CN109280891A - 一种梯度高硅钢的制备工艺 - Google Patents

一种梯度高硅钢的制备工艺 Download PDF

Info

Publication number
CN109280891A
CN109280891A CN201811448538.3A CN201811448538A CN109280891A CN 109280891 A CN109280891 A CN 109280891A CN 201811448538 A CN201811448538 A CN 201811448538A CN 109280891 A CN109280891 A CN 109280891A
Authority
CN
China
Prior art keywords
silicon steel
gradient
coating
cathode
silicone content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811448538.3A
Other languages
English (en)
Inventor
钟庆东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Shanglin New Materials Technology Co Ltd
Original Assignee
Hunan Shanglin New Materials Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Shanglin New Materials Technology Co Ltd filed Critical Hunan Shanglin New Materials Technology Co Ltd
Priority to CN201811448538.3A priority Critical patent/CN109280891A/zh
Publication of CN109280891A publication Critical patent/CN109280891A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Abstract

本发明公开了一种梯度高硅钢的制备工艺,将锰、铌、钒等微量合金元素、纯度金属硅和纯铁按比例放入高频真空感应加热炉中,抽真空浇铸成FeSi合金锭,然后加工成阴极靶材,备用;将上述阴极靶材放置于镀膜室,氩气作为溅射气体进行阴极离子镀;使表层硅含量达到6.5wt%左右;再退火、涂层,并进行磁性能检测。本发明通过利用改进硅钢成分和多弧离子镀膜制备技术来制备梯度高硅钢薄板,通过阴极电弧放电在靶材表面附近产生的等离子体,改善反应离子镀膜质量。使得表层硅含量6.5%,内部呈梯度分布,按一定的梯度逐一递减,电阻率高,磁导率高,磁通集中在表面,涡流也集中在表面,损耗小,内部硅含量低于6.5%,总的损耗低的6.5%硅钢。

Description

一种梯度高硅钢的制备工艺
技术领域
本发明涉及一种6.5wt%Si高硅钢,特别是涉及一种6.5wt%Si梯度高硅钢的制备工艺技术,属于材料加工领域。
背景技术
硅钢是电力、电子和军事工业不可或缺的重要软磁合金,主要用作各种电机、发电机和变压器的铁芯。提高硅钢中硅的含量可提高硅钢性能,尤其当 Si 含量为 6.5wt%时,性能可达到最佳状态,但随硅含量的增高,硅钢的脆性也随之增大,对其加工性能产生不利影响,在轧制过程中易出现裂纹。所以利用轧制工艺制备高硅钢的发展相对缓慢,因此需要新的制备工艺来替代传统轧制工艺的制备技术。高硅钢由于其含有较高的Si,且由于其共价键本质,使其固溶明显,造成硬度偏高,合金变得没有韧性,非常易碎,机械加工和热加工性能恶化的极为差劲。此外,金属间化合物还存在着明显的环境脆性,所以在高硅钢的加工过程中要改善其低温塑性,降低金属间化合物的环境脆性,提高材料的塑性。本发明是通过利用改进硅钢成分和多弧离子镀膜制备技术来制备梯度高硅钢薄板,通过阴极电弧放电在靶材表面附近产生的等离子体,改善反应离子镀膜质量。使得表层硅含量6.5%,内部呈梯度分布,按一定的梯度逐一递减,电阻率高,磁导率高,磁通集中在表面,涡流也集中在表面,损耗小,内部硅含量低于 6.5%,总的损耗低的 6.5%硅钢。
发明内容
本发明涉及一种梯度高硅钢的制备工艺技术,通过改进硅钢原材料的成分,加入Mn、Nb、V等微量合金元素来实现改变硅钢的强度,韧性,同时采用多弧离子镀技术制备高硅梯度钢,使得硅含量从外到内呈现梯度分布。由于加入了Mn、Nb、V这一类的微合金元素,一方面形成细小碳化物粒子通过析出强化提高强度,另一方面固溶Nb抑制退火时的再结晶,阻碍晶粒的长大,从而硅钢的强度、韧性和塑性得以提高。同时采用4G阴极电弧和磁控溅射,在强磁场的作用下,阴极电弧放电在靶材表面附近产生的等离子体,会被推向镀膜区域,大大增强了真空室内的等离子体密度,改善了反应离子镀膜的环境和条件;从而能显著改善反应离子镀膜质量,磁控溅射粒子能量高,膜结合力更好,有利于制得硅含量分布成梯度的高硅钢,拓展高硅钢在该领域的应用。
本发明采用如下技术方案:一种梯度高硅钢的制备工艺,其特征在于包括如下步骤:
a. 原料准备:3.5wt%的99.95%纯度金属硅,93.5~94wt%的99.5%纯铁,2.5~3 wt%的微量合金元素,其中微量合金元素为锰、铌、钒等微量合金元素;
b. 冶炼:50kg高频真空感应加热炉,将微量合金元素,99.95%纯度金属硅和纯铁按照比例放入50Kg高频真空感应加热炉中,抽真空后开始加热,浇铸成FeSi合金锭,然后加工成阴极靶材,备用;
c. 多弧离子镀膜技术:采用LZD1300电弧离子镀膜设备,4G阴极电弧和磁控溅射。基体材料为上述阴极靶材,将上述阴极靶材放置于体积分数10%的HCL溶液中进行除锈,再置于无水乙醇中超声清洗10min,吹干,放入镀膜室;抽真空后,通入99.99%氩气作为溅射气体进行阴极离子镀,在强磁场下,阴极电弧放电在靶材表面附近产生的等离子体,会被推向镀膜区域,大大增强了真空室内的等离子体密度,改善了反应离子镀膜的环境和条件;从而能显著改善反应离子镀膜质量;磁控溅镀过程中Ar压力维持在5Pa左右,磁控溅射沉积时间为1.5~2h,使表层硅含量达到6.5wt%左右;
d. 退火:在550℃,真空环境下退火0.5~2h。
e. 涂层:喷涂磷酸盐与铬酸盐的绝缘膜。
f. 检查:SSTY-1500型单片硅钢磁导计进行磁性能检测。
本发明步骤d中真空环境为体积分数比3:7为H2+N2真空。
本发明是通过利用改进硅钢成分和多弧离子镀膜制备技术来制备梯度高硅钢薄板,通过阴极电弧放电在靶材表面附近产生的等离子体,改善反应离子镀膜质量。使得表层硅含量6.5%,内部呈梯度分布,按一定的梯度逐一递减,电阻率高,磁导率高,磁通集中在表面,涡流也集中在表面,损耗小,内部硅含量低于 6.5%,总的损耗低的 6.5%硅钢。
具体实施方式
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:
实施例1:
将锰、铌、钒等微量合金元素,99.95%纯度金属硅和纯铁按照比例放入50Kg高频真空感应加热炉中,抽真空后开始加热,浇铸成FeSi合金锭,然后加工成阴极靶材,备用。再采用LZD1300电弧离子镀膜设备。基体材料为上述阴极靶材,将上述阴极靶材放置于10%(体积分数)HCL溶液中进行除锈,再置于无水乙醇中超声清洗10min,吹干,放入镀膜室。抽真空后,通入99.99%氩气作为溅射气体进行阴极离子镀,在强磁场下,阴极电弧放电在靶材表面附近产生的等离子体,会被推向镀膜区域,大大增强了真空室内的等离子体密度,改善了反应离子镀膜的环境和条件;从而能显著改善反应离子镀膜质量。磁控溅镀过程中Ar压力维持在5Pa左右,磁控溅射沉积时间为1.5h,使表层硅含量达到6.5wt%左右。在550℃H2+N2(体积分数比3:7)真空环境下退火0.5h,最后喷涂磷酸盐与铬酸盐的绝缘膜。
实施例2:
将锰、铌、钒等微量合金元素,99.95%纯度金属硅和纯铁按照比例放入50Kg高频真空感应加热炉中,抽真空后开始加热,浇铸成FeSi合金锭,然后加工成阴极靶材,备用。再采用LZD1300电弧离子镀膜设备。基体材料为上述阴极靶材,将上述阴极靶材放置于10%(体积分数)HCL溶液中进行除锈,再置于无水乙醇中超声清洗10min,吹干,放入镀膜室。抽真空后,通入99.99%氩气作为溅射气体进行阴极离子镀,在强磁场下,阴极电弧放电在靶材表面附近产生的等离子体,会被推向镀膜区域,大大增强了真空室内的等离子体密度,改善了反应离子镀膜的环境和条件;从而能显著改善反应离子镀膜质量。磁控溅镀过程中Ar压力维持在5Pa左右,磁控溅射沉积时间为1.5h,使表层硅含量达到6.5wt%左右。在550℃H2+N2(体积分数比3:7)真空环境下退火1h,最后喷涂磷酸盐与铬酸盐的绝缘膜。
实施例3:
将锰、铌、钒等微量合金元素,99.95%纯度金属硅和纯铁按照比例放入50Kg高频真空感应加热炉中,抽真空后开始加热,浇铸成FeSi合金锭,然后加工成阴极靶材,备用。再采用LZD1300电弧离子镀膜设备。基体材料为上述阴极靶材,将上述阴极靶材放置于10%(体积分数)HCL溶液中进行除锈,再置于无水乙醇中超声清洗10min,吹干,放入镀膜室。抽真空后,通入99.99%氩气作为溅射气体进行阴极离子镀,在强磁场下,阴极电弧放电在靶材表面附近产生的等离子体,会被推向镀膜区域,大大增强了真空室内的等离子体密度,改善了反应离子镀膜的环境和条件;从而能显著改善反应离子镀膜质量。磁控溅镀过程中Ar压力维持在5Pa左右,磁控溅射沉积时间为1.5h,使表层硅含量达到6.5wt%左右。在550℃H2+N2(体积分数比3:7)真空环境下退火2h,最后喷涂磷酸盐与铬酸盐的绝缘膜。
实施例4:
将锰、铌、钒等微量合金元素,99.95%纯度金属硅和纯铁按照比例放入50Kg高频真空感应加热炉中,抽真空后开始加热,浇铸成FeSi合金锭,然后加工成阴极靶材,备用。再采用LZD1300电弧离子镀膜设备。基体材料为上述阴极靶材,将上述阴极靶材放置于10%(体积分数)HCL溶液中进行除锈,再置于无水乙醇中超声清洗10min,吹干,放入镀膜室。抽真空后,通入99.99%氩气作为溅射气体进行阴极离子镀,在强磁场下,阴极电弧放电在靶材表面附近产生的等离子体,会被推向镀膜区域,大大增强了真空室内的等离子体密度,改善了反应离子镀膜的环境和条件;从而能显著改善反应离子镀膜质量。磁控溅镀过程中Ar压力维持在5Pa左右,磁控溅射沉积时间为2h,使表层硅含量达到6.5wt%左右。在550℃H2+N2(体积分数比3:7)真空环境下退火0.5h,最后喷涂磷酸盐与铬酸盐的绝缘膜。
实施例5:
将锰、铌、钒等微量合金元素,99.95%纯度金属硅和纯铁按照比例放入50Kg高频真空感应加热炉中,抽真空后开始加热,浇铸成FeSi合金锭,然后加工成阴极靶材,备用。再采用LZD1300电弧离子镀膜设备。基体材料为上述阴极靶材,将上述阴极靶材放置于10%(体积分数)HCL溶液中进行除锈,再置于无水乙醇中超声清洗10min,吹干,放入镀膜室。抽真空后,通入99.99%氩气作为溅射气体进行阴极离子镀,在强磁场下,阴极电弧放电在靶材表面附近产生的等离子体,会被推向镀膜区域,大大增强了真空室内的等离子体密度,改善了反应离子镀膜的环境和条件;从而能显著改善反应离子镀膜质量。磁控溅镀过程中Ar压力维持在5Pa左右,磁控溅射沉积时间为2h,使表层硅含量达到6.5wt%左右。在550℃H2+N2(体积分数比3:7)真空环境下退火1h,最后喷涂磷酸盐与铬酸盐的绝缘膜。
实施例6:
将锰、铌、钒等微量合金元素,99.95%纯度金属硅和纯铁按照比例放入50Kg高频真空感应加热炉中,抽真空后开始加热,浇铸成FeSi合金锭,然后加工成阴极靶材,备用。再采用LZD1300电弧离子镀膜设备。基体材料为上述阴极靶材,将上述阴极靶材放置于10%(体积分数)HCL溶液中进行除锈,再置于无水乙醇中超声清洗10min,吹干,放入镀膜室。抽真空后,通入99.99%氩气作为溅射气体进行阴极离子镀,在强磁场下,阴极电弧放电在靶材表面附近产生的等离子体,会被推向镀膜区域,大大增强了真空室内的等离子体密度,改善了反应离子镀膜的环境和条件;从而能显著改善反应离子镀膜质量。磁控溅镀过程中Ar压力维持在5Pa左右,磁控溅射沉积时间为2h,使表层硅含量达到6.5wt%左右。在550℃H2+N2(体积分数比3:7)真空环境下退火2h,最后喷涂磷酸盐与铬酸盐的绝缘膜。
表1. 实施例中各性能测试
样品 最大铁损P15(W/kg) 最小磁感B8(T) 屈服强度MPa
样品1 1.69 1.20 580
样品2 1.38 1.49 650
样品3 1.53 1.32 625
样品4 1.59 1.2 630
样品5 1.32 1.55 742
样品6 1.4 1.50 680
本发明制备的梯度高硅钢能够保证强度高的同时磁性能好,可广泛应用于电源变压器、脉冲变压器等磁性器件的铁芯材料。

Claims (2)

1.一种梯度高硅钢的制备工艺,其特征在于包括如下步骤:
原料准备:原料准备:3.5wt%的99.95%纯度金属硅,93.5~94wt%的99.5%纯铁,2.5~3wt%的微量合金元素,其中微量合金元素为锰、铌、钒等微量合金元素;
冶炼:50kg高频真空感应加热炉,将微量合金元素,99.95%纯度金属硅和纯铁按照比例放入50Kg高频真空感应加热炉中,抽真空后开始加热,浇铸成FeSi合金锭,然后加工成阴极靶材,备用;
多弧离子镀膜技术:采用LZD1300电弧离子镀膜设备,4G阴极电弧和磁控溅射;基体材料为上述阴极靶材,将上述阴极靶材放置于体积分数10%的HCL溶液中进行除锈,再置于无水乙醇中超声清洗10min,吹干,放入镀膜室;抽真空后,通入99.99%氩气作为溅射气体进行阴极离子镀,在强磁场下,阴极电弧放电在靶材表面附近产生的等离子体,会被推向镀膜区域;磁控溅镀过程中Ar压力维持在5Pa左右,磁控溅射沉积时间为1.5~2h,使表层硅含量达到6.5wt%左右;
退火:在550℃,真空环境下退火0.5~2h;
涂层:喷涂磷酸盐与铬酸盐的绝缘膜;
检查:SSTY-1500型单片硅钢磁导计进行磁性能检测。
2.根据权利要求1所述的一种梯度高硅钢的制备工艺,其特征在:步骤d中真空环境为体积分数比3:7为H2+N2真空。
CN201811448538.3A 2018-11-30 2018-11-30 一种梯度高硅钢的制备工艺 Pending CN109280891A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811448538.3A CN109280891A (zh) 2018-11-30 2018-11-30 一种梯度高硅钢的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811448538.3A CN109280891A (zh) 2018-11-30 2018-11-30 一种梯度高硅钢的制备工艺

Publications (1)

Publication Number Publication Date
CN109280891A true CN109280891A (zh) 2019-01-29

Family

ID=65174032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811448538.3A Pending CN109280891A (zh) 2018-11-30 2018-11-30 一种梯度高硅钢的制备工艺

Country Status (1)

Country Link
CN (1) CN109280891A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999822A (zh) * 2006-12-21 2007-07-18 武汉科技大学 一种高硅取向硅钢薄板的制备方法
CN102485955A (zh) * 2010-12-02 2012-06-06 兰州大成科技股份有限公司 利用真空镀膜制备硅钢薄板带的方法
CN102978569A (zh) * 2012-12-18 2013-03-20 兰州大成科技股份有限公司 采用连续多弧离子镀物理气相沉积制备Fe - 5.5~6.5 wt.% Si - 0.3~1.0wt.% Al 合金薄板的方法
CN104372238A (zh) * 2014-09-28 2015-02-25 东北大学 一种取向高硅钢的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999822A (zh) * 2006-12-21 2007-07-18 武汉科技大学 一种高硅取向硅钢薄板的制备方法
CN102485955A (zh) * 2010-12-02 2012-06-06 兰州大成科技股份有限公司 利用真空镀膜制备硅钢薄板带的方法
CN102978569A (zh) * 2012-12-18 2013-03-20 兰州大成科技股份有限公司 采用连续多弧离子镀物理气相沉积制备Fe - 5.5~6.5 wt.% Si - 0.3~1.0wt.% Al 合金薄板的方法
CN104372238A (zh) * 2014-09-28 2015-02-25 东北大学 一种取向高硅钢的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴隽 等: ""高硅取向梯度硅钢薄板的制备及结构研究"", 《第七届(2009)中国钢铁年会论文集(补集)》 *
张莉 等: ""高硅FeSi合金层对普通取向硅钢磁性能的影响"", 《表面技术》 *

Similar Documents

Publication Publication Date Title
CN109423577B (zh) 一种高强多相钢镀锡原板及其制造方法
JP2012515847A (ja) 一体構造のアルミニウム合金ターゲットとそれを製造する方法
CN104789958A (zh) 一种用于金属表面的耐腐蚀涂层及其制备方法
CN107881427A (zh) 一种塑性优良的低屈服强度覆铝基板
CN108796391B (zh) 一种具有优良塑韧性和抗鳞爆性的搪玻璃用钢及其制造方法
CN106425292B (zh) 一种高性能复合板的制作工艺
CN101353756A (zh) 搪瓷用冷轧高强度钢板及其制造方法
CN113512704B (zh) 一种降低铝靶材晶粒度的方法
CN105568113A (zh) 一种高强度Fe-Ni-Cr基高温耐蚀合金的复合强韧化工艺
CN106637123A (zh) 一种基于离子注入的不锈钢表面处理工艺
CN102796955A (zh) 搪瓷钢用热轧中厚板及其制造方法
CN104651735B (zh) 一种韧性大于50J/cm2的低合金耐磨钢及生产方法
CN107604251A (zh) 一种低屈强比q460gjd钢板及其生产方法
CN109280891A (zh) 一种梯度高硅钢的制备工艺
CN106011543A (zh) 改良型铁钴钒合金及其制造方法
CN105779999A (zh) 一种高机械强度零件的材料
CN108747084A (zh) 一种埋弧焊丝及其制备方法
CN112708826A (zh) 一种适用于超厚截面改良型9%Ni钢及其制备方法
CN105369072A (zh) 一种轻质金属板材成型方法
CN107779762B (zh) 一种具有优良抗高温变形性能的搪玻璃用钢板及其制造方法
CN114908285B (zh) 一种低成本高温搪瓷用热轧钢板及其制造方法
CN109402527A (zh) 一种经济型p110钢级石油套管及其制造方法
CN100460540C (zh) 一种高强度高韧性钛合金
CN107620003A (zh) 一种经济型低屈强比q460gjc钢板及其生产方法
CN114000073A (zh) 一种改善高纯镍靶材内部组织的工艺方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190129