CN104372238A - 一种取向高硅钢的制备方法 - Google Patents

一种取向高硅钢的制备方法 Download PDF

Info

Publication number
CN104372238A
CN104372238A CN201410505834.8A CN201410505834A CN104372238A CN 104372238 A CN104372238 A CN 104372238A CN 201410505834 A CN201410505834 A CN 201410505834A CN 104372238 A CN104372238 A CN 104372238A
Authority
CN
China
Prior art keywords
rolling
cold rolling
silicon steel
temperature
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410505834.8A
Other languages
English (en)
Other versions
CN104372238B (zh
Inventor
王国栋
张元祥
王洋
卢翔
方烽
曹光明
李成刚
许云波
刘振宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201410505834.8A priority Critical patent/CN104372238B/zh
Priority to EP14902512.4A priority patent/EP3118336B1/en
Priority to US15/027,368 priority patent/US10032548B2/en
Priority to PCT/CN2014/088887 priority patent/WO2016045157A1/zh
Priority to JP2016515529A priority patent/JP6208855B2/ja
Publication of CN104372238A publication Critical patent/CN104372238A/zh
Application granted granted Critical
Publication of CN104372238B publication Critical patent/CN104372238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • C21D8/0415Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种取向高硅钢的制备方法,属于冶金技术领域,按以下步骤进行:(1)按设定成分冶炼钢水,其成分按重量百分比含C0.001~0.003%,Si5.0~6.6%,Mn0.2~0.3%,Al0.05~0.12%,V0.01~0.04%,Nb0.03~0.06%,S0.02~0.03%,N0.009~0.020%,O≤0.0020%,余量为Fe及不可避免杂质;(2)薄带连铸过程后形成铸带;(3)在惰性气氛条件下进行热轧;(4)冷却至550~600℃卷取,在氮气气氛条件下进行低温热轧/温轧;(5)酸洗去除氧化皮,然后进行多道次冷轧;(6)再结晶退火,涂覆MgO涂层,最后卷取;(7)在氢气流通的条件下,进行净化退火;(8)去除氧化铁皮,涂覆绝缘层,平整拉伸退火,空冷卷取。本发明的方法省去高温退火前的脱碳流程,简化初次再结晶工艺难度,提高了高硅钢铸带的低温成型性能成品的磁性能。

Description

一种取向高硅钢的制备方法
技术领域
本发明属于冶金技术领域,特别涉及一种取向高硅钢的制备方法。
背景技术
高硅钢一般指硅含量在4.5~6.5%的Si-Fe合金,但是6.5%Si-Fe合金由于其磁致伸缩λs近似为0,而且具有高导磁率,低矫顽力,低铁损尤其是高频铁损较低的特点,使其成为非常理想的软磁合金材料;但是当Si含量提高到4.5%以上时,合金延伸率急剧下降,6.5%的Si-Fe合金的室温延伸率几乎为0。
高硅钢成为近年来磁性材料研究的热点,研究的方向多集中在无取向高硅钢有序相形成规律和解释其室温脆性的原因以及改善措施这一方向上;欧洲、俄罗斯和日本都有通过调整合金成分,优化设计热轧-温轧-冷轧流程实现轧制6.5%Si无取向硅钢的报道;北京科技大学利用B等元素细化铸态组织,阻止DO3长程有序相形成从而提高板带低温塑性(CN 1560309A)。在高硅钢的深入研究及工业化方向,日本也走在前列:他们综合研究了合金元素Ni、Al、Mn等对6.5%Si成型性能的改善;以及调控轧制过程对成型性的影响,提出低温热轧获得纤维织构以便于更低温度变形的思想(Takada Y, Journal of Applied Physics, 1988, 64, 5367~5369);更有学者提出薄带快淬的办法获得0.55mm甚至更薄的高硅微晶带解决脆性问题(Arai K. I, Journal of Applied Physics, 1988, 64, 5373~5375)。
综合来看,这些通过成分和轧制变形得到6.5%Si电工钢的办法可以一定程度上解决无取向高硅钢轧制成型的难题,而薄带快淬法制备的微晶薄带宽度和厚度有限,几乎很难实现工业规模的生产;真正把6.5%Si无取向产品推向实用化的是日本钢管公司,他们采用化学气相沉积快速渗硅法(CVD)法和轧制法制成0.1~0.5mm规格6.5%Si-Fe合金(Haiji H. Journal of Magnetism and Magnetic Materials, 1996, 160, 109~114),称为“Super Ecore”,利用3%Si无取向电工钢成品进行渗硅处理,渗硅后采用高温热处理均匀化并促进晶粒长大,获得磁性能良好的6.5%Si无取向电工钢。
取向硅钢通过二次再结晶获得单一Goss织构,具有沿轧制方向具有极高的磁感和低铁损的优良磁性能,主要用于各种变压器的铁芯;常规取向硅钢Si含量2.8~3.4%,这个Si含量的Goss单晶理论饱和磁感Bs≈2.03T,B8值可以直观反映取向硅钢片的饱和磁感强度,Hi-B(高磁感)取向硅钢B8在1.90~1.96T之间,0.936≤B8/Bs ≤0.966,是取向硅钢中最高等级的产品。
取向高硅钢具有更高的最大磁导率,更高的电阻率,更低的高频铁损值,能够显著降低电器元件的质量和体积,提高电器效率,特别是6.5%Si-Fe合金(饱和磁感强度Bm1.80T)磁致伸缩几乎为0,能够显著降低高频变压器的噪音,具有极高的应用价值;但是取向高硅钢的制备也需要解决大量工艺难点,一方面,取向和无取向高硅钢都需要解决基体塑性问题。另一方面,满足发生高硅钢获得完善二次再结晶所需要的抑制剂条件也更加严格,所以下列因素显然影响了取向高硅钢的制备:
1) Si元素能够显著提高Fe-Si合金晶界迁移能力,粗化晶粒,这就造成高Si钢铸坯晶粒尺寸非常粗大,达到几十mm的级别,对于塑性非常不利;
2) 满足二次再结晶发生的必要条件是带钢初次再结晶晶粒生长受到强烈抑制,而高Si钢冷轧变形后晶界迁移速率提高需要更强的抑制剂;
3)抑制剂可以是化合物(如S化物和N化物等)或者单质(如Cu、Sn、B等),但是前者需要高温固溶和相变析出来控制,高温加热铸坯会造成晶粒过于粗化,而高硅钢是单相铁素体,没有相变窗口来控制N化物的细小析出。而单质化合物往往作为辅助抑制剂使用,单独使用抑制力不足,还容易固溶强化基体,影响塑性。
通过常规流程制备取向高硅钢,仅有少量日本专利做了一定的报道,住友金属昭63-069917、089622专利通过50mm厚的铸坯经过热轧-温轧-冷轧得到0.2~0.3mm板带,通过单一的MnS、AlN、TiC或者VC作为抑制剂,得到了6.5%Si 取向硅钢,但是由于抑制剂的抑制力不足,二次再结晶取向度不高,B8/BS=1.65T/1.80T=0.916;而新日铁公司认识到抑制力不足的问题,通过渗氮的办法提高AlN的量,但是磁感B8仅提升到1.67T(平4-080321,224625);显然,这种这两种方法并没有突破常规流程的制约。
另外,渗硅的办法在制备高硅取向硅钢方面也存在问题,前面提到在无取向大量Si深入钢带后的扩散退火过程会促进晶粒长大,在取向硅钢中这种晶界迁移会造成取向度的降低,甚至破坏原本完善的二次再结晶组织,最终无法得到良好的磁性能,目前公布的研究结果中也没有关于磁感的报道。
双辊薄带连铸技术,以转动的两个铸辊为结晶器,将液态钢水直接注入铸辊和侧封板组成的熔池内,由液态钢水直接凝固成形厚度为1~6mm薄带,可不需经过连铸、加热、热轧和常化等生产工序。其工艺特点是液态金属在结晶凝固的同时承受压力加工和塑性变形,在很短的时间内完成从液态金属到固态薄带的全部过程,凝固速度可达102~104℃/s,大大细化高硅钢凝固晶粒尺寸。因此,薄带连铸在生产高硅Fe-Si合金方面具有独特的优势;在这方面,日本住友金属曾有相关专利报道,他们通过1~2mm薄带连铸-冷轧-高温退火获得强的Goss二次再结晶组织;但是他们对于薄带连铸的认识存在局限性,铸带直接冷轧成材率不高,而且抑制剂的抑制能力比较弱,没有得到高磁感取向高硅钢。
发明内容
针对现有取向高硅钢在制备方法上存在的上述问题,本发明提供一种取向高硅钢的制备方法,基于对高硅钢双辊薄带连铸亚快速凝固过程中组织-织构-析出的系统认识,设计抑制剂方案,通过铸带晶粒凝固-长大行为控制和抑制剂元素固溶析出行为设计,实现组织-织构-析出柔性控制,得到高磁感取向高硅钢。
本发明的取向高硅钢的制备方法按以下步骤进行:
1、按设定成分冶炼钢水,其成分按重量百分比含C 0.001~0.003%,Si 5.0~6.6%,Mn 0.2~0.3%,Al 0.05~0.12%,V 0.01~0.04%,Nb 0.03~0.06%,S 0.02~0.03%,N 0.009~0.020%,O≤0.0020%,余量为Fe及不可避免杂质;
2、薄带连铸过程:将钢水通过浇口进入中间包,中间包预热温度1200~1250℃,控制过热度为20~50℃,钢水通过中间包进入薄带连铸机后形成铸带,厚度在1.8~3.0mm;
3、铸带出辊后在惰性气氛条件下,以50~100℃/s的速率冷却至1000~1050℃,然后进行热轧,开轧温度1000~1050℃,终轧温度900~980℃,压下量10~15%,制成热轧铸带;
4、将热轧铸带以20~30℃/s的速率冷却至550~600℃卷取,然后在氮气气氛条件下,进行低温热轧/温轧,开轧温度760±5℃,终轧温度550~600℃,总压下量70~80%,制成温轧带;
5、将温轧带酸洗去除氧化皮,然后在100~200℃进行多道次冷轧,总压下量为60~80%,冷轧过程中进行2~3次时效处理,时效处理温度为280~320℃,时间为240~300s,每次时效处理是在相邻两道次冷轧之间,获得冷轧带;
6、将冷轧带在850±10℃进行再结晶退火,时间为120~180s,再结晶退火时冷轧带是在氮气氢气混合气氛条件下进行,控制混合气氛的露点在30~60℃,然后涂覆MgO涂层,最后卷取,获得涂层冷轧带; 
7、将涂层冷轧带置于400±10℃的环形炉内,在氢气流通的条件下,先以30~40℃/h的速度升温至1000±10℃,然后以10~20℃/h的速度升温至1130±10℃,再以30~40℃/h的速度升温至1220~1240℃,保温20~30h进行净化退火; 
8、将净化退火后的涂层冷轧带进行表面清理去除氧化铁皮,再涂覆绝缘层,然后在800±10℃进行平整拉伸退火,最后空冷至650℃以下卷取,获得取向高硅钢。
上述的取向高硅钢的厚度为0.10~0.25mm。
上述方法中,所述的氮气氢气混合气氛中氢气的体积浓度为30%。
上述方法中,钢水通过中间包进入薄带连铸机,在旋转的铸辊与侧封板组成的结晶器内形成熔池并凝固成形。
上述的取向高硅钢的磁性能为:P10/50在0.18~0.62W/kg,P10/400在6.75~9.5 W/kg,磁感B8在1.74~1.81 T,B8/BS=0.961~0.978。
本发明在国家自然科学基金项目(U1260204;51174059)资助下完成,创新性体现在以下几点:
1、将铸带中C元素量降低到30ppm以下的水平,消除C元素偏聚形成Fe3C后对塑性的不利影响,并且省去高温退火前的脱碳流程,大大简化初次再结晶工艺难度;
2、通过对Mn,S,Al、V、Nb尤其是N元素的固溶,强烈阻止DO3相的长程有序化对塑性的影响,而且间隙原子N能够显著增加晶内剪切变形提高基体塑性变形能力;
3、基体中抑制剂的控制方法:抑制剂元素中S、N是固溶元素,而且常规流程中N≥100ppm时,容易造成起泡等缺陷,但是薄带连铸流程可以明显提高N的固溶量;基体中固溶量与凝固时钢液过冷有直接关系,亚快速凝固过程中Si元素增加,固液相线降低,所以以固溶更多量的S和N元素,由于冷却速度较快(102~103℃/s),使二者均匀分布。
4、钢液凝固过程中有部分20~200nm尺寸的MnS粒子析出,明显阻碍铸带凝固后的晶界迁移行为,大大细化了铸带晶粒,提高了高硅钢铸带的低温成型性能,这是薄带连铸过程独有的特点;
5、采用可分解的化合物作为抑制剂,例如MnS和(Al,V,Nb)N系列第二相粒子在升温过程中可以强烈抑制初次晶粒的长大行为,为获得均匀、发达且位向准确的Goss晶粒提供稳定基体,而且在二次再结晶完成后可以通过纯H2进行净化退火,将S、N元素排出基体,使Mn、Al,V,Nb仅仅以固溶的形式存在于基体中,避免类似TiN等化合物分解温度过高造成大量残留,也可以避免B等晶界偏聚元素在基体中的不均分布造成反相畴界能提高造成的矫顽力增加,从而降低磁化过程中矫顽力使得铁损降低;
6、复合抑制剂分阶段抑制策略:低温热轧和温轧阶段N元素和基体中残存的C元素形成(V,Nb)C和少量(V,Nb)N,抑制热轧过程中回复和再结晶,形成纤维组织提高基体塑性也细化晶粒,为二次再结晶提供稳定基体,初次再结晶过程中(V,Nb)C分解,C元素大部分被脱掉,形成(V,Nb)N,高温退火过程中分解并且作为AlN粒子形核质点,并且进一步促进AlN粒子的析出,AlN配合MnS作为复合抑制剂,继续保持基体抑制力使得二次再结晶发生在较高温度,产生高取向度Goss二次晶粒,提高磁性能;
7、Hi-B取向高硅钢得以实现,常规流程中3%Si取向硅钢通过抑制剂的设计可以提高抑制力得到磁感B8值在1.90以上称为Hi-B取向硅钢,其磁感值与理论饱和磁感值的比值B8/Bs:1.90/2.03=0.94,在另一方面,在初次再结晶组织中分阶段形成10~60nm且分布均匀的第二相粒子作为抑制剂,强烈阻碍高硅钢基体初次再结晶的进行,随着高温退火温度升高,基体中位向准确的Goss晶粒发生异常长大,发展成完善的二次再结晶组织,铁损值达到或接近日本专利报道水平,B8值达到1.74T以上,B8/BS=1.74T/1.80T=0.967,远超过日本专利报道磁感水平;
8、 抑制力综合调控能力提高,便于制备薄规格0.10~0.25mm取向高硅钢,从而获得更低的铁损。
附图说明
图1为本发明的取向高硅钢的制备方法流程示意图;
图2为本发明实施例3中的产品的微观组织显微图;
图3为本发明实施例3中的冷轧带再结晶退火后的宏观组织图;
图4为本发明实施例3中的铸带的微观组织显微图;图中可见20~200nm尺寸的MnS粒子析出。
具体实施方式
本发明实施例中采用的薄带连铸机为专利 CN103551532A公开的薄带连铸机。
本发明实施例中取向高硅钢的制备方法流程如图1所示:通过钢包冶炼钢水浇入中间包内,经过布流水口流入薄带连铸机,在两个旋转的铜结晶辊和侧封板组成的结晶器内形成熔池,钢水凝固后形成铸带;经过一道次热轧后进行卷取;热轧带在保护气氛下进行低温热轧和温轧,随后进行酸洗冷轧;冷轧完成后进行初次再结晶退火和涂MgO,然后进入高温退火过程;高温退火后,钢卷进行绝缘涂层和拉伸平整,拉伸平整完成后卷取。
本发明实施例中观测显微组织采用Zeiss Ultra 55型扫描电镜。
本发明实施例中采用的氢气的纯度为99.9%。
本发明实施例中采用的氮气的纯度为99.9%。
实施例1
按设定成分冶炼钢水,其成分按重量百分比含C 0.001%,Si 6.6%,Mn 0.2%,Al 0.12%,V 0.01%,Nb 0.06%,S 0.02%,N 0.020%,O 0.0016%,余量为Fe及不可避免杂质;
薄带连铸过程:将钢水通过浇口进入中间包,中间包预热温度1200℃,控制过热度为20℃,钢水通过中间包进入薄带连铸机,在旋转的铸辊与侧封板组成的结晶器内形成熔池并凝固成形;厚度在2.0mm;
铸带出辊后在惰性气氛条件下,以50~100℃/s的速率冷却至1000℃,然后进行热轧,开轧温度1000℃,终轧温度900℃,压下量15%,制成热轧铸带;
将热轧铸带以20~30℃/s的速率冷却至580℃卷取,然后在氮气气氛条件下,进行低温热轧/温轧,开轧温度760±5℃,终轧温度580℃,总压下量70%,制成温轧带;
将温轧带酸洗去除氧化皮,然后在100~200℃进行6道次冷轧,总压下量为80%,冷轧过程中进行2次时效处理,时效处理温度为280℃,时间为300s,每次时效处理是在相邻两道次冷轧之间,获得冷轧带,厚度为0.10mm;
将冷轧带在850±10℃进行再结晶退火,时间为120s,再结晶退火时冷轧带是在氮气氢气混合气氛条件下进行,控制混合气氛的露点在30℃,然后涂覆MgO涂层,最后卷取,获得涂层冷轧带;氮气氢气混合气氛中氢气的体积浓度为30%;
将涂层冷轧带置于400±10℃的环形炉内,在氢气流通的条件下,先以30~40℃/h的速度升温至1000±10℃,然后以10~20℃/h的速度升温至1130±10℃,再以30~40℃/h的速度升温至1240℃,保温20h进行净化退火; 
将净化退火后的涂层冷轧带进行表面清理去除氧化铁皮,再涂覆绝缘层,然后在800±10℃进行平整拉伸退火,最后空冷至650℃以下卷取,获得取向高硅钢,磁性能P10/50为0.18 W/kg,磁性能P10/400为6.75 W/kg,磁感B8为1.74 T,B8/BS=0.961。
实施例2
按设定成分冶炼钢水,其成分按重量百分比含C 0.003%,Si 5.0%,Mn 0.3%,Al 0.05%,V 0.04%,Nb 0.03%,S 0.03%,N 0.009%,O 0.0018%,余量为Fe及不可避免杂质;
薄带连铸过程:将钢水通过浇口进入中间包,中间包预热温度1250℃,控制过热度为50℃,钢水通过中间包进入薄带连铸机,在旋转的铸辊与侧封板组成的结晶器内形成熔池并凝固成形;厚度在2.3mm;
铸带出辊后在惰性气氛条件下,以50~100℃/s的速率冷却至1050℃,然后进行热轧,开轧温度1050℃,终轧温度980℃,压下量10%,制成热轧铸带;
将热轧铸带以20~30℃/s的速率冷却至600℃卷取,然后在氮气气氛条件下,进行低温热轧/温轧,开轧温度760±5℃,终轧温度600℃,总压下量70%,制成温轧带;
将温轧带酸洗去除氧化皮,然后在100~200℃进行7道次冷轧,总压下量为60%,冷轧过程中进行3次时效处理,时效处理温度为320℃,时间为240s,每次时效处理是在相邻两道次冷轧之间,获得冷轧带,厚度为0.25mm;
将冷轧带在850±10℃进行再结晶退火,时间为180s,再结晶退火时冷轧带是在氮气氢气混合气氛条件下进行,控制混合气氛的露点在40℃,然后涂覆MgO涂层,最后卷取,获得涂层冷轧带;氮气氢气混合气氛中氢气的体积浓度为30%;
将涂层冷轧带置于400±10℃的环形炉内,在氢气流通的条件下,先以30~40℃/h的速度升温至1000±10℃,然后以10~20℃/h的速度升温至1130±10℃,再以30~40℃/h的速度升温至1220℃,保温30h进行净化退火; 
将净化退火后的涂层冷轧带进行表面清理去除氧化铁皮,再涂覆绝缘层,然后在800±10℃进行平整拉伸退火,最后空冷至650℃以下卷取,获得取向高硅钢,磁性能P10/50为0.62 W/kg,磁性能P10/400为9.5 W/kg,磁感B8为1.81 T,B8/BS=0.978。
实施例3
按设定成分冶炼钢水,其成分按重量百分比含C 0.002%,Si 6.5%,Mn 0.23%,Al 0.08%,V 0.02%,Nb 0.05%,S 0.026%,N 0.018%,O 0.0011%,余量为Fe及不可避免杂质;
薄带连铸过程:将钢水通过浇口进入中间包,中间包预热温度1210℃,控制过热度为30℃,钢水通过中间包进入薄带连铸机,在旋转的铸辊与侧封板组成的结晶器内形成熔池并凝固成形;厚度在1.8mm;
铸带出辊后在惰性气氛条件下,以50~100℃/s的速率冷却至1030℃,然后进行热轧,开轧温度1030℃,终轧温度940℃,压下量13%,制成热轧铸带;
将热轧铸带以20~30℃/s的速率冷却至550℃卷取,然后在氮气气氛条件下,进行低温热轧/温轧,开轧温度760±5℃,终轧温度550℃,总压下量70%,制成温轧带;
将温轧带酸洗去除氧化皮,然后在100~200℃进行5道次冷轧,总压下量为62%,冷轧过程中进行2次时效处理,时效处理温度为320℃,时间为240s,每次时效处理是在相邻两道次冷轧之间,获得冷轧带,厚度为0.18mm;
将冷轧带在850±10℃进行再结晶退火,时间为160s,再结晶退火时冷轧带是在氮气氢气混合气氛条件下进行,控制混合气氛的露点在50℃,然后涂覆MgO涂层,最后卷取,获得涂层冷轧带;氮气氢气混合气氛中氢气的体积浓度为30%;
将涂层冷轧带置于400±10℃的环形炉内,在氢气流通的条件下,先以30~40℃/h的速度升温至1000±10℃,然后以10~20℃/h的速度升温至1130±10℃,再以30~40℃/h的速度升温至1230℃,保温24h进行净化退火; 
将净化退火后的涂层冷轧带进行表面清理去除氧化铁皮,再涂覆绝缘层,然后在800±10℃进行平整拉伸退火,最后空冷至650℃以下卷取,获得取向高硅钢,磁性能P10/50为0.22 W/kg,磁性能P10/400为7.1 W/kg,磁感B8为1.76 T,B8/BS=0.966。
实施例4
按设定成分冶炼钢水,其成分按重量百分比含C 0.001%,Si 5.8%,Mn 0.29%,Al 0.10%,V 0.03%,Nb 0.06%,S 0.02%,N 0.015%,O 0.0017%,余量为Fe及不可避免杂质;
薄带连铸过程:将钢水通过浇口进入中间包,中间包预热温度1220℃,控制过热度为40℃,钢水通过中间包进入薄带连铸机,在旋转的铸辊与侧封板组成的结晶器内形成熔池并凝固成形;厚度在3.0mm;
铸带出辊后在惰性气氛条件下,以50~100℃/s的速率冷却至1050℃,然后进行热轧,开轧温度1050℃,终轧温度980℃,压下量15%,制成热轧铸带;
将热轧铸带以20~30℃/s的速率冷却至570℃卷取,然后在氮气气氛条件下,进行低温热轧/温轧,开轧温度760±5℃,终轧温度570℃,总压下量80%,制成温轧带;
将温轧带酸洗去除氧化皮,然后在100~200℃进行6道次冷轧,总压下量为70%,冷轧过程中进行3次时效处理,时效处理温度为280℃,时间为300s,每次时效处理是在相邻两道次冷轧之间,获得冷轧带,厚度为0.15mm;
将冷轧带在850±10℃进行再结晶退火,时间为140s,再结晶退火时冷轧带是在氮气氢气混合气氛条件下进行,控制混合气氛的露点在60℃,然后涂覆MgO涂层,最后卷取,获得涂层冷轧带;氮气氢气混合气氛中氢气的体积浓度为30%;
将涂层冷轧带置于400±10℃的环形炉内,在氢气流通的条件下,先以30~40℃/h的速度升温至1000±10℃,然后以10~20℃/h的速度升温至1130±10℃,再以30~40℃/h的速度升温至1240℃,保温20h进行净化退火; 
将净化退火后的涂层冷轧带进行表面清理去除氧化铁皮,再涂覆绝缘层,然后在800±10℃进行平整拉伸退火,最后空冷至650℃以下卷取,获得取向高硅钢,磁性能P10/50为0.34 W/kg,磁性能P10/400为7.4 W/kg,磁感B8为1.77 T,B8/BS=0.975。
实施例5
按设定成分冶炼钢水,其成分按重量百分比含C 0.003%,Si 5.2%,Mn 0.27%,Al 0.06%,V 0.04%,Nb 0.04%,S 0.028%,N 0.014%, O 0.0018%,余量为Fe及不可避免杂质;
薄带连铸过程:将钢水通过浇口进入中间包,中间包预热温度1230℃,控制过热度为40℃,钢水通过中间包进入薄带连铸机,在旋转的铸辊与侧封板组成的结晶器内形成熔池并凝固成形;厚度在2.5mm;
铸带出辊后在惰性气氛条件下,以50~100℃/s的速率冷却至1000℃,然后进行热轧,开轧温度1000℃,终轧温度900℃,压下量12%,制成热轧铸带;
将热轧铸带以20~30℃/s的速率冷却至580℃卷取,然后在氮气气氛条件下,进行低温热轧/温轧,开轧温度760±5℃,终轧温度580℃,总压下量75%,制成温轧带;
将温轧带酸洗去除氧化皮,然后在100~200℃进行7道次冷轧,总压下量为67%,冷轧过程中进行2次时效处理,时效处理温度为300℃,时间为280s,每次时效处理是在相邻两道次冷轧之间,获得冷轧带,厚度为0.18mm;
将冷轧带在850±10℃进行再结晶退火,时间为180s,再结晶退火时冷轧带是在氮气氢气混合气氛条件下进行,控制混合气氛的露点在30℃,然后涂覆MgO涂层,最后卷取,获得涂层冷轧带;氮气氢气混合气氛中氢气的体积浓度为30%;
将涂层冷轧带置于400±10℃的环形炉内,在氢气流通的条件下,先以30~40℃/h的速度升温至1000±10℃,然后以10~20℃/h的速度升温至1130±10℃,再以30~40℃/h的速度升温至1220℃,保温30h进行净化退火; 
将净化退火后的涂层冷轧带进行表面清理去除氧化铁皮,再涂覆绝缘层,然后在800±10℃进行平整拉伸退火,最后空冷至650℃以下卷取,获得取向高硅钢,磁性能P10/50为0.43 W/kg,磁性能P10/400为8.2 W/kg,磁感B8为1.76 T,B8/BS=0.965。
实施例6
按设定成分冶炼钢水,其成分按重量百分比含C 0.002%,Si 6.1%,Mn 0.3%,Al 0.07%,V 0.01%,Nb 0.05%,S 0.026%,N 0.020%,O 0.0012%,余量为Fe及不可避免杂质;
薄带连铸过程:将钢水通过浇口进入中间包,中间包预热温度1250℃,控制过热度为50℃,钢水通过中间包进入薄带连铸机,在旋转的铸辊与侧封板组成的结晶器内形成熔池并凝固成形;厚度在2.8mm;
铸带出辊后在惰性气氛条件下,以50~100℃/s的速率冷却至1030℃,然后进行热轧,开轧温度1030℃,终轧温度940℃,压下量15%,制成热轧铸带;
将热轧铸带以20~30℃/s的速率冷却至560℃卷取,然后在氮气气氛条件下,进行低温热轧/温轧,开轧温度760±5℃,终轧温度560℃,总压下量75%,制成温轧带;
将温轧带酸洗去除氧化皮,然后在100~200℃进行5道次冷轧,总压下量为80%,冷轧过程中进行3次时效处理,时效处理温度为300℃,时间为300s,每次时效处理是在相邻两道次冷轧之间,获得冷轧带,厚度为0.12mm;
将冷轧带在850±10℃进行再结晶退火,时间为160s,再结晶退火时冷轧带是在氮气氢气混合气氛条件下进行,控制混合气氛的露点在40℃,然后涂覆MgO涂层,最后卷取,获得涂层冷轧带;氮气氢气混合气氛中氢气的体积浓度为30%;
将涂层冷轧带置于400±10℃的环形炉内,在氢气流通的条件下,先以30~40℃/h的速度升温至1000±10℃,然后以10~20℃/h的速度升温至1130±10℃,再以30~40℃/h的速度升温至1230℃,保温24h进行净化退火; 
将净化退火后的涂层冷轧带进行表面清理去除氧化铁皮,再涂覆绝缘层,然后在800±10℃进行平整拉伸退火,最后空冷至650℃以下卷取,获得取向高硅钢,磁性能P10/50为0.29 W/kg,磁性能P10/400为7.5 W/kg,磁感B8为1.74 T,B8/BS=0.973。
实施例7
按设定成分冶炼钢水,其成分按重量百分比含C 0.001%,Si 5.5%,Mn 0.22%,Al 0.11%,V 0.02%,Nb 0.05%,S 0.03%,N 0.010%,O 0.0018%,余量为Fe及不可避免杂质;
薄带连铸过程:将钢水通过浇口进入中间包,中间包预热温度1200℃,控制过热度为20℃,钢水通过中间包进入薄带连铸机,在旋转的铸辊与侧封板组成的结晶器内形成熔池并凝固成形;厚度在3.0mm;
铸带出辊后在惰性气氛条件下,以50~100℃/s的速率冷却至1050℃,然后进行热轧,开轧温度1050℃,终轧温度980℃,压下量15%,制成热轧铸带;
将热轧铸带以20~30℃/s的速率冷却至600℃卷取,然后在氮气气氛条件下,进行低温热轧/温轧,开轧温度760±5℃,终轧温度600℃,总压下量70%,制成温轧带;
将温轧带酸洗去除氧化皮,然后在100~200℃进行6道次冷轧,总压下量为76%,冷轧过程中进行2次时效处理,时效处理温度为280℃,时间为280s,每次时效处理是在相邻两道次冷轧之间,获得冷轧带,厚度为0.18mm;
将冷轧带在850±10℃进行再结晶退火,时间为140s,再结晶退火时冷轧带是在氮气氢气混合气氛条件下进行,控制混合气氛的露点在50℃,然后涂覆MgO涂层,最后卷取,获得涂层冷轧带;氮气氢气混合气氛中氢气的体积浓度为30%;
将涂层冷轧带置于400±10℃的环形炉内,在氢气流通的条件下,先以30~40℃/h的速度升温至1000±10℃,然后以10~20℃/h的速度升温至1130±10℃,再以30~40℃/h的速度升温至1240℃,保温20h进行净化退火; 
将净化退火后的涂层冷轧带进行表面清理去除氧化铁皮,再涂覆绝缘层,然后在800±10℃进行平整拉伸退火,最后空冷至650℃以下卷取,获得取向高硅钢,磁性能P10/50为0.49 W/kg,磁性能P10/400为7.8 W/kg,磁感B8为1.77 T,B8/BS=0.968。
实施例8
按设定成分冶炼钢水,其成分按重量百分比含C 0.003%,Si 5.8%,Mn 0.29%,Al 0.06%,V 0.03%,Nb 0.05%,S 0.021%,N 0.017%,O 0.0016%,余量为Fe及不可避免杂质;
薄带连铸过程:将钢水通过浇口进入中间包,中间包预热温度1220℃,控制过热度为30℃,钢水通过中间包进入薄带连铸机,在旋转的铸辊与侧封板组成的结晶器内形成熔池并凝固成形;厚度在1.8mm;
铸带出辊后在惰性气氛条件下,以50~100℃/s的速率冷却至1000℃,然后进行热轧,开轧温度1000℃,终轧温度900℃,压下量10%,制成热轧铸带;
将热轧铸带以20~30℃/s的速率冷却至550℃卷取,然后在氮气气氛条件下,进行低温热轧/温轧,开轧温度760±5℃,终轧温度550℃,总压下量70%,制成温轧带;
将温轧带酸洗去除氧化皮,然后在100~200℃进行7道次冷轧,总压下量为70%,冷轧过程中进行3次时效处理,时效处理温度为320℃,时间为240s,每次时效处理是在相邻两道次冷轧之间,获得冷轧带,厚度为0.15mm;
将冷轧带在850±10℃进行再结晶退火,时间为120s,再结晶退火时冷轧带是在氮气氢气混合气氛条件下进行,控制混合气氛的露点在60℃,然后涂覆MgO涂层,最后卷取,获得涂层冷轧带;氮气氢气混合气氛中氢气的体积浓度为30%;
将涂层冷轧带置于400±10℃的环形炉内,在氢气流通的条件下,先以30~40℃/h的速度升温至1000±10℃,然后以10~20℃/h的速度升温至1130±10℃,再以30~40℃/h的速度升温至1220℃,保温30h进行净化退火; 
将净化退火后的涂层冷轧带进行表面清理去除氧化铁皮,再涂覆绝缘层,然后在800±10℃进行平整拉伸退火,最后空冷至650℃以下卷取,获得取向高硅钢,磁性能P10/50为0.37 W/kg,磁性能P10/400为7.2 W/kg,磁感B8为1.75 T,B8/BS=0.970。

Claims (3)

1.一种取向高硅钢的制备方法,其特征在于按以下步骤进行:
(1)按设定成分冶炼钢水,其成分按重量百分比含C 0.001~0.003%,Si 5.0~6.6%,Mn 0.2~0.3%,Al 0.05~0.12%,V 0.01~0.04%,Nb 0.03~0.06%,S 0.02~0.03%,N 0.009~0.020%,O≤0.0020%,余量为Fe及不可避免杂质;
(2)薄带连铸过程:将钢水通过浇口进入中间包,中间包预热温度1200~1250℃,控制过热度为20~50℃,钢水通过中间包进入薄带连铸机后形成铸带,厚度在1.8~3.0mm;
(3)铸带出辊后在惰性气氛条件下,以50~100℃/s的速率冷却至1000~1050℃,然后进行热轧,开轧温度1000~1050℃,终轧温度900~980℃,压下量10~15%,制成热轧铸带;
(4)将热轧铸带以20~30℃/s的速率冷却至550~600℃卷取,然后在氮气气氛条件下,进行低温热轧/温轧,开轧温度760±5℃,终轧温度550~600℃,总压下量70~80%,制成温轧带;
(5)将温轧带酸洗去除氧化皮,然后在100~200℃进行多道次冷轧,总压下量为60~80%,冷轧过程中进行2~3次时效处理,时效处理温度为280~320℃,时间为240~300s,每次时效处理是在相邻两道次冷轧之间,获得冷轧带;
(6)将冷轧带在850±10℃进行再结晶退火,时间为120~180s,再结晶退火时冷轧带是在氮气氢气混合气氛条件下进行,控制混合气氛的露点在30~60℃,然后涂覆MgO涂层,最后卷取,获得涂层冷轧带; 
(7)将涂层冷轧带置于400±10℃的环形炉内,在氢气流通的条件下,先以30~40℃/h的速度升温至1000±10℃,然后以10~20℃/h的速度升温至1130±10℃,再以30~40℃/h的速度升温至1220~1240℃,保温20~30h进行净化退火; 
(8)将净化退火后的涂层冷轧带进行表面清理去除氧化铁皮,再涂覆绝缘层,然后在800±10℃进行平整拉伸退火,最后空冷至650℃以下卷取,获得取向高硅钢。
2.根据权利要求1所述的一种取向高硅钢的制备方法,其特征在于所述的取向高硅钢的厚度为0.10~0.25mm。
3.根据权利要求1所述的一种取向高硅钢的制备方法,其特征在于所述的取向高硅钢的磁性能为:P10/50在0.18~0.62,P10/400在6.75~9.5,磁感B8在1.74~1.81 T,B8/BS=0.961~0.978。
CN201410505834.8A 2014-09-28 2014-09-28 一种取向高硅钢的制备方法 Active CN104372238B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201410505834.8A CN104372238B (zh) 2014-09-28 2014-09-28 一种取向高硅钢的制备方法
EP14902512.4A EP3118336B1 (en) 2014-09-28 2014-10-20 Preparation method for oriented high-silicon steel
US15/027,368 US10032548B2 (en) 2014-09-28 2014-10-20 Preparation method of oriented high silicon steel
PCT/CN2014/088887 WO2016045157A1 (zh) 2014-09-28 2014-10-20 一种取向高硅钢的制备方法
JP2016515529A JP6208855B2 (ja) 2014-09-28 2014-10-20 配向性高ケイ素鋼の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410505834.8A CN104372238B (zh) 2014-09-28 2014-09-28 一种取向高硅钢的制备方法

Publications (2)

Publication Number Publication Date
CN104372238A true CN104372238A (zh) 2015-02-25
CN104372238B CN104372238B (zh) 2016-05-11

Family

ID=52551429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410505834.8A Active CN104372238B (zh) 2014-09-28 2014-09-28 一种取向高硅钢的制备方法

Country Status (5)

Country Link
US (1) US10032548B2 (zh)
EP (1) EP3118336B1 (zh)
JP (1) JP6208855B2 (zh)
CN (1) CN104372238B (zh)
WO (1) WO2016045157A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831036A (zh) * 2015-04-17 2015-08-12 武汉钢铁(集团)公司 薄带连铸高温轧制快淬制备Fe-6.5%Si的方法
CN105385937A (zh) * 2015-11-14 2016-03-09 东北大学 一种高磁感取向硅钢极薄带的减量化制备方法
CN107164693A (zh) * 2017-06-01 2017-09-15 东北大学 一种基于薄带连铸高硅钢冷轧带钢的制备方法
CN107217198A (zh) * 2017-06-01 2017-09-29 东北大学 一种基于薄带连铸制备旋转立方双取向硅钢的方法
CN107245646A (zh) * 2017-06-01 2017-10-13 东北大学 一种板面周向高磁感低铁损无取向硅钢的制备方法
CN107245647A (zh) * 2017-06-01 2017-10-13 东北大学 一种基于薄带连铸制备发达{100}面织构无取向硅钢薄带的方法
CN107245644A (zh) * 2017-05-10 2017-10-13 东北大学 基于薄带连铸高磁感、低铁损薄规格无取向硅钢制备方法
CN107937690A (zh) * 2017-12-28 2018-04-20 滁州宝岛特种冷轧带钢有限公司 一种冷轧带钢的热处理工艺
CN108315542A (zh) * 2018-02-08 2018-07-24 全球能源互联网研究院有限公司 超薄取向硅钢板材及其制备方法
CN108359909A (zh) * 2018-05-25 2018-08-03 江苏集萃冶金技术研究院有限公司 通过薄带铸轧和时效工艺制备高强韧马氏体钢方法
CN108823372A (zh) * 2018-08-07 2018-11-16 东北大学 一种取向高硅钢薄带及其高效退火模式的制备方法
CN109097677A (zh) * 2018-08-07 2018-12-28 东北大学 一种高磁感取向高硅钢板薄带及其制备方法
CN109280891A (zh) * 2018-11-30 2019-01-29 湖南上临新材料科技有限公司 一种梯度高硅钢的制备工艺
CN114293089A (zh) * 2021-12-31 2022-04-08 河北科技大学 一种软磁性高硅钢极薄带及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112647022A (zh) * 2020-12-25 2021-04-13 江苏新核合金科技有限公司 一种高硅不锈钢管材及其制备工艺
CN113953479B (zh) * 2021-10-25 2023-02-24 江苏沙钢集团有限公司 一种改善薄带钢钢卷翻边的方法
CN114540711B (zh) * 2022-02-25 2022-12-23 江苏省沙钢钢铁研究院有限公司 一种高牌号无取向电工钢及其制备方法
CN115233082B (zh) * 2022-07-28 2023-02-24 东北大学 通过定向再结晶制备强{100}面织构电工钢薄带的方法
CN115478135B (zh) * 2022-09-06 2024-02-02 东北大学 一种具有强{100}取向柱状晶的高硅钢薄带的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256810A (ja) * 1999-03-11 2000-09-19 Kawasaki Steel Corp 低磁場高周波での磁気特性及び打ち抜き加工性に優れる方向性けい素鋼板及びその製造方法
JP2005272973A (ja) * 2004-03-26 2005-10-06 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP2014025106A (ja) * 2012-07-26 2014-02-06 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2014114490A (ja) * 2012-12-11 2014-06-26 Jfe Steel Corp 磁気特性に優れた方向性電磁鋼板の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665724B2 (ja) * 1986-04-14 1994-08-24 新日本製鐵株式会社 磁気特性の優れた電磁鋼板の製造方法
JPS6369917A (ja) * 1986-09-09 1988-03-30 Sumitomo Metal Ind Ltd 一方向性電磁鋼板の製造方法
JPS6389622A (ja) 1986-10-03 1988-04-20 Sumitomo Metal Ind Ltd 一方向性高Si珪素鋼板の製造方法
JPH07115041B2 (ja) * 1987-03-11 1995-12-13 日本鋼管株式会社 無方向性高Si鋼板の製造方法
CA2006292C (en) 1988-12-22 1997-09-09 Yoshiyuki Ushigami Very thin electrical steel strip having low core loss and high magnetic flux density and a process for producing the same
JPH0459929A (ja) * 1990-06-29 1992-02-26 Nippon Steel Corp {110}<001>方位集積度が高く鉄損の低い極薄電磁鋼帯およびその製造方法
JP2779696B2 (ja) 1990-07-20 1998-07-23 新日本製鐵株式会社 方向性高珪素鋼板の製造方法
JPH086136B2 (ja) * 1990-12-26 1996-01-24 新日本製鐵株式会社 方向性高珪素鋼板の製造法
JPH05295447A (ja) 1992-04-23 1993-11-09 Nippon Steel Corp 方向性電磁鋼板の短時間仕上焼鈍法
JP3342777B2 (ja) * 1994-08-16 2002-11-11 株式会社レオテック けい素鋼の鋳造方法
CN1560309A (zh) 2004-02-19 2005-01-05 北京科技大学 一种逐步增塑法制备铁硅系基有序合金薄板的技术
KR101177161B1 (ko) * 2006-06-16 2012-08-24 신닛뽄세이테쯔 카부시키카이샤 고강도 전자기 강판 및 그 제조 방법
CN101545072B (zh) * 2008-03-25 2012-07-04 宝山钢铁股份有限公司 一种高电磁性能取向硅钢的生产方法
CN102041368A (zh) * 2011-01-16 2011-05-04 首钢总公司 一种表面质量优异的取向电工钢生产方法
CN103540846B (zh) * 2013-08-27 2016-01-20 国家电网公司 一种薄规格、超低铁损、低噪声高磁感取向硅钢片及其制备方法
CN103551532B (zh) 2013-10-30 2017-01-11 宝山钢铁股份有限公司 一种薄带连铸铸机及其作业方法
CN103725995B (zh) * 2013-12-27 2016-01-20 东北大学 一种取向高硅电工钢的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256810A (ja) * 1999-03-11 2000-09-19 Kawasaki Steel Corp 低磁場高周波での磁気特性及び打ち抜き加工性に優れる方向性けい素鋼板及びその製造方法
JP2005272973A (ja) * 2004-03-26 2005-10-06 Jfe Steel Kk 磁気特性に優れた方向性電磁鋼板の製造方法
JP2014025106A (ja) * 2012-07-26 2014-02-06 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2014114490A (ja) * 2012-12-11 2014-06-26 Jfe Steel Corp 磁気特性に優れた方向性電磁鋼板の製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831036A (zh) * 2015-04-17 2015-08-12 武汉钢铁(集团)公司 薄带连铸高温轧制快淬制备Fe-6.5%Si的方法
CN105385937A (zh) * 2015-11-14 2016-03-09 东北大学 一种高磁感取向硅钢极薄带的减量化制备方法
CN107245644B (zh) * 2017-05-10 2018-08-24 东北大学 基于薄带连铸高磁感、低铁损薄规格无取向硅钢制备方法
CN107245644A (zh) * 2017-05-10 2017-10-13 东北大学 基于薄带连铸高磁感、低铁损薄规格无取向硅钢制备方法
CN107164693A (zh) * 2017-06-01 2017-09-15 东北大学 一种基于薄带连铸高硅钢冷轧带钢的制备方法
CN107217198A (zh) * 2017-06-01 2017-09-29 东北大学 一种基于薄带连铸制备旋转立方双取向硅钢的方法
CN107245646A (zh) * 2017-06-01 2017-10-13 东北大学 一种板面周向高磁感低铁损无取向硅钢的制备方法
CN107245647A (zh) * 2017-06-01 2017-10-13 东北大学 一种基于薄带连铸制备发达{100}面织构无取向硅钢薄带的方法
CN107217198B (zh) * 2017-06-01 2018-10-09 东北大学 一种基于薄带连铸制备旋转立方双取向硅钢的方法
CN107937690A (zh) * 2017-12-28 2018-04-20 滁州宝岛特种冷轧带钢有限公司 一种冷轧带钢的热处理工艺
CN108315542A (zh) * 2018-02-08 2018-07-24 全球能源互联网研究院有限公司 超薄取向硅钢板材及其制备方法
CN108359909A (zh) * 2018-05-25 2018-08-03 江苏集萃冶金技术研究院有限公司 通过薄带铸轧和时效工艺制备高强韧马氏体钢方法
CN108823372A (zh) * 2018-08-07 2018-11-16 东北大学 一种取向高硅钢薄带及其高效退火模式的制备方法
CN109097677A (zh) * 2018-08-07 2018-12-28 东北大学 一种高磁感取向高硅钢板薄带及其制备方法
CN108823372B (zh) * 2018-08-07 2020-03-31 东北大学 一种取向高硅钢薄带及其高效退火模式的制备方法
CN109280891A (zh) * 2018-11-30 2019-01-29 湖南上临新材料科技有限公司 一种梯度高硅钢的制备工艺
CN114293089A (zh) * 2021-12-31 2022-04-08 河北科技大学 一种软磁性高硅钢极薄带及其制备方法
CN114293089B (zh) * 2021-12-31 2022-06-21 河北科技大学 一种软磁性高硅钢极薄带及其制备方法

Also Published As

Publication number Publication date
JP2017501296A (ja) 2017-01-12
EP3118336A4 (en) 2017-07-12
US20160247613A1 (en) 2016-08-25
CN104372238B (zh) 2016-05-11
EP3118336A1 (en) 2017-01-18
EP3118336B1 (en) 2018-03-28
US10032548B2 (en) 2018-07-24
JP6208855B2 (ja) 2017-10-04
WO2016045157A1 (zh) 2016-03-31

Similar Documents

Publication Publication Date Title
CN104372238A (zh) 一种取向高硅钢的制备方法
EP2532758B1 (en) Manufacture method of high efficiency non-oriented silicon steel having good magnetic performance
CN102199721B (zh) 高硅无取向冷轧薄板的制造方法
CN103635596B (zh) 晶粒取向的、电工用途的磁性钢带或磁性钢板的制造方法
KR20170117568A (ko) 표면상태가 양호한 고자속밀도와 저철손을 갖는 무방향성 전기강판 및 그의 제조방법
WO2012055215A1 (zh) 一种高磁感无取向硅钢的制造方法
CN103805918B (zh) 一种高磁感取向硅钢及其生产方法
WO2016045158A1 (zh) 一种超低碳取向硅钢及其制备方法
CN109097677A (zh) 一种高磁感取向高硅钢板薄带及其制备方法
CN103687966A (zh) 方向性电磁钢板的制造方法
CN107201478B (zh) 一种基于异径双辊薄带连铸技术的超低碳取向硅钢制备方法
CN105950992A (zh) 一种采用一次冷轧法制造的晶粒取向纯铁及方法
CN104178617A (zh) 控制双辊薄带连铸无取向硅钢磁性能的快速热处理方法
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
CN107164693B (zh) 一种基于薄带连铸高硅钢冷轧带钢的制备方法
CN109182907B (zh) 一种无头轧制生产半工艺无取向电工钢的方法
CN105385937B (zh) 一种高磁感取向硅钢极薄带的减量化制备方法
CN104164618A (zh) 快速冷却控制双辊薄带连铸低硅无取向硅钢磁性能的方法
CN103602886B (zh) 一种双辊薄带连铸制备1.5mm级Fe-Si合金带的方法
JP2022545889A (ja) 無方向性電磁鋼板およびその製造方法
GB2060697A (en) Grain-oriented silicon steel production
JPS6237094B2 (zh)
JPS6242968B2 (zh)
JPH06240358A (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
CN118616669A (zh) 一种薄带连铸制备超低铁损无取向硅钢的工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant