CN107164693B - 一种基于薄带连铸高硅钢冷轧带钢的制备方法 - Google Patents

一种基于薄带连铸高硅钢冷轧带钢的制备方法 Download PDF

Info

Publication number
CN107164693B
CN107164693B CN201710402834.9A CN201710402834A CN107164693B CN 107164693 B CN107164693 B CN 107164693B CN 201710402834 A CN201710402834 A CN 201710402834A CN 107164693 B CN107164693 B CN 107164693B
Authority
CN
China
Prior art keywords
strip
cold
steel
silicon steel
cast strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710402834.9A
Other languages
English (en)
Other versions
CN107164693A (zh
Inventor
卢翔
方烽
兰梦飞
张元祥
王洋
曹光明
李成刚
袁国
王国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710402834.9A priority Critical patent/CN107164693B/zh
Publication of CN107164693A publication Critical patent/CN107164693A/zh
Application granted granted Critical
Publication of CN107164693B publication Critical patent/CN107164693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Abstract

本发明属于钢铁材料制备领域,涉及一种基于薄带连铸高硅钢冷轧带钢的制备方法。按设定成分冶炼钢水,其成分按重量百分比为:C 0.002~0.005%,Si 4.0~7.0%,Mn 0.1~0.3%,Al 0.01~0.04%,S 0.02~0.03%,N 0.008~0.020%,Nb 0.02~0.05%,V 0.01~0.04%,O≤0.002%,余量为Fe及不可避免杂质。在高硅钢中添加Mn,Al,Nb,V等第二相形成元素,这些元素在铸带热处理时均匀弥散析出,进而抑制铁素体晶粒正常长大,促使出现异常长大,优化了铸带的织构,改善了可加工性。之后铸带进行低温温轧,进一步降低高硅钢的有序度,最终实现了冷轧过程。因此,本发明方法制备高硅钢冷轧薄带流程短,效率高,最终产品板形良好,可在工艺上广泛实现,具有广阔的应用前景。

Description

_矛中®于薄带连铸高硅钢冷轧带钢的制备方法
技术领域
[0001]本发明属于钢铁材料制备领域,涉及一种基于薄带连铸高硅钢冷轧带钢的制备方 法。
背景技术 _2]普通娃钢中娃含量一般控制在3.5% (质量比,下同)以下。研宄表明,增加娃钢中 的桂含量至4.0〜6.7% (称为高硅钢)会显著增加电阻率和磁导率,降低矫顽力,因而降低 了铁损,优化了桂钢的性能。尤其当硅含量为6.5%时,硅钢不仅铁损较低,且磁致伸缩系数 接近于0,对节约能耗、降低噪音具有重要的意义。但较高的硅含量提高了硅钢的屈服强度 和抗拉强度,同时降低了伸长率。因此,高硅钢既硬又脆,很难采用常规连铸、热乳、冷乳方 式大规模生产成品厚度的板材。
[0003]针对高硅钢的可加工性较差,难以加工制备的特点,学者们提出了多种新型的制 备方法。日本学者Arai等在Journal of applied physics,64 (1988) 5373_5375,Annealing effect on grain texture of cold-rolled 4.5%Si-Fe ribbons prepared by a rapid quenching method中报道了采用薄带快淬的方式制备〇.28mm高硅钢薄带,随后采用乳制变 形方式制备得到〇.〇6_后的冷乳带。由于该方法之别的高硅钢薄而窄,尺寸受限制,难以实 现规模化生产。
[0004] 随后,日本钢官公司 Yamaj i 等在 Journal of Magneti sm and Magnet ic Materials ,133 (1994) 187-189,Magnetic properties and workability of 6.5% silicon steel sheet manufactured in continuous CVD siliconizing line中采用化 学沉积法以普通的3.0% Si钢为原料,利用SiC14为介质实现渗硅,最终得到厚度为0.05〜 0.30mm的6.5%Si钢薄带,该方法虽然实现了规模化生产,但由于渗硅反应之后的扩散退火 时间较长,导致能耗较高,生产成本较高。双辊薄带连铸技术是近年来兴起的一种短流程高 效的薄带制备技术,其主要的技术特点为可以直接由液态金属制备2〜5mm的薄带材。该方 法生产成本较低,适合于制备高硅钢这类附加值较高的钢铁产品。
[0005] 东北大学李昊泽等在Materials Characterization,88 (2014) 1 -6, Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel中报道了采用薄带连铸制 备6.5%Si铸带,并随后采用l〇50°C热乳,接着250°C条件下冷乳得到0.50mm高硅钢冷轧板。 该方法基于薄带连铸,采用热乳和温轧的方式,虽可以成功制备高硅钢成品板,但由于乳制 规程复杂,且需采用较高温度的热轧,不利于能耗的降低和生产成本的降低。
发明内容
[0006] 本发明的目的是提供一种基于薄带连铸高硅钢冷轧带钢的制备方法,通过对薄带 连铸条件下组织、织构和析出物的整体认识,重新设计高硅钢成分,添加了抑制剂形成元 素。并利用热处理过程使铸带出现了异常长大,显著优化了铸带的织构,进而改善了高硅钢 塑性,采用冷轧的办法得到了高硅钢成品。
[0007]本发明的技术方案是:
[0008] 一种基于薄带连铸高硅钢冷轧带钢的制备方法,通过短流程薄带连铸技术制备高 硅钢铸带,随后对铸带进行热处理,利用异常长大现象控制织构,改善可加工性,并利用乳 制变形得到板形良好的高硅钢冷乳薄带,其具体的工艺流程为:
[0009] (1)按设定成分冶炼钢水,其成分按重量百分比为:C 0.002〜0.005%,Si 4.0〜 7-0%,Mn0.1〜0.3%,A10.01〜0.04%,S0.02〜0.03%,N 0.008〜0.020%,Nb0.02〜 0.05%,V 0.01 〜0_〇4%,0彡0.002%,余量为Fe;
[0010] (2)薄带连铸过程:将中间包预热,预热温度1200〜1250°c,随后将钢水浇入到中 间包中,控制过热度为20〜60°C,钢水通过中间包进入薄带连铸机后形成铸带,控制铸速30 〜55m/min,最终铸带厚度为2.0〜5 • 0mm;
[0011] (3)铸带出辊后,在氮气的气氛条件下,以40〜110°C/s的速率冷却450〜650°C卷 取;
[0012] (4)将铸带卷去除氧化皮,然后涂Al2〇3隔离剂后进行重新卷取,Al2〇3隔离剂颗粒 度为10〜20wn;
[0013] (5)铸带卷进行罩式炉进行热处理,在氮气氢气混合气氛条件下以50〜150°C/h的 速度升温至950〜1150°C,随后保温5〜20h进行退火,控制露点小于-30°C ;
[0014] (6)将热处理后带卷重新开卷清理隔离剂后重新卷取,然后在氮气气氛条件下进 行温乳,开乳温度为500〜550°C,终乳温度为380〜450 °C,总压下量为40〜50 %,得到温乳 带;
[0015] (7)将温轧带去氧化铁皮,随后在20〜150°C条件下进行多道次冷轧,总压下量为 70〜85%,获得冷轧薄带。
[0016] 所述的基于薄带连铸高硅钢冷乳带钢的制备方法,添加此^1,他,¥3和8第二相 形成元素,并控制C和0的含量。
[0017] 所述的基于薄带连铸高硅钢冷乳带钢的制备方法,铸带经过热处理之后得到5〜 40mm的强{100}取向的晶粒。
[0018] 所述的基于薄带连铸高硅钢冷乳带钢的制备方法,最终成品的冷轧薄带厚度为 0.20〜0.50臟〇
[0019] 所述的步骤⑸氮气氢气混合气氛中,氮气的体积比例为5〜50%。
[0020] 所述的步骤⑺多道次冷乳中,每道次压下量为3〜8 %。
[0021] 本发明的设计思想是:
[0022] 本发明基于薄带连铸,采用特殊的成分设计,结合后续的热处理过程,显著提高了 铸带的可加工性,简化了轧制变形规程是本专利的特点。薄带连铸制备较快的凝固速度能 将大部分的第二相形成元素固溶在铸带基体中,这些抑制剂元素在后续的铸带热处理过程 中析出,起到钉扎铁素体晶界的作用,进而促使铸带中出现异常长大现象,改善了铸带的织 构,进而提高了铸带的可加工性。
