CN104411848A - 软氮化处理用钢板及其制造方法 - Google Patents

软氮化处理用钢板及其制造方法 Download PDF

Info

Publication number
CN104411848A
CN104411848A CN201280074345.0A CN201280074345A CN104411848A CN 104411848 A CN104411848 A CN 104411848A CN 201280074345 A CN201280074345 A CN 201280074345A CN 104411848 A CN104411848 A CN 104411848A
Authority
CN
China
Prior art keywords
less
steel plate
ferrite
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280074345.0A
Other languages
English (en)
Other versions
CN104411848B (zh
Inventor
小林崇
中村展之
妻鹿哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
NKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp filed Critical NKK Corp
Publication of CN104411848A publication Critical patent/CN104411848A/zh
Application granted granted Critical
Publication of CN104411848B publication Critical patent/CN104411848B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明提供成形性和软氮化处理后的强度稳定性优良的软氮化处理用钢板。一种软氮化处理用钢板,具有如下组成:以质量%计,以使C和Nb满足0.10≤Nb/C≤0.30(C、Nb为各元素的含量(质量%))的方式含有C:0.05%以上且0.10%以下、Si:0.5%以下、Mn:0.7%以上且1.5%以下、P:0.05%以下、S:0.01%以下、Al:0.01%以上且0.06%以下、Cr:0.5%以上且1.5%以下、Nb:0.005%以上且0.025%以下、N:0.005%以下,余量由Fe和不可避免的杂质构成,并且具有如下组织:为含有铁素体和珠光体且所述铁素体和珠光体以外的组织的比例为1%以下的复合组织,并且多边形铁素体在所述铁素体中所占的比例小于50%。

Description

软氮化处理用钢板及其制造方法
技术领域
本发明涉及适合于汽车的变速器部件等要求疲劳强度、耐磨损性的机械结构用部件的软氮化处理用钢板,尤其是涉及软氮化处理前的成形性和软氮化处理后的强度稳定性优良的软氮化处理用钢板及其制造方法。
背景技术
对于汽车的变速器部件等长时间持续在应力负荷的状态下使用的机械结构用部件而言,要求疲劳强度、耐磨损性。因此,这些机械结构用部件通常通过将钢原材加工成所期望的部件形状后实施表面硬化热处理来制造。在实施表面硬化热处理时,钢表面发生硬化,并且在钢表层部导入有压缩残余应力,因此部件的疲劳强度和耐磨损性提高。
作为上述表面硬化热处理的代表例,可以列举渗碳处理和氮化处理。渗碳处理是将钢加热至A3相变点以上的温度而使碳在钢的表层部扩散、渗透(渗碳)的处理,通常通过将处于高温状态的渗碳后的钢直接进行淬火来实现钢的表面硬化。该渗碳处理中,在A3相变点以上的高温范围内使碳在钢表层部扩散、渗透,因此,碳扩散、渗透至距离钢表面较深的位置,结果得到大的硬化层深度。
但是,在采用渗碳处理作为表面硬化热处理的情况下,无法避免因淬火时的相变应变、热应变引起的部件形状精度的降低。另外,在渗碳后进行了淬火的状态下,钢的韧性显著降低。因此,在实施渗碳处理来制造部件的情况下,在淬火后必须实施以矫正部件形状、恢复韧性为目的的回火(例如加压回火处理),制造工序数增多,因此,在制造成本方面变得极其不利。
另一方面,氮化处理是将钢加热至A1相变点以下的温度而使氮在钢表层部扩散、渗透(氮化)的处理,可以在不像渗碳处理那样进行淬火的情况下实现钢的表面硬化。即,氮化处理的处理温度比较低,并且不伴有钢的相变,因此,如果实施氮化处理来制造部件,则能够使部件的形状精度保持良好。但是,在使用氨气的气体氮化的情况下,氮化所需要的时间显著长,为约25小时~约150小时,不适合于以大量生产为前提的汽车部件等。
作为有利地解决气体氮化中出现的上述问题的方法,近年来,越来越普及的是软氮化处理。软氮化处理是通过利用渗碳性气氛而使氮化反应迅速进行的氮化处理。利用这种软氮化处理,虽然所得到的钢表面硬度低于以往的氮化处理(气体氮化),但能够大幅缩短氮化处理时间。
软氮化处理大致分为在盐浴中进行氮化的方法和在气体中进行氮化的方法。在盐浴中进行氮化的方法(盐浴软氮化处理)中,由于使用氰系浴,因此需要防止环境污染的对策。另一方面,在气体中进行氮化的方法(气体软氮化处理)中,由于使用以氨为主要成分的混合气体,因此,导致环境污染的排放物少。基于上述理由,软氮化处理中,尤其是在气体中进行氮化的气体软氮化处理的普及率不断提高。
另一方面,汽车的变速器部件之类的机械结构用部件以往通常通过对利用铸造、锻造得到的中间品实施机械加工而加工、接合为期望的形状来制造,但近年来,积极地使用钢板(薄钢板)作为原材料,对钢板(薄钢板)实施冲压加工等而成形为期望的形状来制造。由此,与以往相比,能够减少制造工序,能够大幅削减制造成本。基于上述背景,适合于汽车的变速器部件等机械结构用部件的原材料的、成形性优良的软氮化处理用钢板的期望增高,到目前为止已提出了各种技术。
例如,在专利文献1和专利文献2中,公开了一种成形性优良的氮化用钢板的制造方法,其中,将以重量比计含有C:0.01以上且低于0.08%、Si:0.005~1.00%、Mn:0.010~3.00%、P:0.001~0.150%、N:0.0002~0.0100%、Cr:超过0.15且5.00%以下、Al:超过0.060且2.00%以下并且还含有Ti:0.010%以上且低于4C[%]、V:0.010~1.00%中的一种或两种的组成的钢在热轧后在500℃以上进行卷取,或者,然后以50%以上的轧制率实施冷轧,进行再结晶退火;并且公开了具有上述组成的成形性优良的氮化用钢板。另外,根据该技术,将对成形性带来不良影响的C含量抑制为低于0.08%,并且含有Cr、Al等作为氮化促进元素,由此形成成形性和氮化性优良的氮化用钢板。
另外,在专利文献3中,提出了一种软氮化处理用钢,其中,使组成为以质量%计含有C:0.03%以上且低于0.10%、Si:0.005~0.10%、Mn:0.1~1.0%、Cr:0.20~2.00%,杂质为S:0.01%以下、P:0.020%以下、sol.Al:0.10%以下、N:0.01%以下,余量实质上由Fe构成,并且,使按照JIS G 0552中规定的铁素体结晶粒度以粒度号计为5以上且12以下。而且,根据该技术,由于不添加Ti、V等价格昂贵的元素而得到廉价的钢板,并且,通过对钢的结晶粒径进行微细化而得到冲压加工性优良的钢板。
另外,在专利文献4中,提出了一种氮化处理用薄钢板,其中,使组成为以质量%计含有C:超过0.01%且0.09%以下、Si:0.005~0.5%、Mn:0.01~3.0%、Al:0.005~2.0%、Cr:0.50~4.0%、P:0.10%以下、S:0.01%以下和N:0.010%以下或者进一步含有选自V:0.01~1.0%、Ti:0.01~1.0%和Nb:0.01~1.0%中的一种或两种以上,并且使每单位体积的晶界面积Sv为80mm-1以上且1300mm-1以下。而且,根据该技术,在不阻碍钢板的成形性的范围内含有Cr、Al、V、Ti、Nb这样的氮化物形成元素,在此基础上,将每单位体积的晶界面积控制在预定的范围,由此,在氮化处理后同时得到高的表面硬度和充分的硬化深度这两者。
另外,在专利文献5中,提出了一种软氮化处理用钢板,其中,使组成为含有C:0.03~0.10质量%、Si:0.5质量%以下、Mn:0.1~0.6质量%、P:0.04质量%以下、S:0.04质量%以下、Al:0.005~0.08质量%、Cr:0.4~1.2质量%、Nb:0.002质量%以上且低于0.01质量%和N:0.01质量%以下。而且,根据该技术,通过含有微量的Nb,可以得到兼具加工性和疲劳特性的软氮化处理用钢板。
现有技术文献
专利文献
专利文献1:日本特开平9-25513号公报
专利文献2:日本特开平9-25543号公报
专利文献3:日本特开2003-105489号公报
专利文献4:日本特开2003-277887号公报
专利文献5:日本特开2009-68057号公报
发明内容
发明所要解决的问题
但是,对于专利文献1和专利文献2中提出的技术而言,由于含有大量Al作为氮化促进元素,因此担心会产生因Al夹杂物引起的内部缺陷和表面缺陷。另外,还发现如下问题:在精炼时生成大量Al系熔渣,因此会导致熔炼成本的高涨。
另外,对于专利文献3中提出的技术而言,虽然由于不含有价格昂贵的元素而可以得到廉价的软氮化处理用钢板,但其强度以拉伸强度计最高为约420MPa,因此,面向在高应力负荷状态下使用的部件的应用受到限制。
另外,对于专利文献4中提出的技术而言,虽然可以得到具有高于500MPa的拉伸强度的氮化处理用薄钢板,但对于氮化处理后的板厚方向的硬度分布并未考虑,实际上实施氮化处理后的部件耐久性能未达到所需的足够的水平的情况较多。
另外,对于专利文献5中提出的技术而言,虽然可以得到加工性优良的软氮化处理用钢板,但其强度以拉伸强度计最高为约400MPa,因此,与专利文献3中提出的技术同样,面向在高应力负荷状态下使用的部件的应用受到限制。
此外,在对钢板实施软氮化处理的情况下,通常将钢板加热至约550℃~约600℃的处理温度,在该处理温度下保持约1小时~约5小时,因此钢板表层部的硬度显著上升,另一方面,钢板内部(非氮化部)的强度有时会降低。因此,可考虑到如下情况:即使在软氮化处理前具有所期望的强度(拉伸强度),钢板内部(非氮化部)的强度也会因软氮化处理而大幅降低,无法对软氮化处理后的部件赋予所期望的强度(疲劳强度)。
基于上述理由,对于软氮化处理用钢板而言,钢板内部(非氮化部)的强度不会经过软氮化处理而大幅降低、软氮化处理前后的钢板内部(非氮化部)的强度变化小,即具有软氮化处理后的强度稳定性成为一个重要的特性。但是,在上述任意一个现有技术中,对于软氮化处理后的强度稳定性均没有进行任何研究。
本发明的目的在于有利地解决上述现有技术所存在的问题,提供具有所期望的强度(拉伸强度:440MPa以上)、并且软氮化处理前的成形性和软氮化处理后的强度稳定性优良的软氮化处理用钢板及其制造方法。
用于解决问题的方法
为了解决上述问题,本发明人对影响软氮化处理用钢板的强度、成形性以及在软氮化处理前后出现的钢板内部(非氮化部)的强度变化的各种因素进行了深入研究。其结果,得到了如下见解。
1)通过使钢板组织为包含铁素体和珠光体的复合组织,可以抑制软氮化处理后的强度降低,可以得到强度稳定性优良的钢板。
2)多边形铁素体在上述铁素体中所占的比例提高时,钢板强度降低,并且软氮化处理前后的钢板内部(非氮化部)的强度变化容易变大。
3)关于钢板组成,含有期望量的Nb对于增加钢板强度和降低多边形铁素体在上述铁素体中所占的比例是有效的。
4)关于钢板组成,通过以满足预定的关系(0.10≤Nb/C≤0.30)的方式含有Nb、C,软氮化处理前后的钢板内部(非氮化部)的强度变化减小。
本发明是基于上述见解而完成的,其主旨如下所述。
(1)一种软氮化处理用钢板,其特征在于,
具有如下组成:以质量%计,以使C和Nb满足下述(1)式的方式含有C:0.05%以上且0.10%以下、Si:0.5%以下、Mn:0.7%以上且1.5%以下、P:0.05%以下、S:0.01%以下、Al:0.01%以上且0.06%以下、Cr:0.5%以上且1.5%以下、Nb:0.005%以上且0.025%以下、N:0.005%以下,余量由Fe和不可避免的杂质构成,
并且具有如下组织:为含有铁素体和珠光体且上述铁素体和珠光体以外的组织的比例为1%以下的复合组织,并且多边形铁素体在上述铁素体中所占的比例小于50%,
0.10≤Nb/C≤0.30  …(1)
(C、Nb为各元素的含量(质量%))。
(2)一种软氮化处理用钢板的制造方法,其特征在于,
在对钢片进行加热,实施由粗轧和精轧构成的热轧,精轧结束后,进行冷却、卷取而制成热轧钢板时,
使上述钢片为如下组成:以质量%计,以使C和Nb满足下述(1)式的方式含有C:0.05%以上且0.10%以下、Si:0.5%以下、Mn:0.7%以上且1.5%以下、P:0.05%以下、S:0.01%以下、Al:0.01%以上且0.06%以下、Cr:0.5%以上且1.5%以下、Nb:0.005%以上且0.025%以下、N:0.005%以下,余量由Fe和不可避免的杂质构成,
将上述热轧的加热温度设定为1100℃以上且1300℃以下,将上述精轧的精轧温度设定为Ar3相变点以上且(Ar3相变点+100℃)以下,将上述冷却的平均冷却速度设定为30℃/秒以上,将上述卷取的卷取温度设定为500℃以上且650℃以下,
0.10≤Nb/C≤0.30  …(1)
(C、Nb为各元素的含量(质量%))。
发明效果
根据本发明,可以得到具有所期望的强度(拉伸强度:440MPa以上)、并且软氮化处理前的成形性和软氮化处理后的强度稳定性优良的软氮化处理用钢板。因此,即使是汽车的变速器部件等在高应力负荷状态下使用的部件,也可以使用钢板原材而大幅削减制造成本,在工业上发挥显著的效果。
具体实施方式
以下,对本发明详细地进行说明。
首先,对本发明钢板的成分组成的限定理由进行说明。需要说明的是,只要没有特别说明,则以下的表示成分组成的%是指质量%。
C:0.05%以上且0.10%以下
C是通过固溶强化和形成第二相而有助于钢的高强度化的元素。C含量低于0.05%时,无法确保作为汽车的变速器部件等在高应力负荷状态下使用的部件的原材料所要求的钢板强度。另一方面,C含量超过0.10%时,钢板强度过度升高,成形性降低。因此,C含量设定为0.05%以上且0.10%以下。优选为0.05%以上且0.08%以下。
Si:0.5%以下
Si是固溶强化元素,是对于钢的高强度化有效的元素,并且还作为脱氧剂发挥作用。为了得到这样的效果,优选含有0.03%以上,但Si含量超过0.5%时,生成难剥离性氧化皮而使钢板的表面性状显著变差。因此,Si含量设定为0.5%以下。优选为0.1%以下。
Mn:0.7%以上且1.5%以下
Mn是固溶强化元素,是对于钢的高强度化有效的元素。另外,还作为以析出物的方式将钢中作为杂质存在的S固定从而降低因S引起的对钢的不良影响的元素发挥作用。Mn含量低于0.7%时,不能确保所期望的钢板强度。另一方面,Mn含量超过1.5%时,钢板强度过度升高,成形性降低。因此,Mn含量设定为0.7%以上且1.5%以下。优选为1.0%以上且1.5%以下。进一步优选为1.2%以上且1.5%以下。
P:0.05%以下
P是使钢板的成形性、韧性降低的元素,在本发明中优选尽量减少P。因此,P含量设定为0.05%以下。优选为0.03%以下。
S:0.01%以下
S与P同样是使钢板的成形性、韧性降低的元素,在本发明中优选尽量减少S。因此,S含量设定为0.01%以下。优选为0.005%以下。
Al:0.01%以上且0.06%以下
Al是作为脱氧剂发挥作用的元素,为了可靠地得到该效果,Al含量设定为0.01%以上。另一方面,Al含量超过0.06%时,脱氧效果饱和,并且Al系夹杂物增加而导致钢板的内部缺陷和表面缺陷。因此,Al含量设定为0.01%以上且0.06%以下。优选为0.02%以上且0.05%以下。
Cr:0.5%以上且1.5%以下
Cr是通过软氮化处理而在钢中形成氮化物从而具有提高钢板表层部的硬度的效果的元素,是本发明中的重要元素之一。为了使这样的效果变得显著,需要使Cr含量为0.5%以上。另一方面,Cr含量超过1.5%时,通过软氮化处理得到的表面硬化层(氮化层)的脆化变得显著。因此,Cr含量设定为0.5%以上且1.5%以下。优选为0.8%以上且1.2%以下。
Nb:0.005%以上且0.025%以下
Nb在钢中以碳氮化物的形式析出,通过粒子分散强化(析出强化)而提高钢板的强度,并且确保软氮化处理后的钢板强度稳定性,在这方面是有效的元素,是本发明中的重要元素之一。Nb含量低于0.005%时,不能确保所期望的钢板强度和钢板强度稳定性。另一方面,Nb含量超过0.025%时,钢板强度过度升高,成形性降低。因此,Nb含量设定为0.005%以上且0.025%以下。优选为0.010%以上且0.020%以下。
N:0.005%以下
N是使钢板的成形性降低的有害元素。另外,N也是在软氮化处理前与Cr等氮化促进元素化合而导致有效的氮化促进元素量降低的元素。因此,在本发明中优选尽量降低N含量,设定为0.005%以下。优选为0.003%以下。
此外,本发明钢板在上述范围内且以满足(1)式的方式含有C和Nb。
0.10≤Nb/C≤0.30  …(1)
(C、Nb为各元素的含量(质量%))
上述(1)式是为了提高软氮化处理前的钢板强度并且减小软氮化处理前后的钢板内部(非氮化部)的强度变化、即为了确保软氮化处理后的强度稳定性而应当满足的条件。
如上所述,在本发明中,利用Nb碳氮化物所带来的析出强化作为钢板的高强度化机制之一,因此,在抑制因软氮化处理引起的钢板内部(非氮化部)的强度变化的方面,抑制软氮化处理前后的析出强化量的变动是重要的。并且,在抑制上述析出强化量的变动的方面,需要使得钢板即使经过软氮化处理的热历程,钢板中的Nb碳氮化物的析出状态(粒径和体积百分率)也不会与软氮化处理前的析出状态相比发生大幅变动。
因此,本发明人对使软氮化处理前后的析出强化量稳定的方法进行了研究,结果发现,将钢中的Nb含量相对于C含量调节至满足上述(1)式是有效的。推测这是因为,Nb/C在上述(1)式的范围内时,软氮化处理中的Nb碳氮化物的生长和追加析出受到抑制或者变得微少且均衡。因此,在本发明中,C和Nb调节至满足0.10≤Nb/C≤0.30。
在本发明的钢板中,上述以外的成分为Fe和不可避免的杂质。作为不可避免的杂质,例如,以质量%计,Cu:0.05%以下、Ni:0.05%以下、Mo:0.05%以下、Co:0.05%以下、Ti:0.005%以下、V:0.005%以下、Zr:0.005%以下、Ca:0.005%以下、Sn:0.005%以下、O:0.005%以下、B:0.0005%以下等是可以允许的。
接着,对本发明钢板的组织的限定理由进行说明。
本发明的钢板具有如下组织:其为包含铁素体和珠光体的复合组织,并且多边形铁素体在上述铁素体中所占的比例小于50%。
提高铁素体在钢板组织中所占的比例在确保钢板的成形性的方面是有效的,但使钢板为铁素体单相组织时,钢板强度不足,作为机械结构用部件的原材料的应用范围变窄,通用性不足。另一方面,通过在铁素体主体的组织中生成第二相来实现组织强化从而确保钢板强度的情况下,以马氏体、贝氏体等硬质的低温相变相作为第二相时,上述低温相变相因软氮化处理时的热历程而发生软化,软氮化处理前后的钢板内部(非氮化部)的强度变化非常大。
因此,在本发明中,为了抑制软氮化处理的热历程所导致的钢板内部(非氮化部)的强度变化,使钢板的组织为以铁素体为主相、使第二相为珠光体的复合组织。需要说明的是,在本发明中,优选使钢板组织中的铁素体百分率为80%以上且95%以下、使钢板组织中的珠光体百分率为5%以上且20%以下。另外,本发明的钢板为由铁素体和珠光体构成的复合组织是理想的,但即使在不可避免地生成其他相(组织)的情况下,只要其在钢板组织中的百分率合计为1%以下就可以允许。
另外,多边形形状的铁素体是软质的且在加热时晶粒容易生长。因此,对于含有大量多边形铁素体的钢板而言,钢板强度容易降低,也容易产生因软氮化处理时的晶粒生长所引起的钢板内部(非氮化部)的强度降低。因此,在本发明中,使上述铁素体的50%以上为多边形铁素体以外的铁素体,使上述铁素体的小于50%为多边形铁素体。需要说明的是,在本发明中,作为多边形铁素体以外的铁素体,可以列举针状铁素体或者贝氏体铁素体等。
接着,对本发明钢板的制造方法进行说明。
本发明中,对具有上述组成的钢片进行加热,实施由粗轧和精轧构成的热轧,精轧结束后,进行冷却、卷取而制成热轧钢板。此时,优选将加热温度设定为1100℃以上且1300℃以下,将精轧温度设定为Ar3相变点以上且(Ar3相变点+100℃)以下,将冷却的平均冷却速度设定为30℃/秒以上,将卷取温度设定为500℃以上且650℃以下。
在本发明中,钢的熔炼方法没有特别限定,可以采用转炉、电炉等公知的熔炼方法。另外,熔炼后,从偏析等问题考虑,优选通过连铸法制成钢片(钢坯),也可以通过铸锭-开坯轧制法、薄板坯连铸法等公知的方法制成钢片。也可以根据需要进一步实施各种预处理、二次精炼、钢片的表面护理等。
钢片的加热温度:1100℃以上且1300℃以下
对以上述方式得到的钢片实施粗轧和精轧,但在本发明中,需要使Nb充分再固溶于粗轧前的钢片中。钢片的加热温度低于1100℃时,不能充分分解Nb碳氮化物而使Nb再固溶,不能表现出通过含有Nb而得到的上述所期望的效果。另一方面,钢片的加热温度超过1300℃时,加热钢片所需要的能量增大,在成本方面变得不利。因此,将粗轧前的钢片的加热温度设定为1100℃以上且1300℃以下。优选为1150℃以上且1250℃以下。
对粗轧前的钢片进行加热时,可以将铸造后的钢片冷却至常温后进行加热,也可以对铸造后冷却过程中的钢片进行追加加热或者保温。另外,铸造后的钢片保持足够的温度而使Nb充分固溶在钢中的情况下,可以不对钢片进行加热而进行直接轧制。另外,对于粗轧条件无需特别限定。
精轧温度:Ar3相变点以上且(Ar3相变点+100℃)以下
精轧温度低于Ar3相变点时,会形成在轧制方向上延展的铁素体组织和未再结晶铁素体组织,钢板的成形性降低。另外,钢板的机械特性的面内各向异性变强,难以进行均匀的成形加工。另一方面,精轧温度超过(Ar3相变点+100℃)时,出现钢板的表面性状变差的倾向。因此,将精轧温度设定为Ar3相变点以上且(Ar3相变点+100℃)以下。另外,在此,精轧温度是指在精轧的最终道次出口侧的钢板温度。
为了确保上述精轧温度,可以利用薄板坯加热器、边缘加热器等加热装置对轧制中的钢板进行追加加热。需要说明的是,对于钢的Ar3相变点,可以通过测定自奥氏体温度范围开始的冷却过程中的热收缩而制作热收缩曲线来求得,或者也可以由合金元素的含量进行估算来求得。
平均冷却速度:30℃/秒以上
在使钢板为所期望的组织的方面,平均冷却速度的优化是重要的,在本发明中,精轧结束后,立即(在1秒以内)开始冷却,将从精轧温度开始到卷取温度为止的平均冷却速度设定为30℃/秒以上。该平均冷却速度小于30℃/秒时,生成大量在高温范围内容易产生的多边形铁素体,不能得到具有所期望的组织的钢板。另外,有时晶粒过度粗大化而使钢板的强度、延展性降低。此外,在本发明中,通过使Nb碳氮化物在钢板中析出而实现钢板的高强度化,但上述平均冷却速度小于30℃/秒时,有时Nb碳氮化物变得粗大,不能得到所期望的钢板强度。因此,将上述平均冷却速度设定为30℃/秒以上。
上述平均冷却速度的上限没有特别规定,但为了避免因强水冷引起的钢板的形状不良,优选设定为100℃/秒以下。另外,将钢板冷却至达到卷取温度后,尤其不需要利用注水等的强制冷却,在大气中自然冷却至卷取即可。
卷取温度:500℃以上且650℃以下
在使钢板为所期望的组织的方面,卷取温度的优化是重要的。卷取温度低于500℃时,生成低温相变相而使钢板硬质化,成形性降低,并且软氮化处理后的钢板强度稳定性也降低。另一方面,卷取温度超过650℃时,多边形铁素体量增加,不能得到所期望的钢板组织。因此,将卷取温度设定为500℃以上且650℃以下。优选为550℃以上且650℃以下。
将通过上述得到的热轧钢板通过酸洗、喷丸硬化等除去氧化皮后,用作软氮化处理用钢板。另外,即使实施以矫正形状、调节表面粗糙度为目的的表面光轧,也不会损害本发明的效果。
另外,本发明的软氮化处理用钢板对于气体软氮化处理和盐浴软氮化处理中的任意一种都能够应用。
实施例
将表1所示的组成的钢熔炼,进行铸锭-开坯轧制而制成钢片。将这些钢片加热后,实施粗轧和精轧,进行冷却、卷取,制成板厚为2.9mm的热轧钢板。另外,上述中的钢片的加热温度、精轧温度、从精轧温度开始到卷取温度为止的平均冷却速度、卷取温度如表2所示。
对通过上述得到的热轧钢板进行酸洗而除去氧化皮,实施伸长率为0.5%的表面光轧。然后,从表面光轧后的钢板上裁取试验片,供于以下评价。
(i)组织观察
裁取表面光轧后的钢板的板宽1/4位置处的与轧制方向平行的板厚截面的试样,进行镜面研磨后利用硝酸乙醇溶液进行腐蚀,然后,利用光学显微镜或扫描电子显微镜以500~3000倍的适当倍率对板厚1/4位置进行拍摄。使用所得到的组织照片,通过图像分析,求出相对于组织整体的铁素体面积率(包括多边形铁素体在内的铁素体整体的面积率)、多边形铁素体面积率、珠光体面积率以及其他组织的种类和它们的面积率,作为各自的百分率。另外,由通过上述得到的铁素体百分率和多边形铁素体百分率,求出多边形铁素体在铁素体中所占的比例((多边形铁素体百分率/铁素体百分率)×100(%))。
将所得到的结果示于表3中。
[表3]
*3:铁素体百分率(%)
*4:多边形铁素体百分率(%)
*5:((多边形铁素体百分率)/(铁素体百分率)×100(%)
*6:铁素体以外的组织的百分率P为珠光体 B为贝氏体
(ii)拉伸试验
使用在表面光轧后的钢板的板宽1/4位置处以使拉伸试验方向为轧制方向的方式裁取的JIS Z 2201(1998)规定的5号试验片,依照JIS Z2241(1998)的规定进行拉伸试验,测定拉伸强度(TS)和断裂伸长率(El),求出强度-伸长率平衡(TS×El)。另外,在本实施例中,将拉伸强度(TS)为440MPa以上、强度-伸长率平衡(TS×El)为17GPa·%以上的钢板评价为高强度且具有良好的成形性的钢板。
(iii)截面硬度试验
从上述表面光轧后的钢板上裁取试验片,通过依照JIS Z2244(2009)的方法,测定板厚1/2位置处的维氏硬度(HVc)。
<测定方法>
试验力:0.98N
测定部位:5个部位
(iv)软氮化处理
从上述表面光轧后的钢板上裁取小片,实施以下所示条件的气体软氮化处理。
软氮化气氛:氨气与吸热型改性气体的等量比混合气体
处理温度:570℃
处理时间:3小时
需要说明的是,在上述处理温度(570℃)下保持上述处理时间(3小时)后,对小片进行油冷(油温:70℃)。然后,将油冷后的小片供于以下评价。
对于油冷后的小片,依照JIS G 0563(1993),测定自板表面起深度为0.1mm位置处的维氏硬度(HV0.1)。另外,依照JIS G 0562(1993)的规定测定实用氮化层深度。在本实施例中,将维氏硬度(HV0.1)为500以上且实用氮化层深度为0.25mm以上的钢板评价为表面硬化特性良好的钢板。
另外,通过与上述(iii)同样的方法,测定板厚1/2位置(非氮化部)处的维氏硬度(HVc’)。然后,由上述(iii)中求出的软氮化处理前的板厚1/2位置处的维氏硬度(HVc)和软氮化处理后的板厚1/2位置处的维氏硬度(HVc’)求出软氮化处理前后的板厚中央部的维氏硬度的变化率:(HVc’-HVc)/HVc×100(%)。在本实施例中,将变化率的绝对值为5.0%以下的钢板评价为软氮化处理后的强度稳定性良好的钢板(○),将除此以外评价为×。
由表4可知,本发明例中,在强度、成形性、由软氮化处理产生的表面硬化特性、强度稳定性的所有方面均得到了良好的结果。另一方面,钢组成、组织不满足本发明条件的比较例中,上述某一项特性无法得到充分的结果。

Claims (2)

1.一种软氮化处理用钢板,其特征在于,
具有如下组成:以质量%计,以使C和Nb满足下述(1)式的方式含有C:0.05%以上且0.10%以下、Si:0.5%以下、Mn:0.7%以上且1.5%以下、P:0.05%以下、S:0.01%以下、Al:0.01%以上且0.06%以下、Cr:0.5%以上且1.5%以下、Nb:0.005%以上且0.025%以下、N:0.005%以下,余量由Fe和不可避免的杂质构成,
并且具有如下组织:为含有铁素体和珠光体且所述铁素体和珠光体以外的组织的比例为1%以下的复合组织,并且多边形铁素体在所述铁素体中所占的比例小于50%,
0.10≤Nb/C≤0.30…(1)
C、Nb为各元素的质量%含量。
2.一种软氮化处理用钢板的制造方法,其特征在于,
在对钢片进行加热,实施由粗轧和精轧构成的热轧,精轧结束后,进行冷却、卷取而制成热轧钢板时,
使所述钢片为如下组成:以质量%计,以使C和Nb满足下述(1)式的方式含有C:0.05%以上且0.10%以下、Si:0.5%以下、Mn:0.7%以上且1.5%以下、P:0.05%以下、S:0.01%以下、Al:0.01%以上且0.06%以下、Cr:0.5%以上且1.5%以下、Nb:0.005%以上且0.025%以下、N:0.005%以下,余量由Fe和不可避免的杂质构成,
将所述热轧的加热温度设定为1100℃以上且1300℃以下,将所述精轧的精轧温度设定为Ar3相变点以上且(Ar3相变点+100℃)以下,将所述冷却的平均冷却速度设定为30℃/秒以上,将所述卷取的卷取温度设定为500℃以上且650℃以下,
0.10≤Nb/C≤0.30…(1)
C、Nb为各元素的质量%含量。
CN201280074345.0A 2012-06-27 2012-06-27 软氮化处理用钢板及其制造方法 Active CN104411848B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067022 WO2014002287A1 (ja) 2012-06-27 2012-06-27 軟窒化処理用鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
CN104411848A true CN104411848A (zh) 2015-03-11
CN104411848B CN104411848B (zh) 2017-05-31

Family

ID=49782510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280074345.0A Active CN104411848B (zh) 2012-06-27 2012-06-27 软氮化处理用钢板及其制造方法

Country Status (5)

Country Link
US (1) US10077489B2 (zh)
EP (1) EP2868764B1 (zh)
KR (1) KR101701652B1 (zh)
CN (1) CN104411848B (zh)
WO (1) WO2014002287A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222570A (zh) * 2016-08-16 2016-12-14 武汉钢铁股份有限公司 一种耐锈蚀性能优良的渗氮钢用基板及生产方法
CN114458584A (zh) * 2022-02-17 2022-05-10 西华大学 一种具有表面压应力的膜片及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614330B2 (ja) * 2011-02-28 2014-10-29 Jfeスチール株式会社 軟窒化処理用鋼板およびその製造方法
WO2013115205A1 (ja) 2012-01-31 2013-08-08 Jfeスチール株式会社 発電機リム用熱延鋼板およびその製造方法
JP5630523B2 (ja) * 2013-04-02 2014-11-26 Jfeスチール株式会社 窒化処理用鋼板およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284554A (ja) * 1985-06-12 1986-12-15 Kobe Steel Ltd 靭性の優れた非調質ボルト等用合金鋼及びそれを用いた非調質ボルト等用鋼材
CN1322256A (zh) * 1999-09-28 2001-11-14 日本钢管株式会社 高强度热轧钢板及其制造方法
JP2009068057A (ja) * 2007-09-12 2009-04-02 Jfe Steel Kk 軟窒化処理用鋼板およびその製造方法
CN101765673A (zh) * 2007-09-25 2010-06-30 杰富意钢铁株式会社 原油罐用热轧型钢及其制造方法
CN102119236A (zh) * 2009-10-28 2011-07-06 新日本制铁株式会社 强度和延展性良好的管线管用钢板及其制造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145754A (ja) * 1986-12-10 1988-06-17 Ngk Spark Plug Co Ltd 点火プラグ主体金具及びその製造方法
JPH05171347A (ja) 1991-12-18 1993-07-09 Aichi Steel Works Ltd 冷間鍛造性に優れた軟窒化用鋼
US5454883A (en) * 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
JPH0925543A (ja) 1995-07-12 1997-01-28 Nippon Steel Corp 成形性に優れた窒化用鋼板およびそのプレス成形体
JPH0925513A (ja) 1995-07-12 1997-01-28 Nippon Steel Corp 成形性に優れた窒化用鋼板の製造方法
JP3477955B2 (ja) 1995-11-17 2003-12-10 Jfeスチール株式会社 極微細組織を有する高張力熱延鋼板の製造方法
US5858130A (en) * 1997-06-25 1999-01-12 Bethlehem Steel Corporation Composition and method for producing an alloy steel and a product therefrom for structural applications
JP3846156B2 (ja) * 2000-05-11 2006-11-15 Jfeスチール株式会社 自動車の高強度プレス成形部品用鋼板およびその製造方法
JP3840939B2 (ja) 2001-09-26 2006-11-01 住友金属工業株式会社 軟窒化処理用鋼およびその製造方法
JP3928454B2 (ja) 2002-03-26 2007-06-13 Jfeスチール株式会社 窒化処理用薄鋼板
JP4289139B2 (ja) * 2003-12-12 2009-07-01 Jfeスチール株式会社 成形性に優れる軟窒化用鋼板の製造方法
JP4561136B2 (ja) * 2004-03-17 2010-10-13 Jfeスチール株式会社 窒化処理用鋼板
JP4767590B2 (ja) 2005-06-01 2011-09-07 新日本製鐵株式会社 低降伏比高張力鋼および低降伏比高張力鋼の製造方法
JP4634885B2 (ja) * 2005-07-26 2011-02-16 新日本製鐵株式会社 疲労特性と塗装焼付硬化性能と耐常温時効性に優れた高強度薄鋼板及びその製造方法
EP1951519A4 (en) * 2005-10-24 2008-12-31 Exxonmobil Upstream Res Co HIGH-RESISTANCE TWO-PHASE STEEL WITH LOW LIMITING RATIO, HIGH HARDNESS AND EXCEPTIONAL WELDABILITY
JP4946617B2 (ja) * 2007-05-14 2012-06-06 Jfeスチール株式会社 軟窒化処理用鋼板およびその製造方法
JP5157257B2 (ja) * 2007-05-29 2013-03-06 Jfeスチール株式会社 低降伏比鋼板
JP4995109B2 (ja) 2008-02-07 2012-08-08 新日本製鐵株式会社 加工性及び耐衝突特性に優れた高強度冷延鋼板及びその製造方法
JP5304435B2 (ja) * 2008-06-16 2013-10-02 新日鐵住金株式会社 穴広げ性に優れた熱延鋼板及びその製造方法
JP5041084B2 (ja) * 2010-03-31 2012-10-03 Jfeスチール株式会社 加工性に優れた高張力熱延鋼板およびその製造方法
JP4962594B2 (ja) 2010-04-22 2012-06-27 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5521970B2 (ja) * 2010-10-20 2014-06-18 新日鐵住金株式会社 冷鍛窒化用鋼、冷鍛窒化用鋼材および冷鍛窒化部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284554A (ja) * 1985-06-12 1986-12-15 Kobe Steel Ltd 靭性の優れた非調質ボルト等用合金鋼及びそれを用いた非調質ボルト等用鋼材
CN1322256A (zh) * 1999-09-28 2001-11-14 日本钢管株式会社 高强度热轧钢板及其制造方法
JP2009068057A (ja) * 2007-09-12 2009-04-02 Jfe Steel Kk 軟窒化処理用鋼板およびその製造方法
CN101765673A (zh) * 2007-09-25 2010-06-30 杰富意钢铁株式会社 原油罐用热轧型钢及其制造方法
CN102119236A (zh) * 2009-10-28 2011-07-06 新日本制铁株式会社 强度和延展性良好的管线管用钢板及其制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222570A (zh) * 2016-08-16 2016-12-14 武汉钢铁股份有限公司 一种耐锈蚀性能优良的渗氮钢用基板及生产方法
CN106222570B (zh) * 2016-08-16 2018-03-20 武汉钢铁有限公司 一种耐锈蚀性能优良的渗氮钢用基板及生产方法
CN114458584A (zh) * 2022-02-17 2022-05-10 西华大学 一种具有表面压应力的膜片及其制备方法和应用
CN114458584B (zh) * 2022-02-17 2024-01-19 西华大学 一种具有表面压应力的膜片及其制备方法和应用

Also Published As

Publication number Publication date
EP2868764A1 (en) 2015-05-06
EP2868764B1 (en) 2019-07-24
KR101701652B1 (ko) 2017-02-01
EP2868764A4 (en) 2016-04-06
US20150299830A1 (en) 2015-10-22
WO2014002287A1 (ja) 2014-01-03
CN104411848B (zh) 2017-05-31
KR20150023745A (ko) 2015-03-05
US10077489B2 (en) 2018-09-18

Similar Documents

Publication Publication Date Title
CN102712977B (zh) 加工性和耐冲击特性优良的高强度热镀锌钢板及其制造方法
CN101861406B (zh) 高强度冷轧钢板
CN104736736B (zh) 高强度冷轧钢板及其制造方法
CN106244918B (zh) 一种1500MPa级高强塑积汽车用钢及其制造方法
CN101213317B (zh) 极软高碳热轧钢板及其制造方法
CN103108974B (zh) 韧性优良的高强度热轧钢板及其制造方法
CN103403210B (zh) 室温和温态下的深拉性优异的高强度钢板及其温加工方法
CN101688277B (zh) 高强度热镀锌钢板及其制造方法
CN101490296B (zh) 高碳热轧钢板及其制造方法
CN104870676B (zh) 低屈服比高强度冷轧钢板及其制造方法
CN105378132B (zh) 高碳热轧钢板及其制造方法
CN103080357B (zh) 延伸凸缘性优良的高强度冷轧钢板及其制造方法
CN105088089B (zh) 汽车用冷轧换挡拨叉钢构件及生产方法
CN104040008A (zh) 热冲压成型体及其制造方法
CN103210105A (zh) 均匀伸长率和镀覆性优良的高强度热镀锌钢板及其制造方法
CN105274432A (zh) 600MPa级高屈强比高塑性冷轧钢板及其制造方法
CN102712963B (zh) 高碳热轧钢板的制造方法
CN103842539A (zh) 热轧钢板及其制造方法
CN105658830A (zh) 拉伸加工性和渗碳热处理后的表面硬度优异的热轧钢板
CN103732778B (zh) 室温和温态下的成形性优异的高强度钢板及其温态成形方法
CN106256918A (zh) 一种精密冲压加工的汽车飞轮用冷轧带钢及其制造方法
CN103998638A (zh) 耐时效性优良的钢板及其制造方法
CN105102659B (zh) 氮化处理用钢板及其制造方法
CN105378133A (zh) 高碳热轧钢板及其制造方法
CN104411847A (zh) 软氮化处理用钢板及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant