WO2016045158A1 - 一种超低碳取向硅钢及其制备方法 - Google Patents

一种超低碳取向硅钢及其制备方法 Download PDF

Info

Publication number
WO2016045158A1
WO2016045158A1 PCT/CN2014/088889 CN2014088889W WO2016045158A1 WO 2016045158 A1 WO2016045158 A1 WO 2016045158A1 CN 2014088889 W CN2014088889 W CN 2014088889W WO 2016045158 A1 WO2016045158 A1 WO 2016045158A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
strip
oriented silicon
rolling
temperature
Prior art date
Application number
PCT/CN2014/088889
Other languages
English (en)
French (fr)
Inventor
王国栋
许云波
王洋
张元祥
方烽
卢翔
曹光明
李成刚
刘振宇
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2016045158A1 publication Critical patent/WO2016045158A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Definitions

  • the invention belongs to the technical field of metallurgy, in particular to an ultra-low carbon oriented silicon steel and a preparation method thereof.
  • Oriented silicon steel has excellent magnetic properties with high magnetic induction and low iron loss along the rolling direction. It is mainly used for iron cores of various transformers. It is an indispensable important soft magnetic alloy in power electronics and military industry.
  • the complex and lengthy preparation process of traditional oriented silicon steel mainly includes: smelting-continuous casting-casting billet high-temperature heating-hot rolling-normalizing-cold rolling-decarburization annealing-high temperature annealing, etc., in order to ensure perfect secondary recrystallization of oriented electrical steel sheets, The high temperature heating of the slab, the comprehensive control of the hot rolling process and the normalization process have become essential process nodes.
  • the slab needs to be kept at 1350 ⁇ 1400 °C to dissolve the coarse MnS and AlN precipitates formed during the continuous casting process and precipitated finely in the subsequent hot rolling and normalization process.
  • Such high heating temperature will cause energy waste and yield.
  • a series of shortcomings such as low equipment loss and large equipment loss; control of hot rolling and normalization also increase the difficulty and complexity of the process.
  • the twin-roll strip casting technology fundamentally changes the traditional thin strip steel production method, without the need of continuous casting, heating, hot rolling and normalization production processes, but with two rotating rolls as crystallizers.
  • the liquid steel water is directly injected into the molten pool composed of the casting roll and the side sealing plate, and the thin steel strip having a thickness of 1 to 6 mm is directly produced from the liquid steel water;
  • the process characteristic is that the liquid metal undergoes pressure processing and plastic deformation while crystal solidifying, Complete the entire process from liquid metal to solid ribbon in a short period of time, the solidification speed can reach 10 2 ⁇ 10 4 ° C / s; therefore, thin strip continuous casting has a unique advantage in the production of Fe-Si alloy; in particular, By utilizing the characteristics of sub-speed rapid solidification of twin-roll strip casting, the precipitation and growth behavior of the second phase particles in the oriented silicon steel cast strip can be suppressed, and the flexible control of the inhibitor can be realized.
  • Japan Nippon Steel Patent (Ping 2-258149, 1990) is mainly characterized by the influence of casting and rolling process parameters and cold rolling process on the magnetic properties of oriented silicon steel.
  • the Italian company Terni company patent US6964711 adds a hot rolling process and its characteristics are The influence of the hot rolling process on the magnetic properties;
  • the American Armco company patent US6739384 is mainly characterized by the influence of the secondary cooling rate and the one-stage cold rolling reduction rate on the magnetic properties.
  • the solid solution of AlN precipitates in the normalization process requires 0.03 to 0.05% C during smelting and 20 to 30% of austenite in the hot rolling and normalizing temperature range.
  • composition system mentioned in the patent for cast-rolled oriented silicon steel has also inherited the composition system of the conventional process; however, the current methods have the disadvantages of complicated process, high cost and insufficient performance.
  • the present invention provides an ultra-low carbon oriented silicon steel and a preparation method thereof, which are designed by ultra-low carbon components, omitting continuous casting, hot rolling and normalization processes.
  • the decarburization annealing process is further omitted, and the formation of coarse precipitates is controlled by controlling the solidification and the secondary cooling path, thereby obtaining a thin gauge high magnetic field.
  • the composition of the ultra-low carbon oriented silicon steel of the present invention contains C 0.002 to 0.005% by mass, 2.8 to 4.0% of Si, 0.0 to 0.3% of Mn, 0.02 to 0.1% of Al, 0.02 to 0.1% of Cu, and 0.0 to 0.03% of Cu. N 0.004 to 0.02%, O ⁇ 0.005%, and the balance is Fe and unavoidable impurities.
  • the above ultra-low carbon oriented silicon steel has a magnetic property P 17/50 of 0.8 to 1.1 W/kg and a magnetic induction B 8 of 1.85 to 1.94 T.
  • the above ultra-low carbon oriented silicon steel has a thickness of 0.11 to 0.35 mm.
  • the preparation method of the ultra low carbon oriented silicon steel of the invention is carried out as follows:
  • the preheating temperature of the tundish is 1200 ⁇ 1250 °C
  • the molten steel enters the thin strip continuous casting machine through the tundish, and is cast into a cast strip.
  • the superheat of the controlled molten steel during the casting and rolling process is 20 to 50 ° C;
  • the cast strip is hot rolled, the rolling temperature is 980 ⁇ 1030 ° C, the final rolling temperature is 880 ⁇ 950 ° C, the total reduction is 10 ⁇ 15%, to obtain hot rolled strip;
  • the hot rolling zone is cooled by laminar flow, then the iron oxide scale is removed by pickling, and then the two-stage cold rolling is performed; the rolling reduction rate of the first stage cold rolling is 60-70%, and the intermediate annealing is performed after the one-stage cold rolling, and the annealing temperature is 850. ⁇ 1050 ° C, annealing time is 3 ⁇ 5min; then two-stage cold rolling, the reduction rate is 50 ⁇ 90%, made into a cold-rolled strip;
  • the cold rolled strip is heated to 1200 ⁇ 10 ° C at a rate of 10 ⁇ 30 ° C / h, and then incubated at 1200 ⁇ 10 ° C under pure dry hydrogen for at least 20 h for high temperature annealing. Finally, it is cooled to 400 ⁇ 10°C with the furnace, and air cooled to normal temperature to obtain ultra-low carbon oriented silicon steel.
  • the pure dry hydrogen condition refers to a hydrogen circulation condition having a dew point of less than -30 °C.
  • the thickness of the cold rolled strip in the above method is from 0.11 to 0.35 mm.
  • the above cast strip has a thickness of 2.0 to 3.0 mm.
  • composition design of the present invention is:
  • the carbon is controlled to be less than 0.005%; in order to form a certain amount of austenite in the conventional production process, the dynamic recrystallization refinement hot rolling structure is generated, and the better solid solution inhibitor element in the normalization needs to be added 0.03 to 0.05 during the smelting.
  • the silicon content is 2.8-4.0%; silicon is the most important alloying element in oriented silicon steel sheets, which can significantly increase the resistivity and reduce The eddy current loss in silicon steel promotes secondary recrystallization and improves the degree of orientation to improve the magnetic properties; however, the conventional process limits the Si content to less than 3.4% for the purpose of controlling the amount of austenite; the strip casting process is completely rid of The austenitization limits the Si content, so the Si content can be increased to 4.0% in the oriented silicon steel composition;
  • Mn, S, Al and N are respectively 0.07-0.3%, 0.01-0.03%, 0.02-0.1% and 0.004-0.02% N; MnS and AlN are the most commonly used inhibitors in oriented silicon steel, which can significantly hinder the first time.
  • the growth of recrystallized grains promotes the occurrence of secondary recrystallization; the conventional production process is limited by the heating temperature of the slab, and the content of the inhibitor element of the solid solution of the slab has an upper limit, and under the condition of thin strip continuous casting The cast strip can dissolve more inhibitor components, and its content exceeds the limit of the inhibitor element content in the conventional process.
  • the method of the invention controls the C content to be less than 50ppm in the molten steel smelting process, and the whole process is controlled to be a single-phase ferrite matrix, which improves the forming property of the cast strip, does not require a normalization and decarburization annealing process, and dissolves more suppressing elements.
  • the solid solution of a large amount of N atoms makes the shearing deformation easily occur during the cold rolling of the cast strip, and the nucleation position is increased, thereby obtaining a fine and uniform primary recrystallized structure with a grain size of 10-15 ⁇ m; further, the primary recrystallization is Gaussian.
  • the texture originates from the shear band of the cold-rolled sheet and is more evenly distributed along the thickness direction, which is beneficial to improve the secondary recrystallization orientation degree; the addition of a large amount of inhibitor elements can significantly improve the inhibition ability and make the product have good performance.
  • FIG. 1 is a schematic flow chart of a preparation method of ultra-low carbon oriented silicon steel according to an embodiment of the present invention
  • Figure 2 is a metallographic microstructure diagram of a cast strip in Example 1 of the present invention.
  • Figure 3 is a transmission microstructure diagram of a cast strip, a hot strip, and an annealed hot strip in Example 2 of the present invention; wherein (a) is a cast strip, (b) is a hot strip, and (c) is a middle Hot rolled strip after annealing;
  • Fig. 4 is a macroscopic structural view of the cold rolled strip after high temperature annealing in Example 2 of the present invention.
  • the apparatus used for observing the microstructure in the embodiment of the present invention is a Zeiss Ultra 55 type scanning electron microscope.
  • the apparatus used for observing the transmission microstructure in the embodiment of the present invention is a Tecnai F20 transmission electron microscope.
  • the thin strip continuous casting machine in the embodiment of the present invention is a thin strip continuous casting machine disclosed in the patent CN103551532A.
  • the purity of hydrogen used in the examples of the present invention was 99.9%.
  • the preparation method of the ultra-low carbon oriented silicon steel plate based on the thin strip continuous casting technology of the present invention is shown in FIG. 1 : the molten steel is poured into the tundish through the ladle, and then flows into the copper crystal roll and the side by two rotations.
  • the molten steel is cast into a thin strip by a rotating casting roll, coiled by hot rolling and laminar cooling, and pickled to remove the scale; directly passed through a one-stage cold rolling mill for cold rolling through a continuous annealing furnace.
  • the intermediate annealing is performed, and the cold rolling is continued through the two-stage cold rolling mill to the thickness of the finished product, and finally the high temperature annealing is performed through the high temperature annealing furnace.
  • the water pressure at the time of cooling the laminar flow in the embodiment of the present invention is 0.1 to 0.2 MPa.
  • the molten steel is smelted according to the set composition, and then enters the preheated tundish through the gate.
  • the preheating temperature of the tundish is 1200 to 1250 ° C
  • the molten steel enters the thin strip continuous casting machine through the tundish, and is cast into a thickness of 2.05 mm.
  • Casting strip; the superheat of the controlled molten steel during casting and rolling is 20 °C; the microstructure of the cast strip is shown in Fig. 2;
  • the cast strip is hot rolled, the rolling temperature is 980 ° C, the final rolling temperature is 880 ° C, and the total reduction is 15%, and a hot rolled strip is obtained;
  • the hot rolling zone is cooled by a laminar flow, then the iron oxide scale is removed by pickling, and then the two-stage cold rolling is performed; the rolling reduction rate of the first stage cold rolling is 60%, and the intermediate annealing is performed after the first stage cold rolling, and the annealing temperature is 850 ° C, and the annealing time is performed. 5min; then two-stage cold rolling, the reduction rate is 50%, made into a cold-rolled strip, the thickness is 0.35mm;
  • the cold rolled strip is heated to 1200 ⁇ 10 ° C at a rate of 10 ⁇ 30 ° C / h; then at 1200 ⁇ 10 ° C, under pure dry hydrogen (dew point below -30 ° C) 22h, high temperature annealing, and finally cooled to 400 ⁇ 10°C with the furnace, air cooled to normal temperature, and obtained ultra-low carbon oriented silicon steel.
  • the composition contains C 0.002% by mass percentage, Si 4.0%, Mn 0.3%, Al 0.02%, S 0.023 %, N 0.004%, O 0.004%, the balance is Fe and inevitable impurities, the magnetic properties P 17/50 is 0.8 W/kg, the magnetic induction B 8 is 1.85 T, and the microstructure is as shown in FIG. 2 .
  • the molten steel is smelted according to the set composition, and then enters the preheated tundish through the gate.
  • the preheating temperature of the tundish is 1200 to 1250 ° C
  • the molten steel enters the thin strip continuous casting machine through the tundish, and is cast and rolled into a thickness of 2.31 mm. Casting strip; the degree of superheat of controlled molten steel during casting and rolling is 30 ° C;
  • the cast strip is hot rolled, the rolling temperature is 1030 ° C, the final rolling temperature is 950 ° C, the total reduction is 10%, the hot rolling strip is obtained; the hot rolling strip is cooled, then the pickling is removed to remove the scale, and then Two-stage cold rolling; one-stage cold rolling reduction rate of 70%, intermediate annealing after one-stage cold rolling, annealing temperature is 1050 ° C, annealing time is 3 min; then two-stage cold rolling, the reduction rate is 57% , made into a cold rolled strip, the thickness is 0.27mm;
  • the cold rolled strip is heated to 1200 ⁇ 10 ° C at a rate of 10 ⁇ 30 ° C / h; then at 1200 ⁇ 10 ° C, under pure dry hydrogen (dew point below -30 ° C) 20h, high temperature annealing, and finally cooled to 400 ⁇ 10°C with the furnace, air cooled to normal temperature, and obtained ultra-low carbon oriented silicon steel.
  • the composition contains C 0.003% by mass, Si 3.7%, Mn0.24%, Al 0.04%, S 0.018%, N 0.0094%, O 0.005%, the balance is Fe and inevitable impurities, magnetic properties P 17/50 is 0.9W / kg, magnetic sense B 8 is 1.90T;
  • the transmission microstructure of the cast strip is shown in Fig. 3(a).
  • the transmission microstructure of the hot strip is shown in Fig. 3(b).
  • the transmission microstructure of the hot strip after intermediate annealing is shown in Fig. 3(c). .
  • the molten steel is smelted according to the set composition, and then enters the preheated tundish through the gate.
  • the preheating temperature of the tundish is 1200 to 1250 ° C
  • the molten steel enters the thin strip continuous casting machine through the tundish, and is cast into a thickness of 2.41 mm. Casting strip; the superheat of controlling molten steel during casting and rolling is 40 ° C;
  • the cast strip is hot rolled, the rolling temperature is 1000 ° C, the final rolling temperature is 900 ° C, and the total reduction is 11%, and a hot rolled strip is obtained;
  • the hot rolling zone is cooled by a laminar flow, then the iron oxide scale is removed by pickling, and then the two-stage cold rolling is performed; the rolling reduction rate of the first stage cold rolling is 65%, and the intermediate annealing is performed after the first stage cold rolling, and the annealing temperature is 950 ° C, and the annealing time is performed. 4min; then two-stage cold rolling, the reduction rate is 80%, made into a cold-rolled strip, the thickness is 0.15mm;
  • the cold rolled strip is heated to 1200 ⁇ 10 ° C at a rate of 10 ⁇ 30 ° C / h; then at 1200 ⁇ 10 ° C, under pure dry hydrogen (dew point below -30 ° C) 22h, high temperature annealing, and finally cooled to 400 ⁇ 10°C with the furnace, air cooled to normal temperature, and obtained ultra-low carbon oriented silicon steel.
  • the composition contains C 0.004% by mass percentage, Si 2.8%, Mn 0.19%, Al 0.05%, S 0.015%, N 0.008%, O 0.003%, the balance is Fe and inevitable impurities, the magnetic properties P 17/50 is 1.1 W/kg, and the magnetic induction B 8 is 1.94 T.
  • the molten steel is smelted according to the set composition, and then enters the preheated tundish through the gate.
  • the preheating temperature of the tundish is 1200 to 1250 ° C
  • the molten steel enters the thin strip continuous casting machine through the tundish, and is cast and rolled into a thickness of 2.73 mm. Casting strip; the superheat of the controlled molten steel during the casting and rolling process is 50 ° C;
  • the cast strip is hot rolled, the rolling temperature is 1010 ° C, the final rolling temperature is 920 ° C, and the total reduction is 13%, and a hot rolled strip is obtained;
  • the hot rolling zone is cooled by a laminar flow, then the iron oxide scale is removed by pickling, and then the two-stage cold rolling is performed; the rolling reduction rate of the first stage cold rolling is 60%, and the intermediate annealing is performed after the first stage cold rolling, and the annealing temperature is 900 ° C, and the annealing time is performed. 5min; then two-stage cold rolling, the reduction rate is 81%, made into a cold-rolled strip, the thickness is 0.18mm;
  • the cold rolled strip is heated to 1200 ⁇ 10 ° C at a rate of 10 ⁇ 30 ° C / h; then at 1200 ⁇ 10 ° C, under pure dry hydrogen (dew point below -30 ° C) 24h, high temperature annealing, and finally cooled to 400 ⁇ 10°C with the furnace, air cooled to normal temperature, and obtained ultra-low carbon oriented silicon steel.
  • the composition contains C 0.005%, Si 3.2%, Mn 0.11%, Al 0.09%, S by mass percentage. 0.018%, N 0.008%, O 0.003%, the balance is Fe and inevitable impurities, the magnetic properties P 17/50 is 1.1 W/kg, and the magnetic induction B 8 is 1.94 T.
  • the molten steel enters the thin strip continuous casting machine through the tundish and is cast and rolled into a cast strip with a thickness of 3.0mm; the superheat of the controlled molten steel during the casting and rolling process is 30°C;
  • the cast strip is hot rolled, the rolling temperature is 980 ° C, the finishing temperature is 880 ° C, and the total reduction is 10%, and a hot rolled strip is obtained;
  • the hot rolling zone is cooled by a laminar flow, then the iron oxide scale is removed by pickling, and then the two-stage cold rolling is performed; the rolling reduction rate of the first stage cold rolling is 60%, and the intermediate annealing is performed after the one-stage cold rolling, and the annealing temperature is 1000 ° C, and the annealing time is performed. 3min; then two-stage cold rolling, the reduction rate is 90%, made into a cold-rolled strip, the thickness is 0.11mm;
  • the cold rolled strip is heated to 1200 ⁇ 10 ° C at a rate of 10 ⁇ 30 ° C / h; then at 1200 ⁇ 10 ° C, under pure dry hydrogen (dew point below -30 ° C) 20h, high temperature annealing, and finally cooled to 400 ⁇ 10°C with the furnace, air cooled to normal temperature, and obtained ultra-low carbon oriented silicon steel.
  • the composition contains C 0.002% by mass percentage, Si 3.5%, Mn 0.07%, Al 0.1%, Cu. 0.05%, S 0.02%, N 0.01%, O 0.002%, the balance is Fe and inevitable impurities, the magnetic properties P 17/50 is 1.0 W/kg, and the magnetic induction B 8 is 1.85 T.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

一种超低碳取向硅钢及其制备方法,成分按质量百分比含C 0.002 - 0.005%,Si 2.8 - 4.0%,Mn 0.07-0.3%,Al 0.02 - 0.1%,Cu ≤ 0.5%,S 0.01-0.03%,N 0.004-0.02%,O ≤ 0.005%,余量为Fe及不可避免杂质,磁性能P17/50为0.8 - 1.1W/Kg,磁感B8为1.85 - 1.94T;制备方法为:(1)冶炼钢水,进入中间包,铸轧成铸带;(2)热轧;(3)层流冷却、酸洗,进行两阶段冷轧;(4)在氮气保护条件下升温至1200 ± 10℃,然后进行高温退火,随后炉冷至400 ± 0℃,空冷。

Description

一种超低碳取向硅钢及其制备方法 技术领域
本发明属于冶金技术领域,特别涉及一种超低碳取向硅钢及其制备方法。
背景技术
取向硅钢沿轧制方向具有高磁感、低铁损的优良磁性能,主要用于各种变压器的铁芯,是电力电子和军事工业中不可缺少的重要软磁合金。传统取向硅钢制备工艺复杂冗长主要包括:冶炼—连铸—铸坯高温加热—热轧—常化—冷轧—脱碳退火—高温退火等,为了保证取向电工钢板发生完善的二次再结晶,铸坯高温加热、热轧过程综合控制和常化工艺成为必不可少的工艺节点。铸坯需要在1350~1400℃保温以溶解连铸过程中形成的粗大MnS和AlN等析出物并在后续热轧及常化工序中细小弥散析出,如此高的加热温度会引起能源浪费、成材率低、设备损耗大等一系列的缺点;控制热轧和常化也提高了工艺难度和复杂程度。
双辊薄带连铸技术从根本上改变了传统的薄带钢生产方法,可不需经过连铸、加热、热轧和常化等生产工序,而是以转动的两个铸辊为结晶器,将液态钢水直接注入铸辊和侧封板组成的熔池内,由液态钢水直接生产出厚度为1~6mm薄带;其工艺特点是液态金属在结晶凝固的同时承受压力加工和塑性变形,在很短的时间内完成从液态金属到固态薄带的全部过程,凝固速度可达102~104℃/s;因此,薄带连铸在生产Fe-Si合金方面具有独特的优势;特别是,利用双辊薄带连铸亚快速凝固的特点,可以抑制取向硅钢铸带中第二相粒子的析出和长大行为,实现抑制剂的柔性控制。
日本新日铁专利(平2-258149,1990)主要特征在于铸轧工艺参数及冷轧工艺对取向硅钢磁性能的影响;意大利特尔尼公司专利US6964711增加了一道次热轧工艺其特征在与热轧工艺对磁性能的影响;美国Armco公司专利US6739384主要特征在于对二次冷却速度及一阶段冷轧压下率对磁性能的影响。常规流程中为了细化热轧组织,在常化工艺中固溶AlN析出物,需要在冶炼时添加0.03~0.05%C,在热轧及常化温度范围内形成20~30%的奥氏体,冷轧工序之后,再进行脱碳退火,以保证成品取向硅钢中较低的铁损。而前面提到关于铸轧取向硅钢专利中的成分体系显然也继承了常规流程的成分体系;然而目前的方法均有流程复杂,成本高,以及性能不够理想的缺点。
发明内容
针对现有取向硅钢在制备方法及性能方面存在的上述问题,本发明提供一种超低碳取向硅钢及其制备方法,通过超低碳成分设计,在省略连铸、热轧和常化工序的同时,进一步省略脱碳退火工序,通过控制凝固及二次冷却路径避免粗大析出物的形成,获得薄规格的高磁 感、低铁损的取向硅钢板。
本发明的超低碳取向硅钢的成分按质量百分比含C 0.002~0.005%,Si 2.8~4.0%,Mn0.07~0.3%,Al 0.02~0.1%,Cu≤0.5%,S 0.01~0.03%,N 0.004~0.02%,O≤0.005%,余量为Fe及不可避免杂质。
上述的超低碳取向硅钢的磁性能P17/50为0.8~1.1W/kg,磁感B8为1.85~1.94T。
上述的超低碳取向硅钢的厚度在0.11~0.35mm。
本发明的超低碳取向硅钢的制备方法按以下步骤进行:
1、按设定成分冶炼钢水,然后通过浇口进入预热的中间包,此时中间包预热温度为1200~1250℃,钢水通过中间包进入薄带连铸机中,铸轧成铸带;铸轧过程中控制钢水的过热度为20~50℃;
2、将铸带进行热轧,开轧温度为980~1030℃,终轧温度为880~950℃,总压下量在10~15%,获得热轧带;
3、将热轧带层流冷却,然后酸洗去除氧化铁皮,再进行两阶段冷轧;一阶段冷轧压下率为60~70%,一阶段冷轧后进行中间退火,退火温度为850~1050℃,退火时间为3~5min;然后进行二阶段冷轧,压下率为50~90%,制成冷轧带;
4、在氮气保护条件下,将冷轧带以10~30℃/h的速度升温至1200±10℃,然后在1200±10℃条件下,在纯干氢条件下保温至少20h,进行高温退火,最后随炉冷却到400±10℃,空冷至常温,获得超低碳取向硅钢。
所述的纯干氢条件是指露点低于-30℃的氢气流通条件。
上述方法中的冷轧带的厚度在0.11~0.35mm。
上述的铸带的厚度在2.0~3.0mm。
本发明成分设计的原理是:
碳控制在0.005%以下;常规生产流程中为了形成一定量的奥氏体,产生动态再结晶细化热轧组织,以及常化时更好的固溶抑制剂元素需要在冶炼时添加0.03~0.05%的碳,另一方面,为保证成品取向硅钢板的性能需要在后续工序中进行脱碳退火;在薄带连铸条件下,钢液凝固速度较快,由于先形成的δ铁素体中C元素的固溶量非常少,造成C元素局部偏聚,并不能起到均匀和细化组织的作用,反而降低铸带的成型性能,再加上亚快速凝固能够抑制析出物的析出及长大行为,因此可以在冶炼过程中将C含量控制在50ppm以下,提高铸带塑性,并且省略脱碳退火工艺;
硅含量在2.8~4.0%;硅是取向硅钢板中最重要的合金元素,能够显著提高电阻率,减少 硅钢内的涡流损失,促进二次再结晶,提高取向度从而提高磁性能;但是常规流程出于控制奥氏体量的原因,将Si含量限制在3.4%以下;薄带连铸流程则彻底摆脱了奥氏体化对Si含量的限制,因此可以在取向硅钢成分中将Si含量提高到4.0%;
Mn、S、Al和N的含量分别在0.07~0.3%,0.01~0.03%、0.02~0.1%和0.004~0.02%N;在取向硅钢中MnS和AlN是最常用的抑制剂,能够显著阻碍初次再结晶晶粒的长大,促进二次再结晶的发生;常规生产流程由于受铸坯加热温度的限制,铸坯固溶的抑制剂组成元素的含量存在上限,而在薄带连铸条件下,铸带能够固溶更多抑制剂组成元素,其含量均超过常规流程对抑制剂元素含量的限制。
本发明的方法在钢水冶炼过程中控制C含量低于50ppm,控制全流程为单相铁素体基体,提高了铸带成型性能,无需常化和脱碳退火工艺,固溶更多的抑制元素;大量N原子固溶使得铸带冷轧过程中容易发生剪切变形,增加形核位置,从而获得细小均匀的初次再结晶组织,晶粒尺寸为10~15μm;进一步的,初次再结晶中高斯织构起源于冷轧板的剪切带中,且沿厚度方向分布更均匀,有利于提高二次再结晶取向度;大量抑制剂元素的加入可以显著提高抑制能力,使产品具有良好的性能。
附图说明
图1为本发明实施例中的的超低碳取向硅钢的制备方法流程示意图;
图2为本发明实施例1中的铸带的金相显微组织图;
图3为本发明实施例2中的铸带、热轧带和退火后热轧带的透射显微组织图;其中(a)为铸带,(b)为热轧带,(c)为中间退火后的热轧带;
图4为本发明实施例2中的冷轧带高温退火后的宏观组织图。
具体实施方式
本发明实施例中观测显微组织采用的设备为Zeiss Ultra 55型扫描电镜。
本发明实施例中观测透射显微组织采用的设备为Tecnai F20透射电子显微镜。
本发明实施例中的薄带连铸机为专利CN103551532A公开的薄带连铸机。
本发明实施例中采用的氢气的纯度为99.9%。
本发明的基于薄带连铸技术超低碳取向硅钢板的制备方法流程如图1所示:通过钢包将冶炼好的钢水浇入中间包内,再流入由两个旋转的铜结晶辊和侧封板组成的熔池内,钢水被旋转的铸辊铸轧成薄带,经热轧和层流冷却后卷取,酸洗去除氧化铁皮;直接通过一阶段冷轧机冷轧,经连续退火炉进行中间退火,继续通过二阶段冷轧机冷轧至成品厚度,最后经高温退火炉进行高温退火。
本发明实施例中的层流冷却时的水压为0.1~0.2MPa。
实施例1
按设定成分冶炼钢水,然后通过浇口进入预热的中间包,此时中间包预热温度为1200~1250℃,钢水通过中间包进入薄带连铸机中,铸轧成厚度2.05mm的铸带;铸轧过程中控制钢水的过热度为20℃;铸带金相显微组织如图2所示;
将铸带进行热轧,开轧温度为980℃,终轧温度为880℃,总压下量在15%,获得热轧带;
将热轧带层流冷却,然后酸洗去除氧化铁皮,再进行两阶段冷轧;一阶段冷轧压下率为60%,一阶段冷轧后进行中间退火,退火温度为850℃,退火时间为5min;然后进行二阶段冷轧,压下率为50%,制成冷轧带,厚度在0.35mm;
在氮气保护条件下,将冷轧带以10~30℃/h的速度升温至1200±10℃;然后在1200±10℃条件下,在纯干氢(露点低于-30℃)条件下保温22h,进行高温退火,最后随炉冷却到400±10℃,空冷至常温,获得超低碳取向硅钢,成分按质量百分比含C 0.002%,Si 4.0%,Mn 0.3%,Al 0.02%,S 0.023%,N 0.004%,O 0.004%,余量为Fe及不可避免杂质,磁性能P17/50为0.8W/kg,磁感B8为1.85T,显微组织如图2所示。
实施例2
按设定成分冶炼钢水,然后通过浇口进入预热的中间包,此时中间包预热温度为1200~1250℃,钢水通过中间包进入薄带连铸机中,铸轧成厚度2.31mm的铸带;铸轧过程中控制钢水的过热度为30℃;
将铸带进行热轧,开轧温度为1030℃,终轧温度为950℃,总压下量在10%,获得热轧带;将热轧带层流冷却,然后酸洗去除氧化铁皮,再进行两阶段冷轧;一阶段冷轧压下率为70%,一阶段冷轧后进行中间退火,退火温度为1050℃,退火时间为3min;然后进行二阶段冷轧,压下率为57%,制成冷轧带,厚度在0.27mm;
在氮气保护条件下,将冷轧带以10~30℃/h的速度升温至1200±10℃;然后在1200±10℃条件下,在纯干氢(露点低于-30℃)条件下保温20h,进行高温退火,最后随炉冷却到400±10℃,空冷至常温,获得超低碳取向硅钢,成分按质量百分比含C 0.003%,Si 3.7%,Mn0.24%,Al 0.04%,S 0.018%,N 0.0094%,O 0.005%,余量为Fe及不可避免杂质,磁性能P17/50为0.9W/kg,磁感B8为1.90T;
铸带透射显微组织如图3(a)所示,热轧带透射显微组织如图3(b)所示,中间退火后的热轧带透射显微组织如图3(c)所示。
实施例3
按设定成分冶炼钢水,然后通过浇口进入预热的中间包,此时中间包预热温度为1200~1250℃,钢水通过中间包进入薄带连铸机中,铸轧成厚度2.41mm的铸带;铸轧过程中控制钢水的过热度为40℃;
将铸带进行热轧,开轧温度为1000℃,终轧温度为900℃,总压下量在11%,获得热轧带;
将热轧带层流冷却,然后酸洗去除氧化铁皮,再进行两阶段冷轧;一阶段冷轧压下率为65%,一阶段冷轧后进行中间退火,退火温度为950℃,退火时间为4min;然后进行二阶段冷轧,压下率为80%,制成冷轧带,厚度在0.15mm;
在氮气保护条件下,将冷轧带以10~30℃/h的速度升温至1200±10℃;然后在1200±10℃条件下,在纯干氢(露点低于-30℃)条件下保温22h,进行高温退火,最后随炉冷却到400±10℃,空冷至常温,获得超低碳取向硅钢,成分按质量百分比含C 0.004%,Si 2.8%,Mn0.19%,Al 0.05%,S 0.015%,N 0.008%,O 0.003%,余量为Fe及不可避免杂质,磁性能P17/50为1.1W/kg,磁感B8为1.94T。
实施例4
按设定成分冶炼钢水,然后通过浇口进入预热的中间包,此时中间包预热温度为1200~1250℃,钢水通过中间包进入薄带连铸机中,铸轧成厚度2.73mm的铸带;铸轧过程中控制钢水的过热度为50℃;
将铸带进行热轧,开轧温度为1010℃,终轧温度为920℃,总压下量在13%,获得热轧带;
将热轧带层流冷却,然后酸洗去除氧化铁皮,再进行两阶段冷轧;一阶段冷轧压下率为60%,一阶段冷轧后进行中间退火,退火温度为900℃,退火时间为5min;然后进行二阶段冷轧,压下率为81%,制成冷轧带,厚度在0.18mm;
在氮气保护条件下,将冷轧带以10~30℃/h的速度升温至1200±10℃;然后在1200±10℃条件下,在纯干氢(露点低于-30℃)条件下保温24h,进行高温退火,最后随炉冷却到400±10℃,空冷至常温,获得超低碳取向硅钢,成分按质量百分比含C 0.005%,Si 3.2%,Mn0.11%,Al 0.09%,S 0.018%,N 0.008%,O 0.003%,余量为Fe及不可避免杂质,磁性能P17/50为1.1W/kg,磁感B8为1.94T。
实施例5
按设定成分冶炼钢水,然后通过浇口进入预热的中间包,此时中间包预热温度为 1200~1250℃,钢水通过中间包进入薄带连铸机中,铸轧成厚度3.0mm的铸带;铸轧过程中控制钢水的过热度为30℃;
将铸带进行热轧,开轧温度为980℃,终轧温度为880℃,总压下量在10%,获得热轧带;
将热轧带层流冷却,然后酸洗去除氧化铁皮,再进行两阶段冷轧;一阶段冷轧压下率为60%,一阶段冷轧后进行中间退火,退火温度为1000℃,退火时间为3min;然后进行二阶段冷轧,压下率为90%,制成冷轧带,厚度在0.11mm;
在氮气保护条件下,将冷轧带以10~30℃/h的速度升温至1200±10℃;然后在1200±10℃条件下,在纯干氢(露点低于-30℃)条件下保温20h,进行高温退火,最后随炉冷却到400±10℃,空冷至常温,获得超低碳取向硅钢,成分按质量百分比含C 0.002%,Si 3.5%,Mn0.07%,Al 0.1%,Cu 0.05%,S 0.02%,N 0.01%,O 0.002%,余量为Fe及不可避免杂质,磁性能P17/50为1.0W/kg,磁感B8为1.85T。

Claims (5)

  1. 一种超低碳取向硅钢,其特征在于成分按质量百分比含C 0.002~0.005%,Si 2.8~4.0%,Mn 0.07~0.3%,Al 0.02~0.1%,Cu≤0.5%,S 0.01~0.03%,N 0.004~0.02%,O≤0.005%,余量为Fe及不可避免杂质。
  2. 根据权利要求1所述的超低碳取向硅钢,其特征在于该取向硅钢的磁性能P17/50为0.8~1.1W/kg,磁感B8为1.85~1.94T。
  3. 根据权利要求1所述的超低碳取向硅钢,其特征在于该取向硅钢的厚度在0.11~0.35mm。
  4. 一种权利要求1所述的超低碳取向硅钢的制备方法,其特征在于按以下步骤进行:
    (1)按设定成分冶炼钢水,然后通过浇口进入预热的中间包,此时中间包预热温度为1200~1250℃,钢水通过中间包进入薄带连铸机中,铸轧成铸带;铸轧过程中控制钢水的过热度为20~50℃;
    (2)将铸带进行热轧,开轧温度为980~1030℃,终轧温度为880~950℃,总压下量在10~15%,获得热轧带;
    (3)将热轧带层流冷却,然后酸洗去除氧化铁皮,再进行两阶段冷轧;一阶段冷轧压下率为60~70%,一阶段冷轧后进行中间退火,退火温度为850~1050℃,退火时间为3~5min;然后进行二阶段冷轧,压下率为50~90%,制成冷轧带;
    (4)在氮气保护条件下,将冷轧带以10~30℃/h的速度升温至1200±10℃,然后在1200±10℃条件下,在纯干氢条件下保温至少20h进行高温退火,最后随炉冷却到400±10℃,空冷至常温,获得超低碳取向硅钢。
  5. 根据权利要求4所述的超低碳取向硅钢的制备方法,其特征在于所述的铸带的厚度在2.0~3.0mm。
PCT/CN2014/088889 2014-09-28 2014-10-20 一种超低碳取向硅钢及其制备方法 WO2016045158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410504580.8A CN104294155B (zh) 2014-09-28 2014-09-28 一种超低碳取向硅钢及其制备方法
CN201410504580.8 2014-09-28

Publications (1)

Publication Number Publication Date
WO2016045158A1 true WO2016045158A1 (zh) 2016-03-31

Family

ID=52314101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088889 WO2016045158A1 (zh) 2014-09-28 2014-10-20 一种超低碳取向硅钢及其制备方法

Country Status (2)

Country Link
CN (1) CN104294155B (zh)
WO (1) WO2016045158A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731672B (zh) * 2020-05-08 2021-06-21 中國鋼鐵股份有限公司 低碳鋼片及其製造方法
CN114134423A (zh) * 2021-12-02 2022-03-04 东北大学 一种超短流程稀土取向硅钢及其制备方法
CN114769545A (zh) * 2020-11-25 2022-07-22 宝钢德盛不锈钢有限公司 一种减少200系不锈钢热轧卷边部山鳞的生产方法
CN115505822A (zh) * 2022-09-23 2022-12-23 无锡普天铁心股份有限公司 改善取向硅钢晶粒均匀性的方法及该方法制备的取向硅钢
CN118653042A (zh) * 2024-08-22 2024-09-17 鞍钢股份有限公司 高磁感取向硅钢短流程制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105385937B (zh) * 2015-11-14 2017-03-22 东北大学 一种高磁感取向硅钢极薄带的减量化制备方法
CN107794439B (zh) * 2016-08-30 2019-04-23 宝山钢铁股份有限公司 极低铁损无取向电工钢板及其制造方法
CN107245644B (zh) * 2017-05-10 2018-08-24 东北大学 基于薄带连铸高磁感、低铁损薄规格无取向硅钢制备方法
CN107164693B (zh) * 2017-06-01 2018-11-06 东北大学 一种基于薄带连铸高硅钢冷轧带钢的制备方法
CN107164692B (zh) * 2017-06-01 2018-11-06 东北大学 一种基于薄带连铸工艺的取向硅钢快速二次再结晶的方法
CN108339851B (zh) * 2017-12-21 2019-08-09 东北大学 一种取向硅钢极薄带的冷轧和退火方法
CN114134421A (zh) * 2021-12-02 2022-03-04 东北大学 一种超低碳含钇取向硅钢及其制备方法
CN114318112B (zh) * 2021-12-31 2022-09-20 江阴华新特殊合金材料有限公司 发动机油泵用软磁铁素体不锈钢直棒及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974223A (ja) * 1982-10-20 1984-04-26 Kawasaki Steel Corp 磁気特性に優れた無方向性珪素鋼板の製造方法
CN1219977A (zh) * 1996-07-12 1999-06-16 蒂森钢铁股份公司 生产晶粒取向磁钢板的工艺
JP2005068525A (ja) * 2003-08-27 2005-03-17 Jfe Steel Kk 鉄損が低くかつ磁束密度の高い方向性電磁鋼板の製造方法
CN1978691A (zh) * 2005-11-30 2007-06-13 宝山钢铁股份有限公司 一种基于薄板坯连铸连轧的取向硅钢及其制造方法
CN103911545A (zh) * 2014-04-14 2014-07-09 国家电网公司 一种强高斯织构占有率高磁感取向电工钢带的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232020A (ja) * 1995-02-27 1996-09-10 Nippon Steel Corp 方向性電磁鋼板の製造方法
JP4032162B2 (ja) * 2000-04-25 2008-01-16 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
CN102127702A (zh) * 2011-01-16 2011-07-20 首钢总公司 一种低s高牌号无取向电工钢的制备方法
JP5672273B2 (ja) * 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974223A (ja) * 1982-10-20 1984-04-26 Kawasaki Steel Corp 磁気特性に優れた無方向性珪素鋼板の製造方法
CN1219977A (zh) * 1996-07-12 1999-06-16 蒂森钢铁股份公司 生产晶粒取向磁钢板的工艺
JP2005068525A (ja) * 2003-08-27 2005-03-17 Jfe Steel Kk 鉄損が低くかつ磁束密度の高い方向性電磁鋼板の製造方法
CN1978691A (zh) * 2005-11-30 2007-06-13 宝山钢铁股份有限公司 一种基于薄板坯连铸连轧的取向硅钢及其制造方法
CN103911545A (zh) * 2014-04-14 2014-07-09 国家电网公司 一种强高斯织构占有率高磁感取向电工钢带的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731672B (zh) * 2020-05-08 2021-06-21 中國鋼鐵股份有限公司 低碳鋼片及其製造方法
CN114769545A (zh) * 2020-11-25 2022-07-22 宝钢德盛不锈钢有限公司 一种减少200系不锈钢热轧卷边部山鳞的生产方法
CN114769545B (zh) * 2020-11-25 2024-03-01 宝钢德盛不锈钢有限公司 一种减少200系不锈钢热轧卷边部山鳞的生产方法
CN114134423A (zh) * 2021-12-02 2022-03-04 东北大学 一种超短流程稀土取向硅钢及其制备方法
CN115505822A (zh) * 2022-09-23 2022-12-23 无锡普天铁心股份有限公司 改善取向硅钢晶粒均匀性的方法及该方法制备的取向硅钢
CN115505822B (zh) * 2022-09-23 2023-12-01 无锡普天铁心股份有限公司 改善取向硅钢晶粒均匀性的方法及该方法制备的取向硅钢
CN118653042A (zh) * 2024-08-22 2024-09-17 鞍钢股份有限公司 高磁感取向硅钢短流程制备方法

Also Published As

Publication number Publication date
CN104294155A (zh) 2015-01-21
CN104294155B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2016045158A1 (zh) 一种超低碳取向硅钢及其制备方法
JP6208855B2 (ja) 配向性高ケイ素鋼の製造方法
JP6580700B2 (ja) 表面状態が良好な高磁束密度・低鉄損・無方向性電磁鋼板及びその製造方法
CN103635596B (zh) 晶粒取向的、电工用途的磁性钢带或磁性钢板的制造方法
JP2011518947A (ja) 一回冷間圧延法による方向性珪素鋼の製造方法
CN107201478B (zh) 一种基于异径双辊薄带连铸技术的超低碳取向硅钢制备方法
JPS6160896B2 (zh)
CN114134423B (zh) 一种超短流程稀土取向硅钢及其制备方法
CN104726670A (zh) 一种短流程中薄板坯制备高磁感取向硅钢的方法
KR102111433B1 (ko) 고레벨의 냉간압하를 가지는 방향성 자기 강판의 생산 공정
US4715905A (en) Method of producting thin sheet of high Si-Fe alloy
CN101275201B (zh) 一种取向电工钢及其制造方法
CN109295289B (zh) 一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法
CN105385937B (zh) 一种高磁感取向硅钢极薄带的减量化制备方法
CN104164618A (zh) 快速冷却控制双辊薄带连铸低硅无取向硅钢磁性能的方法
JP3310004B2 (ja) 一方向性電磁鋼板の製造方法
CN113789476B (zh) 低温Hi-B钢及能够增强先天AlN抑制能力的生产方法
JP2784661B2 (ja) 高磁束密度薄手一方向性電磁鋼板の製造方法
JPH06240358A (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JPS63176427A (ja) 一方向性高珪素鋼板の製造方法
JP2548942B2 (ja) Fe−Ni基合金の急冷凝固時の割れ防止方法
JP3067896B2 (ja) 一方向性電磁鋼板用薄鋳片の製造方法
CN116586429A (zh) 一种中厚度板坯取向硅钢热连轧生产制造方法
JPS59173218A (ja) 磁束密度が高く鉄損の低い一方向性けい素鋼板の製造方法
JPH02221355A (ja) 表面性状の優れた無方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 11-07-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 14902293

Country of ref document: EP

Kind code of ref document: A1