[0023] 与现有技术相比,本发明的优点及有益效果在于:
[0024] 1、本发明通过在铸带中添加1^,八1,_,¥,3,^1等第二相形成元素,这些元素在后续 的铸带热处理中均匀弥散析出,进而抑制铁素体晶粒的正常长大,促使出现异常长大的现 象,得到强的{100}织构。
[0025] 2、本发明铸带经热处理之后,消除了溶质元素在枝晶间和晶界附近的微观偏析, 提高了高硅钢的可加工性,有利于实现后续的乳制变形。
[0026] 3、本发明热处理铸带直接在较低温度下实现变形,能显著的节约能耗,且有利于 迅速降低合金的有序度,提高塑性,使后面的冷乳能顺利进行。
附图说明
[0027]图1为本发明实施例中的的基于薄带连铸技术的取向硅钢快速二次再结晶的制备 方法流程图。
具体实施方式
[0028] 在具体实施过程中,采用的薄带连铸机为专利(公开号CN103551532A)公开的薄带 连铸机。如图1所示,基于薄带连铸高硅钢冷乳带钢的制备方法流程如下:按设定成分冶炼 钢水,进入薄带连铸机完成薄带连铸过程,出铸机后的铸带进行热处理,再经低温温乳和冷 车L,形成表面质量优良、板形良好的冷轧薄带。
[0029]下面,通过实施例对本发明进一步详细阐述。
[0030] 实施例1
[0031]本实施例中,基于薄带连铸高硅钢冷乳带钢的制备方法,按以下步骤进行:
[0032] 按设定成分冶炼钢水,其成分按重量百分比为:C 0.003%,Si 6.49%,Mn 0.22%,A1 0.02%,S 0.025%,N 0.011%,Nb 0.03%,V 0.04%,0 0.0015%,其余为Fe。 [0033]薄带连铸过程:将中间包预热,预热温度为1200°C,随后将钢水浇入到中间包中, 控制过热度为25 °C,钢水通过中间包流入连个反向旋转的结晶辊之间凝固为薄带,控制铸 速45111/111;1_11,厚度为2.2111111;
[0034] 铸带出辊之后,在氮气气氛条件下,以80°C/s的速率冷却至550°C进行卷取,获得 铸带卷;
[0035]将铸带卷酸洗去除表面氧化铁皮,并涂覆A1203隔离剂后重新卷取,Al2〇3隔离剂颗 粒度为15wn,得到涂层铸带卷;
[0036] 将涂层铸带卷以5〇°C/h的升温速度加热至1100°C,并保温10h,得到热处理铸带; 退火气氛为氮气和氢气的混合气氛,其中氮气所占体积比例为25%,控制混合气氛的露点 为-35。。;
[0037]将热处理铸带开卷后,在氮气气氛条件下,进行温乳,开轧温度为500 ± 5 °C,终乳 温度为390± 5°C,总压下量45%,制成温乳带;
[0038]将温轧带酸洗去除氧化铁皮后,然后在80〜100°C条件下冷乳,每道次压下量为 3 %,总压下量为75 %,得到冷乳薄带,厚度为0.3_。
[0039] 实施例2
[0040]本实施例中,基于薄带连铸高硅钢冷乳带钢的制备方法,按以下步骤进行:
[0041]按设定成分冶炼钢水,其成分按重量百分比为:C 0.003%,Si 6.1%,Mn 0.30%, A1 0.018%,S 0_03%,N 0_020%,Nb 0_014%,V 0_04%,0 0.001%,其余为Fe。
[0042]薄带连铸过程:将中间包预热,预热温度为1250 °C,随后将钢水浇入到中间包中, 控制过热度为50°C,钢水通过中间包流入连个反向旋转的结晶辊之间凝固为薄带,控制铸 速4〇111/111;[11,厚度为2.5111111;
[0043]铸带出棍之后,在氮气气氛条件下,以60°C/s的速率冷却至600°C进行卷取,获得 铸带卷;
[0044]将铸带卷酸洗去除表面氧化铁皮,并涂覆Al2〇3隔离剂后重新卷取,Al2〇3隔离剂颗 粒度为l〇Mi,得到涂层铸带卷;
[0045]将涂层铸带卷以80°C/h的升温速度加热至1150°C,并保温8h,得到热处理铸带;退 火气氛为氮气和氢气的混合气氛,其中氮气所占体积比例为50%,控制混合气氛的露点为-30 °C;
[0046] 将热处理铸带开卷后,在氮气气氛条件下,进行温乳,开乳温度为520 ± 5 °C,终乳 温度为400 ± 5°C,总压下量50%,制成温乳带;
[0047]将温轧带酸洗去除氧化铁皮后,然后在1〇〇〜120°C条件下冷乳,每道次压下量为 8 %,总压下量为72 %,得到冷乳薄带,厚度为0.35mm。
[0048] 实施例3
[0049]本实施例中,基于薄带连铸高硅钢冷轧带钢的制备方法,按以下步骤进行:
[0050] 按设定成分冶炼钢水,其成分按重量百分比为:c 0.002%,Si 6.7%,Mn 0.18%, A1 0.03%,S 0.022%,N 0.009%,Nb 0.02%,V 0_01%,0 0.001%,其余为Fe。
[OO51 ]薄带连铸过程:将中间包预热,预热温度为123〇 °C,随后将钢水饶入到中间包中, 控制过热度为30°C,钢水通过中间包流入连个反向旋转的结晶辊之间凝固为薄带,控制铸 速 50m/min,厚度为 3.0mm;
[OO52]铸带出辊之后,在氮气气氛条件下,以9〇°C/s的速率冷却至580°C进行卷取,获得 铸带卷;
[0053]将铸带卷酸洗去除表面氧化铁皮,并涂覆Ah〇3隔离剂后重新卷取,Al2〇3隔离剂颗 粒度为20wn,得到涂层铸带卷;
[0054] 将涂层铸带卷以l〇〇°C/h的升温速度加热至95(TC,并保温20h,得到热处理铸带; 退火气氛为氮气和氢气的混合气氛,其中氮气所占体积比例为20%,控制混合气氛的露点 为-45。。;
[0055]将热处理铸带开卷后,在氮气气氛条件下,进行温轧,开轧温度为545 ± 5。(:,终车L 温度为440±5°C,总压下量42%,制成温轧带; '
[0056]将温乳带酸洗去除氧化铁皮后,然后在70〜l3〇°C条件下冷乳,每道次压下量为4 〜6%,总压下量为71.2%,得到冷轧薄带,厚度为0.5mm。
[OO57]实施例结果表明,本发明在高娃钢中添加血、六1、他、¥等第二相形成元素,这些元 素在铸带热处理时均匀弥散析出,进而抑制铁素体晶粒正常长大,促使出现异常长大,彳尤化^ 了铸带的织构,改善了可加工性。之后铸带进行低温温乳,进一步降低高娃钢的有序度,最 终实现了冷轧过程。因此,本发明方法制备高硅钢冷乳薄带流程短,效率高,最终产品板形 良好,可在工艺上广泛实现,具有广阔的应用前景。 /

Claims (6)

1.一种基于薄带连铸高硅钢冷乳带钢的制备方法,其特征在于,通过短流程薄带连铸 技术制备高硅钢铸带,随后对铸带进行热处理,利用异常长大现象控制织构,改善可加工 性,并利用轧制变形得到板形良好的高硅钢冷轧薄带,其具体的工艺流程为: (1) 按设定成分冶炼钢水,其成分按重量百分比为:C 0.002〜0.005%,Si 4.0〜
7.0%,Mn 0.1 〜0.3%,A1 0.01 〜0.04%,S 0.02〜0.03%,N 0.008〜0.020%,Nb 0.02〜
0.05%,V 0.01 〜0.04%,0彡0.002%,余量为Fe; (2) 薄带连铸过程:将中间包预热,预热温度1200〜1250°C,随后将钢水浇入到中间包 中,控制过热度为20〜60°C,钢水通过中间包进入薄带连铸机后形成铸带,控制铸速30〜 55m/min,最终铸带厚度为2.0〜5.0mm; ⑶铸带出辊后,在氮气的气氛条件下,以40〜110°C/s的速率冷却450〜65(TC卷取; ⑷将铸带卷去除氧化皮,然后涂Ah〇3隔离剂后进行重新卷取,Al2〇3隔离剂颗粒度为10 〜20um; (5) 铸带卷进行罩式炉进行热处理,在氮气氢气混合气氛条件下以50〜15(TC/h的速度 升温至950〜1150°C,氮气氛气混合气氛中,氮气的体积比例为5〜50% ;随后保温5〜20h进 行退火,控制露点小于-30°C,铸带经过热处理之后得到5〜40mm的强{100}取向的晶粒; (6) 将热处理后带卷重新开卷清理隔离剂后重新卷取,然后在氮气气氛条件下进行温 车L,开乳温度为500〜550°C,终乳温度为38〇〜450°C,总压下量为40〜50%,得到温乳带; (7) 将温轧带去氧化铁皮,随后在20〜150°C条件下进行多道次冷乳,总压下量为70〜 85%,获得冷轧薄带。
2. 根据权利要求1所述的基于薄带连铸高硅钢冷轧带钢的制备方法,其特征在于,添加 Mn,Al,Nb,V,N和S第二相形成元素,并控制C和0的含量。
3. 根据权利要求1所述的基于薄带连铸高硅钢冷乳带钢的制备方法,其特征在于,最终 成品的冷轧薄带厚度为〇. 20〜0 • 50mm。
4. 根据权利要求1所述的基于薄带连铸高硅钢冷轧带钢的制备方法,其特征在于,所述 的步骤(7)多道次冷乳中,每道次压下量为3〜8%。
CN201710402834.9A 2017-06-01 2017-06-01 一种基于薄带连铸高硅钢冷轧带钢的制备方法 Active CN107164693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710402834.9A CN107164693B (zh) 2017-06-01 2017-06-01 一种基于薄带连铸高硅钢冷轧带钢的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710402834.9A CN107164693B (zh) 2017-06-01 2017-06-01 一种基于薄带连铸高硅钢冷轧带钢的制备方法

Publications (2)

Publication Number Publication Date
CN107164693A CN107164693A (zh) 2017-09-15
CN107164693B true CN107164693B (zh) 2018-11-06

Family

ID=59821269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710402834.9A Active CN107164693B (zh) 2017-06-01 2017-06-01 一种基于薄带连铸高硅钢冷轧带钢的制备方法

Country Status (1)

Country Link
CN (1) CN107164693B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937690A (zh) * 2017-12-28 2018-04-20 滁州宝岛特种冷轧带钢有限公司 一种冷轧带钢的热处理工艺
CN108080416A (zh) * 2017-12-28 2018-05-29 滁州宝岛特种冷轧带钢有限公司 一种紧凑型中宽带钢生产工艺
CN110699588B (zh) * 2019-10-11 2021-03-30 武汉桂坤科技有限公司 一种从氧化铁直接制备薄带钢的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834858B (zh) * 2012-11-23 2016-10-05 宝山钢铁股份有限公司 一种低铁损无取向硅钢的制造方法
CN104372238B (zh) * 2014-09-28 2016-05-11 东北大学 一种取向高硅钢的制备方法
CN104294155B (zh) * 2014-09-28 2016-05-11 东北大学 一种超低碳取向硅钢及其制备方法

Also Published As

Publication number Publication date
CN107164693A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107164693B (zh) 一种基于薄带连铸高硅钢冷轧带钢的制备方法
US7942191B2 (en) Method and system for producing wide steel strip
CN102174683B (zh) 一种通板力学性能均匀的冷轧低碳铝镇静钢的生产方法
CN104278189B (zh) 一种冷轧无取向高硅钢薄板的短流程制造方法
CN104372238A (zh) 一种取向高硅钢的制备方法
CN104789860A (zh) 一种电工钢及其生产方法
CN102102141B (zh) 改善取向硅钢板组织均匀性的热轧工艺
CN104294155B (zh) 一种超低碳取向硅钢及其制备方法
CN107245646B (zh) 一种板面周向高磁感低铁损无取向硅钢的制备方法
CN104762551A (zh) 一种薄带连铸高磁感无取向硅钢的制造方法
CN102581008A (zh) 一种生产低成本高成形性if钢的加工方法
CN107674955B (zh) 一种强塑积大于50GPa·%的低密度钢的制备方法
CN104419865A (zh) 一种易开盖用冷轧镀锡板及其生产方法
CN103484764B (zh) Ti析出强化型超高强热轧薄板及其生产方法
CN107245647B (zh) 一种基于薄带连铸制备发达{100}面织构无取向硅钢薄带的方法
CN101956127B (zh) 含Sn无取向电工钢板卷的制备方法
CN107058874B (zh) 一种基于薄带连铸制备高磁感无取向硅钢薄规格产品的方法
CN104831036A (zh) 薄带连铸高温轧制快淬制备Fe-6.5%Si的方法
CN102417959A (zh) 一种免退火处理热轧s50c板带的生产方法
CN108203788B (zh) 一种薄带连铸低磁各向异性无取向硅钢的制备方法
JPH0742513B2 (ja) オーステナイト系ステンレス鋼薄板の製造方法
CN107217198B (zh) 一种基于薄带连铸制备旋转立方双取向硅钢的方法
CN103602886B (zh) 一种双辊薄带连铸制备1.5mm级Fe-Si合金带的方法
CN107201478B (zh) 一种基于异径双辊薄带连铸技术的超低碳取向硅钢制备方法
CN109182907B (zh) 一种无头轧制生产半工艺无取向电工钢的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant