X和以重量计5份的成分Y的化合物中,X和Y以2:5的重量比存在,并且无论在化合物中是否包含额外的成分都以这种比例存在。
除非明确地指出相反,否则组分的重量百分数(wt%)是基于其中包括该组分的配制品或组合物的总重量。例如,如果说在组合物或制品中的具体要素或组分含有8%重量,应理解,该百分数是相对于100%的总组合物百分数。
如本文使用的术语“聚醚酰亚胺”是指包含单体单元的聚合物,其包括醚以及酰亚胺基团。醚基是在本领域中熟知的并且由单独键连至两个不同的碳原子的氧原子组成。酰亚胺基团是具有两个双键的含氮酸。
本文公开的每种材料是可商购的和/或其生产方法对于本领域技术人员来说是已知的。
应理解的是,本文公开的组合物具有某些功能。本文公开了用于实施所公开功能的某些结构要求,并且应该理解的是,存在可以实施与所公开的结构有关的相同功能的许多结构,并且这些结构通常可以达到相同的结果。
纤维增强热塑性复合物
根据本发明的目的,如本文所体现和广泛描述的,在一方面,本发明涉及包含连续的热塑性聚合物相,以及包含分散于连续的热塑性聚合物相中的多个碳纤维的分散相的纤维增强热塑性复合物,并且涉及制备纤维增强热塑性复合物的方法。在另一方面,纤维增强热塑性复合物具有高强度、高抗冲击性、高流动性并且符合OSU 65/65标准,即,该复合物表现出特征为小于约65千瓦分钟每平方米(kW min/m2)的2分钟的总热释放,以及小于约65千瓦每平方米(kW/m2)的峰值热释放率的热释放曲线(当根据俄亥俄州立大学(OSU)热释放试验测量时)。在又一方面,本发明涉及包括纤维增强热塑性复合物的制造的制品。
本发明公开了纤维增强热塑性复合物,包含:a)含有以下各项的连续的热塑性聚合物相:i)具有小于或等于约40,000道尔顿的分子量的热塑性树脂;ii)流动改性剂;以及iii)聚醚酰亚胺-硅氧烷共聚物;以及b)包含分散于连续的热塑性聚合物相中的具有拉伸强度约500至约1,2000千磅每平方英寸(KSI)范围的多个碳纤维的分散相;其中,复合物表现出至少约240兆帕(MPa)的拉伸强度;其中,复合物表现出至少约75焦耳每米(J/m)的缺口悬臂梁冲击强度;其中,复合物表现出至少约500J/m的无缺口悬臂梁冲击强度;其中,当根据俄亥俄州立大学(OSU)热释放试验测量时,复合物表现出特征为小于约65KW/m2的2分钟总的热释放以及小于约65kW/m2的峰值热释放率的热释放曲线。
本发明也公开了纤维增强热塑性复合物,包含:
含有以下各项的连续的热塑性聚合物相:a)具有至少40,000道尔顿的分子量的聚醚酰亚胺;当在400℃以及1000每秒(/s)的剪切速率的条件下测定时,具有小于约150帕斯卡-秒(Pa-s)的熔体粘度的聚醚醚酮;以及b)包含分散于连续的热塑性聚合物相中的具有约500至约1,2000千磅每平方英寸(KSI)范围的拉伸强度的多个碳纤维的分散相;并且其中,复合物表现出至少约75J/m的缺口悬臂梁冲击强度;其中,复合物表现出至少约500J/m的无缺口悬臂梁冲击强度;其中,当根据ASTM D1238在380℃和6.6kg质量的条件下测定时,复合物表现出至少约40g/10min的熔体质量-流动速率(MFR);其中,当根据俄亥俄州立大学(OSU)热释放试验测量时,复合物表现出特征为小于约65KW/m2的2分钟总的热释放以及小于约65kW/m2的峰值热释放率的热释放曲线。
本文还公开了纤维增强热塑性复合物,包含:a)含有以下各项的连续的热塑性聚合物相:i)具有小于或等于约40,000道尔顿分子量的聚醚酰亚胺,其中,聚醚酰亚胺树脂以不超过复合物的约70wt的量存在于复合物中;ii)当在400℃的环境以及1000/s的剪切速率下测定时,具有小于约150帕斯卡-秒(Pa-s)的熔体粘度的聚醚醚酮,其中,聚醚醚酮以连续的热塑性聚合物相的约10wt%至约40wt%的量存在与复合物中;以及iii)聚醚酰亚胺-硅氧烷共聚物,其中,聚醚酰亚胺-硅氧烷共聚物以复合物的至少约1wt%的量存在;以及b)包含分散于连续的热塑性聚合物相中具有约500至约1,200千磅每平方英寸(KSI)的拉伸强度的多个碳纤维的分散相,其中,多个碳纤维以复合物的总重量的至少约20wt%的量存在。
还公开了用于制造纤维增强热塑性组合物的方法,包括以下步骤:a)提供包含以下各项的热塑性树脂组合物:i)具有小于或等于约40,000道尔顿的分子量的热塑性树脂;ii)流动改性剂;以及iii)聚醚酰亚胺-硅氧烷共聚物;以及b)将具有拉伸强度约500至约1,2000千磅每平方英寸(KSI)范围的多个碳纤维引入至热塑性树脂组合物以形成纤维增强热塑性复合物前体组合物;以及c)由前体组合物形成纤维增强热塑性复合物;并且其中,形成的纤维增强热塑性复合物表现出至少约240MPa的拉伸强度;其中,复合物表现出至少约75J/m的缺口悬臂梁冲击强度;其中,复合物表现出至少约500J/m的无缺口悬臂梁冲击强度;其中,当根据ASTM D1238在380℃和6.6kg质量的条件下测定时,复合物表现出至少约40g/10min的熔体质量-流动速率(MFR);其中,当根据俄亥俄州立大学(OSU)热释放试验测量时,复合物表现出特征为小于约65KW/m2的2分钟的总的热释放以及小于约65kW/m2的峰值热释放率的热释放曲线。
在一个方面中,纤维增强热塑性复合物可以包含不同量的热塑性树脂、流动改性剂、聚醚酰亚胺-硅氧烷共聚物以及碳纤维。在另一方面中,聚醚醚酮不是聚苯砜。
在一个方面,纤维增强热塑性复合物可以包含以复合物的约30wt%、约35wt%、约40wt%、约45wt%、约50wt%、约55wt%、约60wt%、约65wt%,或约70wt%的量存在的热塑性树脂。在另一方面,纤维增强热塑性复合物可以包含以复合物的约40wt%、约45wt%、约50wt%、约55wt%、或约60wt%的量存在的热塑性树脂。在另一方面,纤维增强热塑性复合物可以包含以复合物约50wt%、约51wt%、约52wt%、约53wt%、约54wt%、约55wt%、约56wt%、约57wt%、约58wt%、约59wt%,或约60wt%的量存在的热塑性树脂。在又一方面,纤维增强热塑性复合物可以包含以不超过复合物的60wt%的量存在的热塑性树脂。
在一个方面,纤维增强热塑性复合物可以包含以复合物的约30wt%至约70wt%、约30wt%至约60wt%、约40wt%至约60wt%、约50wt%至约60wt%的范围的量存在的热塑性树脂。在另一方面,纤维增强热塑性复合物可以包含以复合物的约30wt%至约55wt%、约40wt%至约55wt%、约50wt%至约55wt%、约55wt%至约60wt%的范围的量存在的热塑性树脂。例如,热塑性树脂以复合物的约40wt%至约55wt%范围的量存在。在另一方面,热塑性树脂以复合物的约30wt%至约70wt%范围的量存在。在又一方面,纤维增强热塑性树脂复合物可以包含以复合物的约40wt%至约60wt%范围的量存在的热塑性树脂。在又一方面,热塑性树脂以复合物的约50wt%至约60wt%的范围的量存在。
在一方面,纤维增强热塑性复合物包含以复合物的超过约30wt%、、约35wt%、约40wt%、约45wt%、约50wt%、约55wt%,或约60wt%的量存在的热塑性树脂。例如,纤维增强热塑性复合物包含以超过复合物的约40wt%、约45wt%、约50wt%,或约55wt%的量存在的热塑性树脂。在另一方面,纤维增强热塑性复合物包含以超过复合物的55wt%的量存在的热塑性树脂。在又一方面,纤维增强热塑性复合物包含以超过复合物的约50wt%的量存在的热塑性树脂。在又一方面,纤维增强热塑性复合物包含以超过复合物的45wt%的量存在的热塑性树脂。在又一方面,纤维增强热塑性复合物包含以超过复合物的约40wt%的量存在的热塑性树脂。
在一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有大于或等于约10,000道尔顿、约15,000道尔顿、约20,000道尔顿、约25,000道尔顿,或约30,000道尔顿的重均分子量(Mw)。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有大于或等于约15,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有大于或等于约20,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有大于或等于约25,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有大于或等于约30,000道尔顿的Mw。应该理解,热塑性树脂的Mw是通过使用聚苯乙烯标准的凝胶渗透层析测定的。
在一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有小于或等于约40,000道尔顿、约39,000道尔顿、约38,000道尔顿、约37,000道尔顿、约36,000道尔顿、约35,000道尔顿、约34,000道尔顿、约33,000道尔顿、约32,000道尔顿、约31,000道尔顿,或约30,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有小于或等于约40,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有小于或等于约39,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有小于或等于约35,000道尔顿的Mw
在一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有约10,000道尔顿至约40,000道尔顿、约15,000道尔顿至约40,000道尔顿、约17,000道尔顿至约40,000道尔顿、约19,000道尔顿至约40,000道尔顿、约20,000道尔顿至约40,000道尔顿、约21,000道尔顿至约40,000道尔顿、约22,000道尔顿至约40,000道尔顿、约23,000道尔顿至约40,000道尔顿、约24,000道尔顿至约40,000道尔顿,或约25,000道尔顿至约40,000道尔顿的Mw。在另一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有约10,000道尔顿至约39,000道尔顿、约15,000道尔顿至约39,000道尔顿、约17,000道尔顿至约39,000道尔顿、约19,000道尔顿至约39,000道尔顿、约20,000道尔顿至约39,000道尔顿、约21,000道尔顿至约39,000道尔顿、约22,000道尔顿至约39,000道尔顿、约23,000道尔顿至约39,000道尔顿、约24,000道尔顿至约39,000道尔顿,或约25,000道尔顿至约39,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有约10,000道尔顿至约35,000道尔顿、约15,000道尔顿至约35,000道尔顿、约17,000道尔顿至约35,000道尔顿、约19,000道尔顿至约35,000道尔顿、约20,000道尔顿至约35,000道尔顿、约21,000道尔顿至约35,000道尔顿、约22,000道尔顿至约35,000道尔顿、约23,000道尔顿至约35,000道尔顿、约24,000道尔顿至约35,000道尔顿,或约25,000道尔顿至约35,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有约15,000至约40,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有15,000至约39,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有约20,000至约35,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂具有约25,000至约35,000道尔顿的Mw
在一个方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且以复合物的约30wt%、约35wt%、约40wt%、约45wt%、约50wt%、约55wt%、约60wt%、约65wt%,或约70wt%的量存在。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且以复合物的约40wt%、约45wt%、约50wt%、约55wt%、约60wt%的量存在。在另一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且以复合物的约50wt%、约51wt%、约52wt%、约53wt%、约54wt%、约55wt%、约56wt%、约57wt%、约58wt%、约59wt%,或约60wt%的量存在。在另一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且以不超过复合物的约60wt%的量存在。
在一个方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,该热塑性树脂是聚醚酰亚胺并且以复合物的约30wt%至约70wt%、约30wt%至约60wt%、约40wt%至约60wt%、约50wt%至约60wt%的范围的量存在。在另一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,该热塑性树脂是聚醚酰亚胺并且以复合物的约30wt%至约55wt%、约40wt%至约55wt%、约50wt%至约55wt%、约55wt%至约60wt%的量存在。例如,纤维增强热塑性复合物可以包含热塑性树脂,其中,该热塑性树脂是聚醚酰亚胺并且以复合物的约40wt%至约55wt%的量存在。在另一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,该热塑性树脂是聚醚酰亚胺并且以复合物的约30wt%至约70wt%的量存在。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,该热塑性树脂是聚醚酰亚胺并且以复合物的约40wt%至约60wt%的量存在。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,该热塑性树脂是聚醚酰亚胺并且以复合物的约50wt%至约60wt%的量存在。
在一个方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且以超过复合物的约30wt%、约35wt%、约40wt%、约45wt%、约50wt%、约55wt%,或约60wt%的量存在。例如,纤维增强热塑性复合物可以包含热塑性树脂,其中,该热塑性树脂是聚醚酰亚胺并且以超过复合物的约40wt%、约45wt%、、约50wt%、约55wt%的量存在。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且以超过复合物的55wt%的量存在。在又一方面,纤维增强热塑性复合物包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺,并且以超过复合物的约50wt%的量存在。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺,并且以超过复合物的约45wt%的量存在。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且以超过复合物的约40wt%的量存在。
在一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有大于或等于约10,000道尔顿、约15,000道尔顿、约20,000道尔顿、约25,000道尔顿,或约30,000道尔顿的Mw。在又一方面,该纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有大于或等于约15,000道尔顿的Mw。在又一方面,该纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有大于或等于约20,000道尔顿的Mw。在又一方面,该纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有大于或等于约25,000道尔顿的Mw。在又一方面,该纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有大于或等于约30,000道尔顿的Mw。应该理解,聚醚酰亚胺的Mw是通过使用聚苯乙烯标准的凝胶渗透层析测定的。
一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有小于或等于约40,000道尔顿、约39,000道尔顿、约38,000道尔顿、约37,000道尔顿、约36,000道尔顿、约35,000道尔顿、约34,000道尔顿、约33,000道尔顿、约32,000道尔顿、约31,000道尔顿,或约30,000道尔顿的Mw。在又一方面,该纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有小于或等于约40,000道尔顿的Mw。在又一方面,该纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有小于或等于约39,000道尔顿的Mw。在又一方面,该纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有小于或等于约35,000道尔顿的Mw
在一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有约10,000道尔顿至约40,000道尔顿、约15,000道尔顿至约40,000道尔顿、约17,000道尔顿至约40,000道尔顿、约19,000道尔顿至约40,000道尔顿、约20,000道尔顿至约40,000道尔顿、约21,000道尔顿至约40,000道尔顿、约22,000道尔顿至约40,000道尔顿、约23,000道尔顿至约40,000道尔顿、约24,000道尔顿至约40,000道尔顿,或约25,000道尔顿至约40,000道尔顿的Mw。在另一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有约10,000道尔顿至约39,000道尔顿、约15,000道尔顿至约39,000道尔顿、约17,000道尔顿至约39,000道尔顿、约19,000道尔顿至约39,000道尔顿、约20,000道尔顿至约39,000道尔顿、约21,000道尔顿至约39,000道尔顿、约22,000道尔顿至约39,000道尔顿、约23,000道尔顿至约39,000道尔顿、约24,000道尔顿至约39,000道尔顿,或约25,000道尔顿至约39,000道尔顿的Mw。在又一方面,纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有约10,000道尔顿至约35,000道尔顿、约15,000道尔顿至约35,000道尔顿、约17,000道尔顿至约35,000道尔顿、约19,000道尔顿至约35,000道尔顿、约20,000道尔顿至约35,000道尔顿、约21,000道尔顿至约35,000道尔顿、约22,000道尔顿至约35,000道尔顿、约23,000道尔顿至约35,000道尔顿、约24,000道尔顿至约35,000道尔顿,或约25,000道尔顿至约35,000道尔顿的Mw。在又一方面,该纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有约15,000至约40,000道尔顿的Mw。在又一方面,该纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有约15,000至约39,000道尔顿的Mw。在又一方面,该纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有约20,000至约35,000道尔顿的Mw。在又一方面,该纤维增强热塑性复合物可以包含热塑性树脂,其中,热塑性树脂是聚醚酰亚胺并且具有约25,000至约35,000道尔顿的Mw
在一方面,该纤维增强热塑性复合物可以包含以连续的热塑性聚合物相的约10wt%、约15wt%、约20wt%、约25wt%、约30wt%、约35wt%,或约40wt%的量存在的流动改性剂。在另一方面,该纤维增强热塑性复合物可以包含以连续的热塑性聚合物相的约15wt%、约20wt%、约25wt%、约30wt%、约35wt%,或约40wt%的量存在的流动改性剂。在又一方面,纤维增强热塑性复合物包含以连续的热塑性聚合物相的约35wt%的量存在的流动改性剂。在又一方面,该纤维增强热塑性复合物包含以连续的热塑性聚合物相的约10wt%至约40wt%、约20wt%至约40wt%、约20wt%至约30wt%,或约10wt%至约30wt%的量存在的流动改性剂。在又一方面,纤维增强热塑性复合物包含以连续的热塑性聚合物相的约10wt%至约40wt%的量存在的流动改性剂。在又一方面,纤维增强热塑性复合物包含以连续的热塑性聚合物相的约20wt%至约40wt%的量存在的流动改性剂。在又一方面,纤维增强热塑性复合物包含以连续的热塑性聚合物相的约20wt%至约30wt%的量存在的流动改性剂。在又一方面,纤维增强热塑性复合物包含以连续的热塑性聚合物相的约10wt%至约40wt%,或约20wt%至约40wt%的量存在的流动改性剂。
在一个方面,纤维增强热塑性复合物可以包含以至少约1.0wt%、约1.1wt%、约1.2wt%、约1.3wt%、约1.4wt%、约1.5wt%、约1.6wt%、约1.7wt%、约1.8wt%、约1.9wt%、约2.0wt%、约2.2wt%、约2.4wt%、约2.6wt%、约2.8wt%、约3.0wt%、约3.5wt%、约4.0wt%、约5.0wt%、约5.5wt%、约6.0wt%、约7.0wt%、约8.0wt%、约9.0wt%、约10.0wt%、约11.0wt%、约12.0wt%、约13.0wt%,或约14.0wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在另一方面,纤维增强热塑性复合物可以包含以至少约1.0wt%、约1.1wt%、约1.2wt%、约1.3wt%、约1.4wt%、约1.5wt%、约1.6wt%、约1.7wt%、1.8wt%、1.9wt%、约2.0wt%、约2.2wt%、约2.4wt%、约2.6wt%、约2.8wt%,或约3.0wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以至少约1.0wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以至少约2.0wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以至少约3.0wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。
在另一方面,纤维增强热塑性复合物可以包含以约1wt%至约15wt%、约1wt%至约14wt%、约1wt%至约13wt%、约1wt%至约12wt%、约1wt%至约11wt%、约1wt%至约10wt%、约1wt%至约9wt%、约1wt%至约8wt%、约1wt%至约7wt%、约1wt%至约6wt%、约1wt%至约5wt%、约2wt%至约15wt%、约2wt%至约14wt%、约2wt%至约13wt%、约2wt%至约12wt%、约2wt%至约11wt%、约2wt%至约10wt%、约2wt%至约9wt%、约2wt%至约8wt%、约2wt%至约7wt%、约2wt%至约6wt%、约2wt%至约5wt%、约3wt%至约15wt%、约3wt%至约14wt%、约3wt%至约13wt%、约3wt%至约12wt%、约3wt%至约11wt%、约3wt%至约10wt%、约3wt%至约9wt%、约3wt%至约8wt%、约3wt%至约7wt%、约3wt%至约6wt%,或约3wt%至约5wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以约1wt%至约15wt%、约2wt%至约8wt%,或约3wt%至约5wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以约1wt%至约15wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以约2wt%至约8wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以约3wt%至约5wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。
在一方面,纤维增强热塑性复合物包含碳纤维,如多个碳纤维。在又一方面,碳纤维是短切的碳纤维(chopped carbon fiber)。在又一方面,碳纤维可以复合物总重量的至少约20wt%、约25wt%、约30wt%、约35wt%、约40wt%、约45wt%、约50wt%、约55wt%、约60wt%、约65wt%,或约70wt%的量存在。在又一方面,碳纤维可以复合物的总重量的约20wt%、约25wt%、约30wt%、约35wt%、约40wt%、约45wt%,或约50wt%的量存在。在又一方面,碳纤维可以以复合物的总重量的约20wt%至约70wt%的量存在。在又一方面,碳纤维可以以复合物的总重量的约20wt%至约50wt%的量存在。在又一方面,碳纤维可以以复合物的总重量的约30wt%至约40wt%的量存在。在又一方面,碳纤维可以以复合物的总重量的约35wt%至约55wt%的量存在。在又一方面,碳纤维可以以复合物的总重量的约35wt%至约50wt%的量存在。在又一方面,碳纤维可以以复合物的总重量的约35wt%至约45wt%的量存在。
在一个方面,复合物表现出至少约240MPa、约245MPa、约250MPa、约255MPa、约260MPa、约265MPa、约270MPa、约275MPa、约280MPa、约285MPa、约290MPa、约300MPa、约310MPa、约320MPa、约330MPa、约340MPa、约350MPa、约360MPa、约370MPa、约380MPa、约390MPa、约400MPa、约420MPa、约440MPa、约460MPa、约480MPa,或约500MPa的拉伸强度。在又一方面,复合物表现出至少约240Mpa的拉伸强度。在又一方面,复合物表现出至少约250Mpa的拉伸强度。在又一方面,复合物表现出至少约260Mpa的拉伸强度。在又一方面,复合物表现出至少约270Mpa的拉伸强度。在又一方面,复合物表现出至少约280Mpa的拉伸强度。在又一方面,复合物表现出至少约290Mpa的拉伸强度。在又一方面,复合物表现出至少约300Mpa的拉伸强度。应该理解,根据ASTM D-638在3.2毫米(mm)厚的模制拉伸试条上以5毫米每分钟的速度(mm/min)测定本发明公开的复合物的拉伸强度并且是在断裂强度。
在一方面,纤维增强热塑性复合物表现出至少约70J/m、约75J/m、约80J/m、约85J/m、约90J/m、约95J/m,或约100J/m缺口悬臂梁冲击强度。在另一方面,纤维增强热塑性复合物表现出至少约80J/m、约81J/m、约82J/m、约83J/m、约84J/m、约85J/m、约86J/m、约87J/m、约88J/m、约89J/m,或约90J/m的缺口悬臂梁冲击强度。在另一方面,纤维增强热塑性复合物可以表现出至少约70J/m的缺口悬臂梁冲击强度。在另一方面,纤维增强热塑性复合物可以表现出至少约75J/m的缺口悬臂梁冲击强度。在另一方面,纤维增强热塑性复合物可以表现出至少约80J/m的缺口悬臂梁冲击强度。在另一方面,纤维增强热塑性复合物可以表现出至少约85J/m的缺口悬臂梁冲击强度。在另一方面,纤维增强热塑性复合物可以表现出至少约90J/m的缺口悬臂梁冲击强度。应该理解,根据ASTM D-256在23℃,3.2毫米(mm)厚的模制悬臂梁缺口抗冲击(INI)试条上测定本发明公开的复合物的缺口悬臂梁冲击强度(NII)。
在一方面,纤维增强热塑性复合物表现出约70J/m至约200J/m、70J/m至约175J/m、70J/m至约150J/m、70J/m至约125J/m、70J/m至约100J/m、80J/m至约200J/m、80J/m至约175J/m、80J/m至约150J/m、80J/m至约125J/m、80J/m至约100J/m、85J/m至约200J/m、85J/m至约175J/m、85J/m至约150J/m、85J/m至约125J/m、85J/m至约100J/m、90J/m至约200J/m、90J/m至约175J/m、90J/m至约150J/m或90J/m至约125J/m的缺口悬臂梁冲击强度。在另一方面,纤维增强热塑性复合物可以表现出约70J/m至约200J/m的缺口悬臂梁冲击强度。在另一方面,纤维增强热塑性复合物可以表现出约80J/m至约200J/m的缺口悬臂梁冲击强度。在另一方面,纤维增强热塑性复合物可以表现出约85J/m至约200J/m的缺口悬臂梁冲击强度。
在一方面,纤维增强热塑性复合物表现出至少约500J/m、约550J/m、约600J/m、约650J/m、约700J/m的无缺口悬臂梁冲击强度(unnotched Izodimpact strength)。在另一方面,纤维增强热塑性复合物表现出至少约500J/m、约510J/m、约520J/m、约530J/m、约540J/m、约550J/m、约560J/m、约570J/m、约580J/m、约590J/m,或约600J/m的无缺口悬臂梁冲击强度。在又一方面,纤维增强热塑性复合物表现出至少约600J/m、约610J/m、约620J/m、约630J/m、约640J/m、约650J/m、约660J/m、约670J/m、约680J/m、约690J/m,或约700J/m的无缺口悬臂梁冲击强度。在又一方面,纤维增强热塑性复合物可以表现出至少约500J/m的无缺口悬臂梁冲击强度。在另一方面,纤维增强热塑性复合物可以表现出至少约510J/m的无缺口悬臂梁冲击强度。在又一方面,纤维增强热塑性复合物可以表现出至少约520J/m的缺口悬臂梁冲击强度。在又一方面,纤维增强热塑性复合物可以表现出至少约530J/m的无缺口悬臂梁冲击强度。在又一方面,纤维增强热塑性复合物可以表现出至少约540J/m的无缺口悬臂梁冲击强度。在又一方面,纤维增强热塑性复合物可以表现出至少约550J/m的无缺口悬臂梁冲击强度。在又一方面,纤维增强热塑性复合物可以表现出至少约600J/m的无缺口悬臂梁冲击强度。应该理解,根据ASTM D-256在23℃,3.2毫米(mm)厚的无缺口模制测试条上测定本发明公开的复合物的无缺口悬臂梁冲击强度(UII)。
在一方面,纤维增强热塑性复合物表现出约500J/m至约1000J/m、500J/m至约900J/m、500J/m至约800J/m、500J/m至约700J/m、500J/m至约600J/m、550J/m至约1000J/m、550J/m至约900J/m、550J/m至约800J/m、550J/m至约700J/m、550J/m至约600J/m、600J/m至约1000J/m、600J/m至约900J/m、600J/m至约800J/m、600J/m至约700J/m、650J/m至约1000J/m、650J/m至约900J/m、650J/m至约800J/m或650J/m至约700J/m的无缺口悬臂梁冲击强度。在另一方面,纤维增强热塑性复合物可以表现出约500J/m至约1000J/m的无缺口悬臂梁冲击强度。在又一方面,纤维增强热塑性复合物可以表现出约550J/m至约1000J/m的无缺口悬臂梁冲击强度。在又一方面,纤维增强热塑性复合物可以表现出约600J/m至约1000J/m的无缺口悬臂梁冲击强度。
在一方面,如根据俄亥俄州立大学(OSU)热释放试验测量的,复合物可以表现出热释放曲线。在另一方面,其特征在于在小于约40、约45、约50、约55、约60,或约65kW min/m2的2分钟的总热释放以及小于约40、约45、约50、约55、约60或约65kW/m2的峰值热释放率。在又一方面,复合物特征在于小于约40kW min/m2的2分钟的总热释放以及小于40kW/m2的峰值热释放率。在又一方面,复合物特征在于小于约65kWmin/m2的2分钟的总热释放以及小于65kW/m2的峰值热释放率。
在一方面,当根据ASTM D1238在380℃以及6.6kg质量条件下测定时,复合物进一步表现出至少约40克每10分钟(g/10min)、约42g/10min、约44g/10min、约46g/10min、约48g/10min、约50g/10min、约52g/10min、约54g/10min、约56g/10min、约58g/10min、约60g/10min、约62g/10min、约64g/10min、约66g/10min、约68g/10min、约70g/10min、约72g/10min、约74g/10min、约76g/10min、约78g/10min、约80g/10min、约82g/10min、约84g/10min、约86g/10min、约88g/10min、约90g/10min、约95g/10min、约100g/10min,或约105g/10min的熔体质量流动速率(MFR)。应该理解,根据ASTM 1238,在所述温度下并且使用指定质量测定MFR。
在一方面,当根据ASTM D1238在380℃和6.6kg质量下测量时,复合物进一步表现出至少约40g/10min的熔体质量流动速率(MFR)。在另一方面,当根据ASTM D1238在380℃和6.6kg质量下测量时,复合物进一步表现出至少约50g/10min的熔体质量流动速率(MFR)。在又一方面,当根据ASTM D1238在380℃和6.6kg质量下测量时,复合物进一步表现出至少约60g/10min的熔体质量流动速率(MFR)。在又一方面,当根据ASTM D1238在380℃和6.6kg质量下测量时,复合物进一步表现出至少约62g/10min的熔体质量流动速率(MFR)。在又一方面,当根据ASTM D1238在380℃和6.6kg质量下测量时,复合物进一步表现出至少约64g/10min的熔体质量流动速率(MFR)。在又一方面,当根据ASTM D1238在380℃和6.6kg质量下测量时,复合物进一步表现出至少约66g/10min的熔体质量流动速率(MFR)。在又一方面,当根据ASTM D1238在380℃和6.6kg质量下测量时,复合物进一步表现出至少约68g/10min的熔体质量流动速率(MFR)。在又一方面,当根据ASTM D1238在380℃和6.6kg质量下测量时,复合物进一步表现出至少约70g/10min的熔体质量流动速率(MFR)。
在一方面,当根据ASTM D1238在380℃和6.6kg质量下测量时,复合物进一步表现出约40g/10min至约150g/10min的熔体质量流动速率(MFR)。在另一方面,当根据ASTMD1238在380℃和6.6kg质量下测量时,复合物进一步表现出约50g/10min至约100g/10min的熔体质量流动速率(MFR)。在另一方面,当根据ASTM D1238在380℃和6.6kg质量下测量时,复合物进一步表现出约60g/10min至约90g/10min的熔体质量流动速率(“MFR”)。
在另一方面,纤维增强热塑性复合物包含30%碳纤维、52%ULTEMTM1040A、14%PEEK 90P,以及4%聚醚酰亚胺-硅氧烷共聚物SiltemTMD-9000。
B.热塑性聚合物相
在一方面,热塑性聚合物相包含热塑性树脂、流动改性剂,以及聚醚酰亚胺-硅氧烷共聚物。热塑性树脂可以包含一种或多种热塑性聚合物树脂,包括但不限于,聚苯硫醚以及聚酰亚胺。在另一方面,在本发明公开的复合物中使用的聚酰亚胺包括聚酰胺酰亚胺、聚醚酰亚胺和聚苯并咪唑。在另一方面,聚醚酰亚胺包括熔融可加工的聚醚酰亚胺。
可以用于本公开的复合物中的合适的聚醚酰亚胺包括但不限于ULTEMTM。ULTEMTM是来自由Saudi Basic Industries Corporation(SABIC)出售的聚醚酰亚胺(PEI)家族的聚合物。ULTEMTM可以具有提高的耐热性、高强度和硬度、以及广泛的耐化学性。ULTEMTM如在本文中使用的,除非另有说明,是指包括在所述家族中的任何一种或所有的ULTEMTM聚合物。在另一方面,ULTEMTM是ULTEMTM1040A。在一方面,聚醚酰亚胺可以包括任何聚碳酸酯材料或材料的混合物,例如,如在美国专利号US 4,548,997、US 4,629,759、US 4,816,527、US 6,310,145、和US 7,230,066中所述的,将它们的全部以整体合并于此用于公开各种聚醚酰亚胺组合物和方法的特定目的。
在某些方面,热塑性聚合物是具有包括由式(I)的有机基团表示的结构单元的结构的聚醚酰亚胺聚合物。
其中,式(I)中的R包括取代的或未取代的二价有机基团,如(a)具有约6至约20个碳原子的芳族烃基以及它们的卤化衍生物;(b)具有约2至约20个碳原子的直链或支链亚烷基基团;(c)具有约3至约20个碳原子的环亚烷基,或(d)通式(II)的二甲基团:
其中,Q包括选自由-O-、-S-、-C(O)-、-SO2-、-SO-、-CyH2y-(y是1至5的整数)、以及它们的卤化衍生物(包括全氟亚烷基)组成的组中的二价部分;其中T是-O-或式-O-Z-O-的基团,其中,-O-或-O-Z-O-基团的二价键在3,3’、3,4’、4,3’,或4,4’位,并且其中,Z包括,但不限于,式(III)的二甲基团。
以及
其中,包括在式(I)中的聚醚酰亚胺具有小于或等于约40,000的Mw
在另一方面,聚醚酰亚胺聚合物可以是共聚物,除以上所描述的醚酰亚胺单元之外,其进一步包含式(VI)的聚酰亚胺结构单元:
其中,R是如之前对式(I)所限定的,并且M包括,但不限于,式(V)的基团:
在另一方面,热塑性树脂是具有由以下式表示的结构的聚醚酰亚胺聚合物:
其中,聚醚酰亚胺聚合物具有约15,000道尔顿、约20,000道尔顿、约25,000道尔顿、约30,000道尔顿、约35,000道尔顿,或约39,000道尔顿的分子量。
可以通过本领域技术人员熟知的方法制备聚醚酰亚胺聚合物,包括式(VI)的芳香族双(醚酐)与式(IX)的有机二胺的反应:
H2N-R-NH2(VII),
其中,T和R如以上式(I)中所述限定的。
式(VI)的芳族双(醚酐)的描述性非限制性实例包括2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐、4,4'-双(3,4-二羧基苯氧基)二苯基醚二酐、4,4'-双(3,4-二羧基苯氧基)二苯硫醚二酐、4,4'-双(3,4-二羧基苯氧基)二苯甲酮二酐、4,4'-双(3,4-二羧基苯氧基)二苯砜二酐、2,2-双[4-(2,3-二羧基苯氧基)苯基]丙烷二酐、4,4'-双(2,3-二羧基苯氧基)二苯基醚二酐、4,4'-双(2,3-二羧基苯氧基)二苯硫醚二酐、4,4'-双(2,3-二羧基苯氧基)二苯甲酮二酐、4,4'-双(2,3-二羧基苯氧基)二苯砜二酐、4-(2,3-二羧基苯氧基)-4'-(3,4-二羧基苯氧基)二苯基-2,2-丙烷二酐、4-(2,3-二羧基苯氧基)-4'-(3,4-二羧基苯氧基)二苯基醚二酐、4-(2,3-二羧基苯氧基)-4'-(3,4-二羧基苯氧基)二苯硫醚二酐、4-(2,3-二羧基苯氧基)-4'-(3,4-二羧基苯氧基)二苯甲酮二酐和4-(2,3-二羧基苯氧基)-4'-(3,4-二羧基苯氧基)二苯基砜二酐、以及它们的各种混合物
可以在双极性、非质子溶剂存在下通过使硝基取代的苯基二腈与二元酚化合物的金属盐的反应产物水解,然后脱水来制备双(醚酐)。上面的式(VI)包括的一类有用的芳香族双(醚酐)包括,但不限于以下化合物,其中,T是式(VIII):
以及醚键,例如,有利地在3,3’、3,4’、4,3’,或4,4’位以及它们的混合,并且其中,Q是如以上所定义的。
在聚酰亚胺和/或聚醚酰亚胺的制备中,可以使用任何二氨基化合物。式(VII)的合适的二氨基化合物的描述性的非限制性实例包括乙二胺、丙二胺、三亚甲基二胺、二亚乙基三胺、三亚乙基四胺、六亚甲基二胺、七亚甲基二胺、八亚甲基二胺、九亚甲基二胺、十亚甲基二胺、1,12-十二烷二胺、1,18-十八烷二胺、3-甲基七亚甲基二胺、4,4-二甲基七亚甲基二胺、4-甲基九亚甲基二胺、5-甲基九亚甲基二胺、2,5-二甲基六亚甲基二胺、2,5-二甲基七亚甲基二胺、2,2-二甲基丙二胺、N-甲基-双(3-氨基丙基)胺、3-甲氧基六亚甲基二胺、1,2-双(3-氨基丙氧基)乙烷、双(3-氨基丙基)硫醚、1,4-环己烷二胺、双-(4-氨基环己基)甲烷、间苯二胺、对苯二胺、2,4-二氨基甲苯、2,6-二氨基甲苯、间苯二甲基二胺(m-xylylenediamine)、对苯二甲基二胺(p-xylylenediamine)、2-甲基-4,6-二乙基-1,3-亚苯基-二胺、5-甲基-4,6-二乙基-1,3-亚苯基-二胺、联苯胺、3,3'-二甲基联苯胺、3,3'-二甲氧基联苯胺、1,5-二氨基萘、双(4-氨基苯基)甲烷、双(2-氯-4-氨基-3,5-二乙基苯基)甲烷、双(4-氨基苯基)丙烷、2,4-双(b-氨基叔丁基)甲苯、双(对-b-氨基-叔丁基苯基)醚、双(对-b-甲基邻氨基苯基)苯、双(对-b-甲基-邻氨基戊基)苯、1,3-二氨基-4-异丙基苯、双(4-氨基苯基)硫醚、双(4-氨基苯基)砜、双(4-氨基苯基)醚和1,3-双(3-氨基丙基)四甲基二硅氧烷。这些化合物的混合物也可以存在。有利的二氨基化合物是芳香族二胺,尤其是间苯二胺和对苯二胺以及它们的混合物。
在又一方面,聚醚酰亚胺树脂包含根据式(I)的结构单元,其中,每个R独立地是对亚苯基或间亚苯基或它们的混合物,并且T是式(IX)的二价基团:
在各个方面,在约100℃至约250℃的温度下,使用溶剂如邻二氯苯、间-甲酚/甲苯等进行反应以实现式(VI)的酸酐与式(VII)的二胺之间的反应。可替换地,聚醚酰亚胺可以通过将起始物料的混合物加热至高温,并同时搅拌,通过熔融聚合式(VI)的芳族双(醚酐)与式(VII)的二胺进行制备。可以使用约200℃至约400℃的温度进行熔融聚合。在反应中可以使用链终止剂和支化剂。可以可选地由芳香族双(醚酐)与有机二胺的反应来制备聚醚酰亚胺聚合物,其中,二胺以不高于约0.2摩尔过量、有利地低于约0.2摩尔过量存在于反应混合物中。在此类情况中,如由利用含有处于冰醋酸中33重量百分数(wt%)氢溴酸的溶液的氯仿溶液滴定示出的,聚醚酰亚胺树脂在一种实施方式中具有低于约15微当量/克(μeq/g)的酸可滴定基团,并且在替代的实施方式中具有小于约10μeq/g的酸可滴定基团。酸可滴定基团本质上是由于在聚醚酰亚胺树脂中的胺末端基团。
在一方面,聚醚酰亚胺具有大于或等于约15,000道尔顿、约20,000道尔顿、约25,000道尔顿,或约30,000道尔顿的Mw。在另一方面,聚醚酰亚胺具有大于或等于约15,000道尔顿的Mw。在又一方面,聚醚酰亚胺具有大于或等于约20,000道尔顿的Mw。在又一方面,聚醚酰亚胺具有大于或等于约25,000道尔顿的Mw。在又一方面,聚醚酰亚胺具有大于或等于约30,000道尔顿的Mw。应该理解,热塑性树脂的Mw是通过使用聚苯乙烯标准的凝胶渗透层析测定的。
在一方面聚醚酰亚胺具有小于或等于约40,000道尔顿、约39,000道尔顿、约38,000道尔顿、约37,000道尔顿、约36,000道尔顿、约35,000道尔顿、约34,000道尔顿、约33,000道尔顿、约32,000道尔顿、约31,000道尔顿,或约30,000道尔顿的Mw。在另一方面,聚醚酰亚胺具有小于或等于约40,000道尔顿的Mw。在另一方面,聚醚酰亚胺具有小于或等于约39,000道尔顿的Mw。在又一方面,聚醚酰亚胺具有小于或等于约35,000道尔顿的Mw
在一方面,聚醚酰亚胺具有约10,000道尔顿至约40,000道尔顿、约15,000道尔顿至约40,000道尔顿、约17,000道尔顿至约40,000道尔顿、约19,000道尔顿至约40,000道尔顿、约20,000道尔顿至约40,000道尔顿、约21,000道尔顿至约40,000道尔顿、约22,000道尔顿至约40,000道尔顿、约23,000道尔顿至约40,000道尔顿、约24,000道尔顿至约40,000道尔顿,或约25,000道尔顿至约40,000道尔顿的Mw。在另一方面,聚醚酰亚胺具有约10,000道尔顿至约39,000道尔顿、约15,000道尔顿至约39,000道尔顿、约17,000道尔顿至约39,000道尔顿、约19,000道尔顿至约39,000道尔顿、约20,000道尔顿至约39,000道尔顿、约21,000道尔顿至约39,000道尔顿、约22,000道尔顿至约39,000道尔顿、约23,000道尔顿至约39,000道尔顿、约24,000道尔顿至约39,000道尔顿,或约25,000道尔顿至约39,000道尔顿的Mw。在又一方面,聚醚酰亚胺具有约10,000道尔顿至约35,000道尔顿、约15,000道尔顿至约35,000道尔顿、约17,000道尔顿至约35,000道尔顿、约19,000道尔顿至约35,000道尔顿、约20,000道尔顿至约35,000道尔顿、约21,000道尔顿至约35,000道尔顿、约22,000道尔顿至约35,000道尔顿、约23,000道尔顿至约35,000道尔顿、约24,000道尔顿至约35,000道尔顿,或约25,000道尔顿至约35,000道尔顿的Mw。在另一方面,聚醚酰亚胺具有约15,000道尔顿至约40,000道尔顿的Mw。在又一方面,聚醚酰亚胺具有约15,000道尔顿至约39,000道尔顿的Mw。在又一方面,聚醚酰亚胺具有约20,000至约35,000道尔顿的Mw。在又一方面,聚醚酰亚胺具有约25,000至约35,000道尔顿的Mw
C.流动改性剂
在一方面,纤维增强热塑性复合物可以包括流动改性剂。在另一方面,流动改性剂可以是聚合物。在又一方面,流动改性剂是聚醚酮(PEK)、聚芳醚酮(PAEK),或聚醚醚酮(PEEK)。在又一方面,流动改性剂是PEEK。例如,在本发明公开的复合物中用作流动改性剂的PEEK是Victrex PEEK 90P。Victrex PEEK 90P是由Victrex plc销售的专利产品并且在美国专利第7,906,574号中描述,其整体结合于此用于公开各种不同的PEEK组合物和方法的特定目的。当在400℃以及1000/s的剪切速率的条件下测量时,它是具有90Pa-s熔体粘度的半晶体聚合物。
在一方面,流动改性剂可以具有小于约75、约80、约90、约100、约125,或约150Pa-s的熔体粘度。在另一方面,流动改性剂具有小于约90、约100、约125或约150Pa-s的熔体粘度。在又一方面,流动改性剂具有小于约150Pa-s的熔体粘度。在又一方面,流动改性剂具有小于约100Pa-s的熔体粘度。在又一方面,流动改性剂具有小于约90Pa-s的熔体粘度。在1000/s的剪切速率下测定Pa-s值。
D.聚醚酰亚胺-硅氧烷共聚物
可以使用各种类型的聚醚酰亚胺-硅氧烷共聚物。聚醚酰亚胺-硅氧烷共聚物可以是具有10至50重量百分数的硅氧烷的聚醚酰亚胺-硅氧烷无规共聚物。聚醚酰亚胺-硅氧烷共聚物可以是具有10至35重量百分数的硅氧烷的聚醚酰亚胺-硅氧烷无规共聚物。聚醚酰亚胺-硅氧烷共聚物可以是具有15至30%二甲基硅氧烷和10至40个二甲基硅氧烷单元的嵌段长度的聚醚酰亚胺-硅氧烷嵌段共聚物。
聚醚酰亚胺-硅氧烷共聚物的硅氧烷片段的嵌段长度可以是任何有效的长度。在一些实施例中,它可以是2至50个硅氧烷重复单元。在其他实例中,硅氧烷嵌段长度可以是5至30个重复单元。在其他实例中可以使用二甲基硅氧烷。
在美国专利号4,404,350、4,808,686和4,690,997中示出了这类硅氧烷聚醚酰亚胺的实例。在一个实例中,聚醚酰亚胺硅氧烷可以通过与用于聚醚酰亚胺的相似的方式制备,除了用胺-末端的有机硅氧烷替换有机二胺反应物的部分,或全部,如具有式X,其中,g是1至约50的整数,优选约5至约30的整数,并且R′是2至20个碳原子的芳基、烷基或芳基烷基基团。
可以通过本领域技术人员熟知的任何方法制备聚醚酰亚胺-硅氧烷共聚物,包括式(XI)的芳香族双(醚酐)与式(IV)的有机二胺的反应:
其中,T是-O-、-S-、-SO2-或式-O-Z-O-的基团,其中,-O-或-O-Z-O-基团的二价键在3,3’、3,4’、4,3’,或4,4’位,并且其中,Z包括,但不限于取代或未取代的二价有机基团,如:(a)具有约6至约20个碳原子的芳族烃基以及它们的卤化衍生物;(b)具有约2至约20个碳原子的直链或支链亚烷基基团;(c)具有约3至约20个碳原子的环亚烷基,或(d)通式(XII)的二价基团:
其中,Q包括但不限于选自由-O-、-S-、-C(O)-、-SO2-、-SO-、-CyH2y-(y是从1至8的整数)组成的组中的二价部分,以及它们的氟化衍生物,包括全氟亚烷基基团;
H2N-R-NH2(式XIII)
其中,式(XIII)的R部分包括,但不限于,取代或未取代的二价有机基团,如:(a)具有约6至约24个碳原子的芳族烃基以及它们的卤化衍生物;(b)具有约2至约20个碳原子的直链或支链亚烷基基团;(c)具有约3至约20个碳原子的环亚烷基,或(d)通式(XII)的二价基团:
例如美国专利号3,972,902以及4,455,410公开了特定芳族双酐和有机二胺的实例。式(II)的芳族双酐的描述性实例包括:3,3-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐、4,4'-双(3,4-二羧基苯氧基)二苯基醚二酐、4,4'-双(3,4-二羧基苯氧基)二苯硫醚二酐、4,4'-双(3,4-二羧基苯氧基)二苯甲酮二酐、4,4'-双(3,4-二羧基苯氧基)二苯砜二酐、2,2-双[4-(2,3-二羧基苯氧基)苯基]丙烷二酐、4,4'-双(2,3-二羧基苯氧基)二苯基醚二酐、4,4'-双(2,3-二羧基苯氧基)二苯硫醚二酐、4,4'-双(2,3-二羧基苯氧基)二苯甲酮二酐、4,4'-双(2,3-二羧基苯氧基)二苯砜二酐、4-(2,3-二羧基苯氧基)-4'-(3,4-二羧基苯氧基)二苯基-2,2-丙烷二酐、4-(2,3-二羧基苯氧基)-4'-(3,4-二羧基苯氧基)二苯基醚二酐、4-(2,3-二羧基苯氧基)-4'-(3,4-二羧基苯氧基)二苯硫醚二酐、4-(2,3-二羧基苯氧基)-4'-(3,4-二羧基苯氧基)二苯甲酮二酐和4-(2,3-二羧基苯氧基)-4'-(3,4-二羧基苯氧基)二苯基砜二酐,以及它们的各种混合物。
合适的化合物的实例是乙二胺、丙二胺、三亚甲基二胺、二亚乙基三胺、三亚乙基四胺、六亚甲基二胺、七亚甲基二胺、八亚甲基二胺、九亚甲基二胺、十亚甲基二胺、1,12-十二烷二胺、1,18-十八烷二胺、3-甲基七亚甲基二胺、4,4-二甲基七亚甲基二胺、4-甲基九亚甲基二胺、5-甲基九亚甲基二胺、2,5-二甲基六亚甲基二胺、2,5-二甲基七亚甲基二胺、2,2-二甲基丙二胺、N-甲基-双(3-氨基丙基)胺、3-甲氧基六亚甲基二胺、1,2-双(3-氨基丙氧基)乙烷、双(3-氨基丙基)硫醚、1,4-环己烷二胺、双-(4-氨基环己基)甲烷、间苯二胺、对苯二胺、2,4-二氨基甲苯、2,6-二氨基甲苯、间苯二甲基二胺、对苯二甲基二胺、2-甲基-4,6-二乙基-1,3-亚苯基-二胺、5-甲基-4,6-二乙基-1、3-亚苯基-二胺、联苯胺、3,3'-二甲基联苯胺、3,3'-二甲氧基联苯胺、1,5-二氨基萘、双(4-氨基苯基)甲烷、双(2-氯-4-氨基-3,5-乙基苯基)甲烷、双(4-氨基苯基)丙烷、2,4-双(二氨基叔丁基)甲苯、双(对氨基-叔丁基苯基)醚、双(对甲基邻氨基苯基)苯、双(对甲基-邻氨基戊基)苯、1,3-二氨基-4-异丙基苯、双(4-氨基苯基)硫醚、双(4-氨基苯基)砜、双(4-氨基苯基)醚和1,3-双(3-氨基丙基)四甲基二硅氧烷。这些化合物的混合物也可以存在。优选的二氨基化合物是芳族二胺,特别是间-和对-苯二胺、磺酰基二苯胺和它们的混合物。
一些聚醚酰亚胺-硅氧烷共聚物可以通过有机二胺或式(XIII)的二胺混合物和X的胺末端有机硅氧烷的反应形成。在反应之前,该二胺组分可以与双酐物理混合从而形成基本上无规共聚物。可替代地,可以通过式(XIII)和式(X)与二酐,例如式XI的那些,的选择性反应来形成嵌段或者交替共聚物,以制备随后一起反应的聚酰亚胺嵌段。在另一实例中,用于制备聚醚酰亚胺共聚物的硅氧烷可以具有酸酐,而不具有胺官能端基。
在不同的方面,硅氧烷聚醚酰亚胺共聚物可以具有式(XIV),其中,T、R′和g如上面描述,n是5至100并且Ar是6至36个碳的芳基或烷基芳基。
在不同的方面,硅氧烷聚醚酰亚胺共聚物的二胺组分可以包含约20至约50mole%的式I的胺封端有机硅氧烷以及从约50至80mole%的式IV的有机二胺。在一些硅氧烷共聚物中,硅氧烷组分来自约25至约40mole%的胺或酸酐封端有机硅氧烷,例如在美国专利第4,404,350号描述的。
在一个方面,纤维增强热塑性复合物可以包含以至少约1.0wt%、约1.1wt%、约1.2wt%、约1.3wt%、约1.4wt%、约1.5wt%、约1.6wt%、约1.7wt%、约1.8wt%、约1.9wt%、约2.0wt%、约2.2wt%、约2.4wt%、约2.6wt%、约2.8wt%、约3.0wt%、约3.5wt%、约4.0wt%、约5.0wt%、约5.5wt%、约6.0wt%、约7.0wt%、约8.0wt%、约9.0wt%、约10.0wt%、约11.0wt%、约12.0wt%、约13.0wt%,或约14.0wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在另一方面,纤维增强热塑性复合物可以包含以至少约1.0wt%、1.1wt%、1.2wt%、约1.3wt%、约1.4wt%、约1.5wt%、约1.6wt%、约1.7wt%、1.8wt%、1.9wt%、约2.0wt%、约2.2wt%、约2.4wt%、约2.6wt%、约2.8wt%,或约3.0wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以至少约1.0wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以至少约2.0wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以至少约3.0wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。
在另一方面,纤维增强热塑性复合物可以包含以约1wt%至约15wt%、约1wt%至约14wt%、约1wt%至约13wt%、约1wt%至约12wt%、约1wt%至约11wt%、约1wt%至约10wt%、约1wt%至约9wt%、约1wt%至约8wt%、约1wt%至约7wt%、约1wt%至约6wt%、约1wt%至约5wt%、约2wt%至约15wt%、约2wt%至约14wt%、约2wt%至约13wt%、约2wt%至约12wt%、约2wt%至约11wt%、约2wt%至约10wt%、约2wt%至约9wt%、约2wt%至约8wt%、约2wt%至约7wt%、约2wt%至约6wt%、约2wt%至约5wt%、约3wt%至约15wt%、约3wt%至约14wt%、约3wt%至约13wt%、约3wt%至约12wt%、约3wt%至约11wt%、约3wt%至约10wt%、约3wt%至约9wt%、约3wt%至约8wt%、约3wt%至约7wt%、约3wt%至约6wt%,或约3wt%至约5wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以约1wt%至约15wt%、约2wt%至约8wt%,或约3wt%至约5wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以至少约1wt%至约15wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以约2wt%至约8wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。在又一方面,纤维增强热塑性复合物可以包含以至少约3wt%至约5wt%的量存在的聚醚酰亚胺-硅氧烷共聚物。
E.碳纤维
适合用于制造本发明公开的复合物碳纤维的碳纤维具有约500千磅每平方英寸(KSI)至约1,200(KSI)范围的拉伸强度。例如,中间模量(IM)碳纤维可以是聚丙烯腈(PAN)类碳纤维。PAN类碳纤维通常表现出约500至约1000KSI的拉伸强度值。例如,PAN类碳纤维可以具有约822KSI的拉伸强度。在不同的方面,碳纤维可以选自标准模量、中间模量以及高模量碳纤维,条件是碳纤维具有约500千磅每平方英寸(KSI)至约1,200KSI的拉伸强度。
在一个方面,适合用于制造本发明公开的复合物的中间模量纤维具有约600KSI至1,200KSI范围的拉伸强度。在另一方面,适合用于制造本发明公开的复合物的中间模量纤维具有约700KSI至1,200KSI范围的拉伸强度。在又一方面,适合用于制造本发明公开的复合物的中间模量纤维具有约800KSI至1,200KSI范围的拉伸强度。
在各个方面,适用于制造本发明中公开的复合材料的碳纤维具有大于或等于约400KSI、约450KSI、约500KSI、约550KSI、约600KSI、约650KSI、约700KSI、约750KSI、约800KSI、约850KSI,或约900KSI的拉伸强度。在另一方面,适用于制造本发明公开的复合材料的碳纤维具有大于或等于约700KSI、约710KSI、约720KSI、约730KSI、约740KSI、约750KSI、约760KSI、约770KSI、约780KSI、约790KSI、约800KSI、约810KSI、约820KSI、约830KSI、约840KSI、约850KSI、约860KSI、约870KSI、约880KSI、约890KSI,或约900KSI的拉伸强度。在又一方面,适合用于制造本发明公开的复合物的碳纤维具有大于或等于约400KSI的拉伸强度。在又一方面,适合用于制造本发明公开的复合物的碳纤维具有大于或等于约500KSI的拉伸强度。在又一方面,适合用于制造本发明公开的复合物的碳纤维具有大于或等于约600KSI的拉伸强度。在又一方面,适合用于制造本发明公开的复合物的碳纤维具有大于或等于约700KSI的拉伸强度。在又一方面,适合用于制造本发明公开的复合物的碳纤维具有大于或等于约800KSI的拉伸强度。在又一方面,适用于制造本发明公开的复合物的碳纤维具有大于或等于约810KSI的拉伸强度。在又一方面,适用于制造本发明公开的复合物的碳纤维具有大于或等于约820KSI的拉伸强度。在又一方面,适用于制造本发明公开的复合物的碳纤维具有大于或等于约830KSI的拉伸强度。在又一方面,适用于制造本发明公开的复合物的碳纤维具有大于或等于约840KSI的拉伸强度。在另又一方面,适用于制造本发明公开的复合物的碳纤维具有大于或等于约850KSI的拉伸强度。
在各个方面,适合用于在本发明公开的复合物的制造中使用的高强度碳纤维具有大于或等于约400KSI、约450KSI、约500KSI、约550KSI、约600KSI、约650KSI、约700KSI、约750KSI、约800KSI、约850KSI,或约900KSI的拉伸强度。在另一方面,适合用于在本发明公开的复合物的制造中使用的高强度碳纤维具有大于或等于约700KSI、约710KSI、约720KSI、约730KSI、约740KSI、约750KSI、约760KSI、约770KSI、约780KSI、约790KSI、约800KSI、约810KSI、约820KSI、约830KSI、约840KSI、约850KSI、约860KSI、约870KSI、约880KSI、约890KSI,或约900KSI的拉伸强度。在又一方面,适合用于在本发明公开的复合物的制造中使用的高强度纤维具有大于或等于约400KSI的拉伸强度。在又一方面,适合用于在本发明公开的复合物的制造中使用的高强度纤维具有大于或等于约500KSI的拉伸强度。在又一方面,适合用于在本发明公开的复合物的制造中使用的高强度纤维具有大于或等于约600KSI的拉伸强度。在又一方面,适合用于在本发明公开的复合物的制造中使用的高强度纤维具有大于或等于约700KSI的拉伸强度。在又一方面,适合用于在本发明公开的复合物的制造中使用的高强度纤维具有大于或等于约800KSI的拉伸强度。在又一方面,适合用于在本发明公开的复合物的制造中使用的高强度纤维具有大于或等于约810KSI的拉伸强度。在又一方面,适合用于在本发明公开的复合物的制造中使用的高强度碳纤维具有大于或等于约820KSI的拉伸强度。在又一方面,适合用于在本发明公开的复合物的制造中使用的高强度碳纤维具有大于或等于约830KSI的拉伸强度。在又一方面,适合用于在本发明公开的复合物的制造中使用的高强度碳纤维具有大于或等于约840KSI的拉伸强度。在又一方面,适合用于在本发明公开的复合物的制造中使用的高强度碳纤维具有大于或等于约850KSI的拉伸强度。
如本领域中的普通技术人员将理解的,大多数可商购的碳纤维通常通过聚丙烯腈纤维,也被称为PAN纤维的控制热解来生产,或通过碳化由液晶态的商业沥青纺丝的沥青纤维来生产。当与PAN类碳纤维(500-1000KSI或更高)相比时,基于沥青的碳纤维通常具有较低的拉伸强度(300-450KSI),这可以部分归因于纺丝液晶沥青的困难。由于其较高的拉伸强度,适合用于在本公开的复合材料的制造中使用的碳纤维将主要是PAN类碳纤维。
可商购的高强度碳纤维的非限制性实例包括可商购自Hexcel Corporation的具有约822KSI的拉伸强度的HexTowTM IM7和可商购自Toray Carbon Fibers America,Inc.的具有约850KSI的拉伸强度的TORAYCATM T800S。
F.方法
本文还公开了用于制造复合物,例如纤维增强热塑性复合材料的方法。在一个方面中,该方法可以制造本文别处描述的纤维增强的热塑性复合物。
还公开了用于制造纤维增强热塑性组合物的方法,包括以下步骤:a)提供热塑性树脂组合物,包含:i)具有小于或等于约40,000道尔顿的分子量的热塑性树脂;ii)流动改性剂;以及iii)聚醚酰亚胺-硅氧烷共聚物;b)引入分散于连续的热塑性聚合物相中的具有拉伸强度约500至约1,2000千磅每平方英寸(KSI)范围的多个碳纤维以形成纤维增强热塑性复合物前体组合物;以及c)由前体组合物形成纤维增强热塑性复合物;并且其中,形成的纤维增强热塑性复合物表现出至少约240Mpa的拉伸强度;其中,复合物表现出至少约75J/m的缺口悬臂梁冲击强度;其中,复合物表现出至少约500J/m的无缺口悬臂梁冲击强度;其中,当根据ASTM D1238在380℃和6.6kg质量的条件下测定时,复合物表现出至少约40g/10min的熔体质量-流动速率(MFR);并且其中,当根据俄亥俄州立大学(OSU)热释放试验测量时,复合物表现出特征为小于约65KW/m2的2分钟总热释放以及小于约65kW/m2的峰值热释放率的热释放曲线。
在一个方面,本方法的一个或多个步骤可以在挤出机中进行,例如双螺杆挤出机,如ZSK 40mm双螺杆挤出机。在一个方面,将热塑性树脂和流动改性剂加入到挤出机的进料喉部。可以在该过程的后期阶段或进料喉部的下游加入碳纤维。
在一个方面中,在挤出机的机筒温度可以是约300℃和约400℃之间,例如约360℃与约370℃之间。
在一个方面,模具温度可以是约120℃、约140℃、约160℃、约180℃,或约200℃。例如,模具温度可以是约160℃。
在各方面中,可以使用常见热塑性方法如膜和片材挤出,将本文公开的纤维增强热塑性复合物转换为制品,膜和片材挤出过程可以包括但不限于熔融铸模,吹塑薄膜挤出和压延。可以使用共挤出和层压过程用于形成复合多层膜或片材。可以将单层或多层涂层进一步施加到单层或多层基板以赋予另外的属性,例如抗刮伤性,紫外光耐受性,美观性等。可以通过标准应用技术如,辊涂、喷涂、浸涂、刷涂,或流涂施加涂料。可替换地,膜和片材可以通过在基板、带或辊上浇铸处于合适溶剂中的组合物的溶液或悬浮液,随后除去溶剂来制备。也可以使用标准的过程如溅射、真空沉积和薄箔层压来金属化薄膜。
可以通过在热变形温度附近通过吹塑薄膜挤出或者通过拉伸浇铸或压延膜,使用常规拉伸技术来制备定向膜。例如,可以使用径向拉伸缩放仪(radial stretchingpantograph)用于多轴同时拉伸;可以同时使用x-y方向拉伸缩放仪或在平面X-Y方向上同时地或顺序地延伸。也可以使用具有顺序单轴拉伸部分的设备以获得单轴和双轴拉伸,例如,机器装备有差速辊部分用于在机器方向拉伸以及拉幅机部分(tenter frame section)用于在横向方向拉伸。
在各个方面,本文公开的纤维增强热塑性复合物可转化为,包括具有第一侧和第二侧的第一片材的多壁片材,其中,该第一片材包含热塑性聚合物,以及其中,该第一片材的第一侧置于多个肋部的第一侧上;以及具有第一侧和第二侧的第二片材,其中,第二片材包含热塑性聚合物,其中,第二片材的第一侧置于多个肋部的第二侧上,并且其中,多个肋部的第一侧与多个肋部的第二侧相对。
通过形成和模制过程,包括但不限于热成形、真空成形、压力成形、注射成型和压塑成型,上面描述的膜和片材可以进一步热塑加工为成形的制品。通过在单层或多层膜或片材基板上注射成型热塑性树脂也可以形成多层成形的制品,如下:1)例如,使用转印染料的丝网印刷,在表面上提供了可选地具有一种或多种颜色的单层或多层热塑性基板;2)使基板符合模具构型,例如通过形成或修整基板为三维形状并且将基板安装到具有表面的模具中,所述表面匹配基板的三维形状;以及3)将热塑性树脂注射进基板后的模具腔中以便(i)生产一体式永久连接的三维产品或(ii)将图案或美学效果从印刷基板转移至注射树脂并且除去印刷基板,从而赋予模制树脂美学效果。
本领域普通技术人员也将认识到,普通的固化和表面改性过程,包括但不限于热定形、纹理、压花、电晕处理、火焰处理、等离子体处理以及真空沉积可以进一步应用至上面的制品以改变表面外形并且将另外的功能赋予制品。
在公开和描述本发明的化合物、组合物、制品、系统、设备、和/或方法之前,应理解的是,除非另有说明,它们不限于特定的合成方法,或者,除非另有说明,它们不限于特定的试剂,因为这些当然可以改变。还应理解的是,本文使用的术语仅是为了描述具体方面的目的,而并非旨在进行限制。尽管与本文描述的那些相似或等效的任何方法和材料可以用于本发明的实践或试验中,现在描述实例方法和材料。
本文中提到的所有出版物通过引用结合于此以便与出版物所引用的内容相关联公开和描述这些方法和/或材料。
G.制造制品
本发明还公开了包含本文描述的纤维增强热塑性复合物的制造的制品。
在一方面,制造的制品包括但不限于飞机部件。纤维加强热塑性组合物可以替换在飞机中使用的金属。合适的飞机部件,包括,但不限于:航空器食物托盘臂、扶手、座椅靠背框架、涂布机、柜子的扶手、水槽(sink),或存储单元。
在各个方面,本发明涉及包含本发明公开的纤维增强热塑性复合物的制品。在另一方面,制品可以是成形的制品。在又一方面,制品可以是模制品。在又一方面,制品可以是选自以下的至少一种:炊具、饮食用具、医学设备、托盘、板、把手、头盔、兽笼、电气连接器、电气设备外壳、发动机部件、汽车发动机部件、照明插座、照明反射器、电动马达部件、配电设备、通讯设备、计算机、具有模制搭扣配合连接器的设备、片材、膜、多层片材、多层膜、模塑部件、挤出型材、涂覆部件、纤维、泡沫、窗、行李架、墙板、椅子部件、照明面板、扩散器、灯罩、隔板、透镜、天窗、照明设备、反射体、管道系统、电缆盘、管道、管、电缆扎带、电线涂层、电气连接器、空气处理设备、通风器、百叶窗板、绝缘材料、垃圾桶、储存容器、门、铰链、把手、水槽(sink)、反射镜外壳、反射镜、马桶座圈、衣架、衣帽钩、货架、梯子、扶手栏杆、台阶、车、托盘、炊具、食品服务设备、通信设备和仪表板。在又一方面,制品可以是选自以下的至少一种:堆装仓、行李架、包裹架、包装盘、顶蓬(headliner)、车门模块、面板、房间或空间隔板、外皮和裙部、仪表板顶盖(instrument panel topper)、侧壁、天花板和地板的面板或瓷砖、货物滑轮(cargo liner)、支持物或支柱元件或修剪材料、遮阳伞、托盘和盖、噪音和振动护罩和垫、耐磨垫、脚踏板、车身底板、座椅底座或背衬、板、防护罩、轮罩和轮舱(wheelwell)或面板或饰板材料等。该制品可以是选自由飞机、火车、公共汽车、轮船和汽车组成的组中的运输工具的部件。
实施例
提出以下实施例以便为本领域的普通技术人员提供如何制造和评价本文要求保护的化合物、组合物、制品、设备和/或方法的完整的公开和描述,并且旨在纯粹是举例说明本发明而并不旨在限制本发明人所认为的发明范围。已经努力确保数字(例如,量、温度等)的准确性,但应考虑一些误差和偏差。除非另外指出,否则份是指重量份,温度以℃表示或者是在环境温度下,并且压力是大气压或接近大气压。
使用表1所示的材料以制备本发明的复合材料。
表1
复合物批次
使用如表2所示的反应物,使用如表1所描述的材料制备代表性的复合物组合物。各批次下给出的数值是每个项目以磅计的量,其被用于按整个组合物的wt%计的指示批次中。
表2
*所有组分的量以总组合物的wt%给出。
表3示出熔体流动速率以及OSU热释放试验结果(针对表2中描述的3个批次)。在380℃和6.6kg的质量下,根据ASTM D1238测定熔体质量流动速率(“MFR”)。
表3表明,在具有更高的Mw的PEI的复合物中30重量百分数(wt%)负载的碳纤维满足了OSU热释放性能的要求,但MFR非常低(10g/10min钟;见批次1的结果)。批次1的MFR表明该类型的配方不适合用于制造大型制品。对比下,批次2,在具有31K的Mw的PEI中具有30wt%的碳纤维具有改善的MFR,但没有达到OSU热释放性能试验的要求。令人惊奇地,在与批次2相同的PEI中包含30wt%碳纤维的批次3(但是加入了聚醚酰亚胺-硅氧烷共聚物和流动改性剂)具有表现出的优异的熔体流动性以及优异的OSU热释放性能。
表3
*根据ASTM D1238在380℃和6.6kg的质量下测定。
如下所述测定表3、表4和本文其它地方提及的各种参数。使用来自Instron的材料试验系统(MTS)使用5mm/min试验速度来测定拉伸强度,并且根据ASTM D638进行。根据ASTMD1238,测定熔体流动速率(MFR),并且在380℃和6.6kg质量下使用来自Tinius Olsen的挤出式塑度计(extrusion plastometer)测定。使用来自Tinius Olsen的抗冲击试验仪测定缺口悬臂梁冲击强度以及无缺口悬臂梁冲击强度并且根据ASTM D256进行。
表4
与通过OSU热释放性能试验的批次相比,即批次1和3,表4示出了纯树脂PEI 1和PEI 2的拉伸强度、缺口悬臂梁冲击强度、无缺口悬臂梁冲击强度(见表1描述)。表4的数据表明PEI 2的拉伸强度(更低的MwPEI;Mw=31,000)比PEI 1低12%(更高的MwPEI;Mw=54,000)。PEI 2的缺口悬臂梁冲击强度和无缺口悬臂梁抗冲击强度都比PEI 1低约60%。令人惊奇地,包含更低Mw的PE I、PEI 2的批次3表现出与包含更高Mw的PEI、PEI 1的批次1非常相似的拉伸强度、缺口悬臂梁冲击强度,以及无缺口悬臂梁冲击强度。因此,包含低Mw的PEI、流动改性剂、聚醚酰亚胺-硅氧烷共聚物以及碳纤维的组合物提供了复合材料,其表现出优异的拉伸强度、缺口悬臂梁冲击强度、无缺口悬臂梁冲击强度、熔体流动性以及OSU热释放性能。
实施方式1:纤维增强热塑性复合物,包含a)含有以下各项的连续的热塑性聚合物相:i)具有小于或等于约40,000道尔顿的分子量的热塑性树脂;ii)流动改性剂;以及iii)聚醚酰亚胺-硅氧烷共聚物;以及b)包含分散于连续的热塑性聚合物相中的具有拉伸强度约500至约1,200千磅每平方英寸(KSI)范围的多个碳纤维的分散相;其中,复合物表现出至少约240MPa的拉伸强度;其中,复合物表现出至少约75J/m的缺口悬臂梁冲击强度;其中,复合物表现出至少约500J/m的无缺口悬臂梁冲击强度;其中,当根据俄亥俄州立大学(OSU)热释放试验测量时,复合物表现出特征为于小于约65KW/m2的2分钟的总的热释放以及小于约65kW/m2的峰值热释放率的热释放曲线。
实施方式2:实施方式1的复合物,其中,连续的热塑性聚合物相包含具有小于或等于约39,000道尔顿分子量的聚醚酰亚胺。
实施方式3:实施方式2的复合物,其中,聚醚酰亚胺具有小于或等于约35,000道尔顿的分子量。
实施方式4:实施方式1至3中任一项的复合物,其中,热塑性树脂以不超过复合物的70wt%的量存在。
实施方式5:实施方式1至4中任一项的复合物,其中,热塑性树脂以复合物的约40wt%至约60wt%范围的量存在。
实施方式6:实施方式1至5中任一项的复合物,其中,流动改性剂以连续热塑性聚合物相的约10wt%至约40wt%范围的量存在。
实施方式7:实施方式1-6中任一项的复合物,其中,流动改性剂包含聚醚醚酮。
实施方式8:实施方式7的复合物,其中,聚醚醚酮不是聚苯砜聚合物。
实施方式9:实施方式7-8中任一项的复合物,其中,当在400℃以及1000/s的剪切速率的条件下测定时,聚醚醚酮具有小于约150帕斯卡-秒(Pa-s)的熔体粘度。
实施方式10:实施方式1至9中任一项的复合物,其中,聚醚酰亚胺-硅氧烷共聚物以大于或等于约1wt%的量存在。
实施方式11:实施方式1至10中任一项的复合物,其中,聚醚酰亚胺-硅氧烷共聚物以约2wt%至约8wt%的量存在。
实施方式12:实施方式1至11中任一项的复合物,其中,多个碳纤维以复合物总重量的至少约20wt%的量存在。
实施方式13:实施方式1至12中任一项的复合物,其中,当根据ASTM D1238在380℃和6.6kg质量的条件下测量时,复合物进一步表现出至少约40g/10min的熔体质量流动速率(“MFR”)。
实施方式14:实施方式1至13中任一项的复合物,其中,当根据ASTM D1238在380℃和6.6kg质量的条件下测量时,复合物进一步表现出至少约50g/10min的熔体质量-流动速率(MFR)。
实施方式15:纤维增强热塑性复合物,包含含有以各项的连续的热塑性聚合物相:a)具有小于或等于约40,000道尔顿的分子量的聚醚酰亚胺;当在400℃以及1000/s的剪切速率条件下测定时,具有小于约150帕斯卡-秒(Pa-s)的熔体粘度的聚醚醚酮;以及聚醚酰亚胺-硅氧烷共聚物;以及b)包含分散于连续的热塑性聚合物相中的具有拉伸强度约500至约1,200千磅每平方英寸(KSI)范围的多个碳纤维的分散相;并且其中,复合物表现出至少约75J/m的缺口悬臂梁冲击强度;其中,复合物表现出至少约500J/m的无缺口悬臂梁冲击强度;其中,根据ASTM D1238在380℃和6.6kg的质量的条件下测定时,复合物表现出至少约40g/10min的熔体质量-流动速率(MFR);其中,当根据俄亥俄州立大学(OSU)热释放试验测量时,复合物表现出特征为小于约65KW/m2的2分钟总热释放以及小于约65kW/m2的峰值热释放率的热释放曲线。
实施方式16:实施方式15的复合物,其中,聚醚酰亚胺具有小于或等于约40,000道尔顿的分子量。
实施方式17;实施方式15至16中任一项的复合物,其中,聚醚酰亚胺以不超过复合物的70wt%的量存在。
实施方式18:实施方式15至17中任一项的复合物,其中,聚醚酰亚胺以复合物的约40wt%至约60wt%范围的量存在。
实施方式19:实施方式15至18中任一项的复合物,其中,聚醚醚酮以连续的热塑性聚合物相的约10wt%至约40wt%范围的量存在。
实施方式20:实施方式15至19中任一项的复合物,其中,当在400℃以及1000/s的剪切速率的条件下测定时,聚醚醚酮具有小于约100帕斯卡-秒(Pa-s)的熔体粘度。
实施方式21:实施方式15至20中任一项的复合物,其中,多个碳纤维以复合物的总重量的至少约20wt%的量存在。
实施方式22:实施方式15至21中任一项的复合物,其中,聚醚酰亚胺-硅氧烷共聚物以约2wt%至约8wt%的量存在。
实施方式23:纤维增强热塑性复合物,包含:a)连续的热塑性聚合物相,包含:i.具有小于或等于约40,000道尔顿分子量的聚醚酰亚胺,其中,聚醚酰亚胺树脂以不超过复合物的约70wt%的量存在于复合物中;ii.当在400℃以及1000/s的剪切速率条件下测定时,具有小于150帕斯卡-秒(Pa-s)的熔体粘度的聚醚醚酮,其中,聚醚醚酮以连续的热塑性聚合物相的约10wt至约40wt%的范围的量存在于复合物中;以及iii.聚醚酰亚胺-硅氧烷共聚物,其中聚醚酰亚胺-硅氧烷共聚物以复合物的至少约1wt%的量存在;以及b)包含分散于连续的热塑性聚合物相中的具有约500至约1200千磅每平方英寸(KSI)范围的拉伸强度的多个碳纤维的分散相,其中,多个碳纤维以复合物的总重量的至少约20wt%的量存在。
实施方式24:实施方式22的复合物,其中,复合物表现至少约75J/m的缺口悬臂梁冲击强度;其中,复合物表现出至少约500J/m的无缺口悬臂梁冲击强度;其中,当根据ASTMD1238,在380℃和6.6kg质量的条件下测定时,复合物表现出至少约40g/10min的熔体质量-流动速率(MFR);其中,当根据美国俄亥俄州立大学(OSU)热释放试验测定时,复合物表现出特征为小于约65kW/m2的2分钟总的热释放以及小于约65kW/m2的峰值热释放率的热释放曲线。
实施方式25:用于制造纤维增强热塑性复合物的方法,包括以下步骤:a)提供热塑性树脂组合物,包括:i.具有至少40,000道尔顿的分子量的聚醚酰亚胺;ii.流动改性剂;以及iii.聚醚酰亚胺-硅氧烷共聚物;以及b)将具有拉伸强度约500至约1,200千磅每平方英寸(KSI)范围的多个碳纤维引入至热塑性树脂组合物以形成纤维增强热塑性复合物前体组合物;以及c)由前体组合物形成纤维增强热塑性复合物;其中,复合物表现出至少约240MPa的拉伸强度;其中,复合物表现出至少约75J/m的缺口悬臂梁冲击强度;其中,复合物表现出至少约500J/m的无缺口悬臂梁冲击强度;其中,当根据ASTM D1238,在380℃和6.6kg质量的条件下测定时,复合物表现出至少40g/10min的熔体质量-流动速率(MFR);其中,当根据美国俄亥俄州立大学(OSU)热释放试验测定时,复合物表现出特征为小于约65kW/m2的2分钟总的热释放以及小于约65kW/m2的峰值热释放率的热释放曲线。
实施方式26:实施方式25的方法,其中,聚醚酰亚胺具有小于或等于约40,000道尔顿的分子量。
实施方式27:实施方式25至26中任一项的方法,其中,聚醚酰亚胺具有至少39,000道尔顿的分子量。
实施方式28:实施方式25至27中任一项的方法,其中,聚醚酰亚胺具有至少35,000道尔顿的分子量。
实施方式29:实施方式25至28中任一项的方法,其中,聚醚酰亚胺以不超过热塑性复合物前体组合物的约70wt%的量存在。
实施方式30:实施方式25至29中任一项的方法,其中,聚醚酰亚胺以热塑性复合物前体组合物的约40wt%至约60wt%的范围的量存在。
实施方式31:实施方式25至30中任一项的方法,其中,流动改性剂以热塑性树脂组合物的约10wt%至约40wt%范围的量存在。
实施方式32:实施方式31的方法,其中,流动改性剂包含聚醚醚酮。
实施方式33:实施方式32的方法,其中,当在400℃以及1000/s的剪切速率的条件下测定时,聚醚醚酮具有小于150帕斯卡-秒(Pa-s)的熔体粘度。
实施方式34:实施方式25至33中任一项的方法,其中,多个碳纤维以热塑性复合物前体组合物的至少约20wt%的量存在。
对于本领域技术人员而言,显而易见的是,在不背离本发明的范围或精神的情况下,可以对本发明进行各种改进和变化。对于本领域的技术人员来说,通过考虑本文公开的本发明的说明书和实践,可以清楚本发明的其他实施方式。所希望的是本发明的说明书和实施例仅认为是示例性的,本发明真正的范围和精神由随附的权利要求指出。
本发明的可授予专利权的范围是由权利要求限定的,并且可以包括本领域技术人员想到的其它实施例。如果此类其它实施例具有与权利要求的字面语言并无不同的结构要素,或者如果它们包括与权利要求的字面语言无实质性区别的等同结构要素,则预期此类其它实施例在权利要求的范围内。

Claims (17)

1.一种包含连续的热塑性聚合物相的纤维增强热塑性复合物,包含:
a)聚醚酰亚胺,具有小于或等于40,000道尔顿的分子量;聚醚醚酮,当在400℃以及1000/s的剪切速率的条件下测定时,具有小于150帕斯卡·秒的熔体粘度;和聚醚酰亚胺-硅氧烷共聚物;以及
b)分散相,包含分散在所述连续的热塑性聚合物相中的具有500至1,200千磅/平方英寸范围的拉伸强度的多个聚丙烯腈类碳纤维;以及
其中,所述复合物表现至少75J/m的缺口悬臂梁冲击强度;其中,所述复合物表现出至少500J/m的无缺口悬臂梁冲击强度;其中,当根据ASTM D1238,在380℃和6.6kg质量的条件下测定时,所述复合物表现出至少40g/10min的熔体质量-流动速率;其中,当根据俄亥俄州立大学热释放试验测量时,所述复合物表现出特征为小于65kW/m2的2分钟的总的热释放以及小于65kW/m2的峰值热释放率的热释放曲线。
2.根据权利要求1所述的复合物,其中,所述聚醚酰亚胺具有小于或等于35,000道尔顿的分子量。
3.根据权利要求1所述的复合物,其中,所述聚醚酰亚胺以不超过所述复合物70wt%的量存在。
4.根据权利要求1所述的复合物,其中,所述聚醚酰亚胺以所述复合物的40wt%至60wt%的范围的量存在。
5.根据权利要求1所述的复合物,其中,所述聚醚醚酮以所述连续的热塑性聚合物相的10wt%至40wt%的范围的量存在。
6.根据权利要求1所述的复合物,其中,当在400℃以及1000/s的剪切速率的条件下测定时,所述聚醚醚酮具有小于100帕斯卡·秒的熔体粘度。
7.根据权利要求1所述的复合物,其中,所述多个聚丙烯腈类碳纤维以所述复合物的总重量的至少20wt%的量存在。
8.根据权利要求1所述的复合物,其中,所述聚醚酰亚胺-硅氧烷共聚物以2wt%至8wt%的量存在。
9.一种纤维增强热塑性复合物,包含:
a)连续的热塑性聚合物相,包含:
i.聚醚酰亚胺,具有小于或等于40,000道尔顿的分子量,其中,所述聚醚酰亚胺以不超过所述复合物70wt%的量存在于所述复合物中;
ii.聚醚醚酮,当在400℃以及1000/s的剪切速率的条件下测定时,具有小于150帕斯卡·秒的熔体粘度,其中,所述聚醚醚酮以所述连续的热塑性聚合物相的10wt%至40wt%的范围的量存在于所述复合物中;以及
iii.聚醚酰亚胺-硅氧烷共聚物,其中,所述聚醚酰亚胺-硅氧烷共聚物以所述复合物的至少1wt%的量存在;以及
b)分散相,包含分散于所述连续的热塑性聚合物相中的具有500至1,200千磅/平方英寸范围的拉伸强度的多个聚丙烯腈类碳纤维,其中,所述多个聚丙烯腈类碳纤维以所述复合物总重量的至少20wt%的量存在。
10.根据权利要求9所述的复合物,其中,所述复合物表现至少75J/m的缺口悬臂梁冲击强度;其中,所述复合物表现出至少500J/m的无缺口悬臂梁冲击强度;其中,当根据ASTMD1238,在380℃和6.6kg质量的条件下测定时,所述复合物表现出至少40g/10min的熔体质量-流动速率;其中,当根据俄亥俄州立大学热释放试验测定时,所述复合物表现出特征为小于65kW/m2的2分钟总的热释放以及小于65kW/m2的峰值热释放率的热释放曲线。
11.一种用于制造纤维增强热塑性复合物的方法,包括以下步骤:
a)提供热塑性树脂组合物,包含:
i.聚醚酰亚胺,具有至少40,000道尔顿的分子量;
ii.聚醚醚酮,当在400℃以及1000/s的剪切速率的条件下测定时,具有小于150帕斯卡·秒的熔体粘度;以及
iii.聚醚酰亚胺-硅氧烷共聚物;以及
b)将具有500至1200千磅/平方英寸范围的拉伸强度的多个聚丙烯腈类碳纤维引入至所述热塑性树脂组合物以形成纤维增强热塑性复合物前体组合物;并且
c)由所述前体组合物形成纤维增强热塑性复合物;以及
其中,所述复合物表现至少240MPa的拉伸强度;其中,所述复合物表现出至少75J/m的缺口悬臂梁冲击强度;其中,所述复合物表现出至少500J/m的无缺口悬臂梁冲击强度;其中,当根据ASTM D1238,在380℃和6.6kg质量的条件下测定时,所述复合物表现出至少40g/10min的熔体质量-流动速率;以及其中,当根据俄亥俄州立大学热释放试验测定时,所述复合物表现出特征为小于65kW/m2的2分钟的总的热释放以及小于65kW/m2的峰值热释放率的热释放曲线。
12.根据权利要求11所述的方法,其中,所述聚醚酰亚胺具有至少39,000道尔顿的分子量。
13.根据权利要求11所述的方法,其中,所述聚醚酰亚胺具有至少35,000道尔顿的分子量。
14.根据权利要求11所述的方法,其中,所述聚醚酰亚胺以不超过所述热塑性复合物前体组合物的70wt%的量存在。
15.根据权利要求11所述的方法,其中,所述聚醚酰亚胺以所述热塑性复合物前体组合物的40wt%至60wt%范围的量存在。
16.根据权利要求11所述的方法,其中,所述聚醚醚酮以所述热塑性树脂组合物的10wt%至40wt%范围的量存在。
17.根据权利要求11所述的方法,其中,所述多个聚丙烯腈类碳纤维以所述热塑性复合物前体组合物的至少20wt%的量存在。
CN201380036864.2A 2012-07-10 2013-06-28 高强度高抗冲击性高流动性osu顺从性的聚醚酰亚胺‑碳纤维复合物 Active CN104470976B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/545,730 US9260565B2 (en) 2012-07-10 2012-07-10 High strength high impact high flow OSU compliant polyetherimide-carbon fiber composites
US13/545,730 2012-07-10
PCT/US2013/048496 WO2014011414A1 (en) 2012-07-10 2013-06-28 High strength high impact high flow osu compliant polyetherimide-carbon fiber composites

Publications (2)

Publication Number Publication Date
CN104470976A CN104470976A (zh) 2015-03-25
CN104470976B true CN104470976B (zh) 2017-05-31

Family

ID=48790648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380036864.2A Active CN104470976B (zh) 2012-07-10 2013-06-28 高强度高抗冲击性高流动性osu顺从性的聚醚酰亚胺‑碳纤维复合物

Country Status (4)

Country Link
US (1) US9260565B2 (zh)
EP (1) EP2872548B1 (zh)
CN (1) CN104470976B (zh)
WO (1) WO2014011414A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2798032C1 (ru) * 2022-07-13 2023-06-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ получения аппретированных углеродных волокон и полиэфиримидные композиционные материалы

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146504A (ja) * 2016-02-18 2017-08-24 富士ゼロックス株式会社 管状体、転写ベルト、転写ユニット、及び、画像形成装置
WO2017180784A1 (en) * 2016-04-12 2017-10-19 Trillium Marketing Inc. Bi-polymer thermoplastic
EP3950847A1 (de) 2016-06-03 2022-02-09 Covestro Intellectual Property GmbH & Co. KG Mehrschichtverbundwerkstoff enthaltend spezielle siloxan-blockcopolycarbonate als matrixmaterial
US11352498B2 (en) * 2016-12-23 2022-06-07 Shpp Global Technologies B.V. Polyetherimide powders for additive manufacturing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976729A (en) * 1973-12-11 1976-08-24 Union Carbide Corporation Process for producing carbon fibers from mesophase pitch
EP0111327A1 (en) * 1982-12-09 1984-06-20 Amoco Corporation A composition useful for making circuit board substrates
US4690997A (en) * 1984-01-26 1987-09-01 General Electric Company Flame retardant wire coating compositions
CN1918220A (zh) * 2004-02-16 2007-02-21 株式会社吴羽 用于机械加工的原材料及其制造方法
CN102131847A (zh) * 2008-08-29 2011-07-20 纳幕尔杜邦公司 用于飞机发动机的复合材料部件
WO2012054595A1 (en) * 2010-10-20 2012-04-26 Sabic Innovative Plastics Ip B.V. Polyimide polyphenylsulfone blends with improved flame resistance

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972902A (en) 1971-01-20 1976-08-03 General Electric Company 4,4'-Isopropylidene-bis(3- and 4-phenyleneoxyphthalic anhydride)
US4005183A (en) * 1972-03-30 1977-01-25 Union Carbide Corporation High modulus, high strength carbon fibers produced from mesophase pitch
US4026788A (en) 1973-12-11 1977-05-31 Union Carbide Corporation Process for producing mesophase pitch
US4394475A (en) * 1981-12-24 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition for producing sized glass fiber strands with improved slip flow properties
US4455410A (en) 1982-03-18 1984-06-19 General Electric Company Polyetherimide-polysulfide blends
US4548997A (en) 1982-04-05 1985-10-22 General Electric Company Polyetherimide-polycarbonate blends
US4404350A (en) 1982-07-07 1983-09-13 General Electric Company Silicone-imide copolymers and method for making
US4629997A (en) 1985-03-25 1986-12-16 Fairchild Semiconductor Corporation Amplifier active load
US4629759A (en) 1985-10-28 1986-12-16 General Electric Company Flame retardant polyetherimide-polycarbonate blends
US4808686A (en) 1987-06-18 1989-02-28 General Electric Company Silicone-polyimides, and method for making
US4816527A (en) 1987-08-20 1989-03-28 General Electric Company Polycarbonate-siloxane polyetherimide copolymer blends
US5223556A (en) 1989-04-12 1993-06-29 Mitsui Toatsu Chemicals, Incorporated Aromatic polyetherketone resin compositions containing polyetherimide, polysulfone-coated carbon fibers and mechanical component formed therefrom
US6310145B1 (en) 1997-12-04 2001-10-30 General Electric Company Flame retardant polyetherimide resin composition with polycarbonate and polysiloxane
GB0322598D0 (en) 2003-09-26 2003-10-29 Victrex Mfg Ltd Polymeric material
US7230066B2 (en) 2004-12-16 2007-06-12 General Electric Company Polycarbonate—ultem block copolymers
US20120123053A1 (en) 2010-11-16 2012-05-17 Makoto Kibayashi Carbon fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976729A (en) * 1973-12-11 1976-08-24 Union Carbide Corporation Process for producing carbon fibers from mesophase pitch
EP0111327A1 (en) * 1982-12-09 1984-06-20 Amoco Corporation A composition useful for making circuit board substrates
US4690997A (en) * 1984-01-26 1987-09-01 General Electric Company Flame retardant wire coating compositions
CN1918220A (zh) * 2004-02-16 2007-02-21 株式会社吴羽 用于机械加工的原材料及其制造方法
CN102131847A (zh) * 2008-08-29 2011-07-20 纳幕尔杜邦公司 用于飞机发动机的复合材料部件
WO2012054595A1 (en) * 2010-10-20 2012-04-26 Sabic Innovative Plastics Ip B.V. Polyimide polyphenylsulfone blends with improved flame resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2798032C1 (ru) * 2022-07-13 2023-06-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ получения аппретированных углеродных волокон и полиэфиримидные композиционные материалы
RU2798036C1 (ru) * 2022-07-14 2023-06-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ получения аппретированных углеволокон и полиэфиримидные композиции

Also Published As

Publication number Publication date
US20140018491A1 (en) 2014-01-16
WO2014011414A1 (en) 2014-01-16
US9260565B2 (en) 2016-02-16
EP2872548B1 (en) 2018-09-05
CN104470976A (zh) 2015-03-25
EP2872548A1 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
CN103180389B (zh) 具有改善的阻燃性的聚酰亚胺聚苯基砜共混物
CN104470976B (zh) 高强度高抗冲击性高流动性osu顺从性的聚醚酰亚胺‑碳纤维复合物
CN101351507B (zh) 阻燃聚合物共混物
JP4846804B2 (ja) 難燃性のポリスルホン混和物
US7732516B2 (en) Flame retardant polyimide/polyester-polycarbonate compositions, methods of manufacture, and articles formed therefrom
JP5628521B2 (ja) ポリイミド樹脂組成物
JP5587606B2 (ja) ポリマーブレンド組成物
CZ2008154A3 (cs) Smesi polyaryletherketonu a polyetherimidsulfonu
US20070066739A1 (en) Coated articles of manufacture made of high Tg polymer blends
JP2009508994A (ja) 難燃性ポリマブレンド
CZ2008357A3 (cs) Predmety pro zásobování, obsahující polymery odolávající vysokým teplotám
Peters Engineering thermoplastics—materials, properties, trends
Luo et al. Preparation and characterization of novel polyimide films containing amide groups
JP2010510377A (ja) ポリマーブレンド組成物の製造方法
CN104350089B (zh) 用于代替金属的高模量高强度高流动性osu合规性聚醚酰亚胺‑碳纤维复合材料
WO2017003843A1 (en) Thermoplastic composition with balanced chemical resistance and impact properties
WO2009105377A2 (en) Polyetherimide and polyetherimide sulfone blends having automotive lighting applications
CN107124886A (zh) 形成聚酰亚胺的组合物、制备方法及由其制备的制品
Kong et al. Tough and solvent-proof polyamide-hydrazides containing aliphatic and aromatic supramolecular segments
WO2008088336A1 (en) COATED ARTICLES OF MANUFACTURE MADE OF HIGH Tg POLYMER BLENDS
JP5196342B2 (ja) ポリイミドフィルムおよび成形体
JPS62209135A (ja) ポリアミド

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Holland city Aupu zoom Bergen

Applicant after: Sabic Innovative Plastics IP

Address before: Holland city Aupu zoom Bergen

Applicant before: Sabic Innovative Plastics IP

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210316

Address after: Holland city Aupu zoom Bergen

Patentee after: High tech special engineering plastics Global Technology Co.,Ltd.

Address before: Holland city Aupu zoom Bergen

Patentee before: Saudi Basic Global Technology Co.,Ltd.

TR01 Transfer of patent right