CN104370272A - 一种mems自对准高低梳齿及其制造方法 - Google Patents

一种mems自对准高低梳齿及其制造方法 Download PDF

Info

Publication number
CN104370272A
CN104370272A CN201410599134.XA CN201410599134A CN104370272A CN 104370272 A CN104370272 A CN 104370272A CN 201410599134 A CN201410599134 A CN 201410599134A CN 104370272 A CN104370272 A CN 104370272A
Authority
CN
China
Prior art keywords
mems
comb
comb teeth
autoregistration
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410599134.XA
Other languages
English (en)
Other versions
CN104370272B (zh
Inventor
陈巧
谢会开
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Weiwen Semiconductor Technology Co ltd
Original Assignee
WUXI WIO TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI WIO TECHNOLOGY Co Ltd filed Critical WUXI WIO TECHNOLOGY Co Ltd
Priority to CN201410599134.XA priority Critical patent/CN104370272B/zh
Publication of CN104370272A publication Critical patent/CN104370272A/zh
Priority to PCT/CN2015/078711 priority patent/WO2016065887A1/zh
Priority to US15/503,192 priority patent/US10077184B2/en
Application granted granted Critical
Publication of CN104370272B publication Critical patent/CN104370272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0037For increasing stroke, i.e. achieve large displacement of actuated parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00007Assembling automatically hinged components, i.e. self-assembly processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0015Cantilevers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/006Electrostatic motors of the gap-closing type
    • H02N1/008Laterally driven motors, e.g. of the comb-drive type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/033Comb drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0136Comb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种MEMS自对准高低梳齿及其制造方法,属于MEMS技术领域。自对准高低梳齿包括一端固定在衬底上而另一端与活动梳齿或者固定梳齿连接的抬升结构,抬升结构在生长应力作用下产生垂直方向的位移带动其连接的活动梳齿或者固定梳齿移动。采用SOI硅片,SOI的正面单晶硅器件层即为MEMS结构的机械结构层,引入的抬升机构与梳齿对依次形成于机械结构层上,由同一步刻蚀工艺形成固定梳齿和活动梳齿,由抬升结构中的应力将固定梳齿与活动梳齿在垂直方向上产生一定位移,从而形成了自对准高低梳齿,相对于多层机构的MEMS省去了多次键合的工艺,简化了制造工艺,大大降低加工成本和加工难度,提高成品率。

Description

一种MEMS自对准高低梳齿及其制造方法
技术领域
本发明公开了一种MEMS自对准高低梳齿及其制造方法,属于MEMS技术领域。
背景技术
MEMS(Micro-Electro-Mechanical Systems,微机电系统)是一个制造微小器件并可同时集成多种物理场作用的新兴领域。相对于传统的机械,MEMS器件的尺寸更小,一般在微米到毫米量级。它基于半导体集成电路(IC)制作工艺,可大量利用IC生产中的成熟技术、工艺,进行大批量、低成本生产,使性价比相对于传统“机械”制造技术大幅度提高。
梳齿结构在MEMS器件中广泛应用,比如各种电容式传感器包括加速度计、陀螺仪等以及各种微驱动器。一般的MEMS梳齿结构都是平的,即梳齿的动齿和固齿在同一个平面。这种梳齿在做驱动时只能产生平面内的运动。当需要产生平面外运动时,我们就需要高低梳齿,或叫垂直梳齿,即动齿和固齿一高一低不在一个平面。高低梳齿结构可以用来制作扫描微镜,也是实现三轴加速度计、三轴MEMS电容式陀螺仪必不可少的结构。但是要制作高低梳齿,工艺上往往采用键合或者多次刻蚀方法形成高低梳齿,工艺复杂,难度高,且成品率低。
现有的高低梳齿设计中,传统的MEMES制造工艺利用键合工艺分别刻蚀高低梳齿,或者利用多次光刻分别刻蚀高低梳齿,都需要高精度对准,对工艺要求高且成品率低。SOI技术可以解决梳齿自对准的问题,但是同样存在多次刻蚀,加工复杂的缺陷。
发明内容
本发明所要解决的技术问题是针对上述背景技术的不足,提供了一种MEMS自对准高低梳齿及其制造方法。
本发明为实现上述发明目的采用如下技术方案:
MEMS自对准高低梳齿,包括活动梳齿,固定梳齿和一端固定在衬底上而另一端与活动梳齿或者固定梳齿连接的抬升结构,所述抬升结构由至少一段弯曲梁和至少一段直梁组成,所述弯曲梁与所述直梁一起构成至少一个折弯的折叠梁结构,所述弯曲梁使所述折叠梁结构在垂直方向产生位移,从而带动与其连接的活动梳齿/固定梳齿与固定梳齿/活动梳齿处于不同平面,形成高低梳齿。
MEMS自对准高低梳齿的关键部件是一个抬升结构,该抬升结构的一端固定在衬底上而另一端与活动梳齿或者固定梳齿连接,该抬升结构使与其连接的梳齿在垂直方向产生位移,从而使活动梳齿与固定梳齿不在同一个平面。该结构释放后,抬升结构产生垂直位移,将活动梳齿与固定梳齿在垂直方向错开而形成高低梳齿;而在该结构释放前,活动梳齿与固定梳齿在同一平面并在同一步工艺形成。因此,该高低梳齿叫做自对准高低梳齿。
抬升结构中至少一个弯曲梁位于所述折弯之前,且至少一个弯曲梁位于所述折弯之后。
所述抬升结构由均匀连续的第一层材料、覆盖在第一层材料上的非连续、分段的第二层材料构成,所述直梁由第一层材料单独构成,所述弯曲梁由第一层材料及其覆盖的第二层材料构成。
第一层材料是单晶硅或多晶硅。
第二层材料是单层薄膜或多层薄膜。
第二层材料是一层或多层金属薄膜,如铝、铜、金等。
第二层材料是一层或多层非金属薄膜,如二氧化硅、氮化硅、多晶硅等。
第二层材料是一种复合薄膜,含有至少一层金属薄膜和一层非金属薄膜。
该自对准高低梳齿可以用来制作面外运动(垂直方向)的MEMS静电驱动器或MEMS电容式位移传感器。
下面简单描述该自对准MEMS高低梳齿的制造方法之一。加工硅片采用SOI(Silicon-On-Insulator,绝缘衬底上的硅)硅片:
a,在SOI正面单晶硅器件层上淀积薄膜层,图形化薄膜层形成抬升结构的第二层材料,所述第二层材料为薄膜层,
b,对SOI背面进行空腔刻蚀形成背腔,可采用深硅刻蚀工艺,
c,刻蚀SOI正面单晶硅器件层形成梳齿以及抬升结构的第一层材料,SOI器件层即为抬升结构的第一层材料,即单晶硅;
d,薄膜层中的内应力使折叠梁结构的局部发生弯曲,局部弯曲后的折叠梁结构组成的抬升结构带动与其连接的固定梳齿或活动梳齿在垂直方向上移动,从而形成自对准梳齿。
作为所述制造方法的进一步优化方案,控制薄膜层生长工艺中的气压长、温度、淀积速率以控制薄膜层的应力。
本发明采用上述技术方案,具有以下有益效果:采用SOI硅片加工,SOI的正面单晶硅器件层即为MEMS结构的机械结构层,引入的抬升机构与梳齿对同时形成于机械结构层上,在同一步刻蚀工艺形成固定梳齿和活动梳齿,由抬升结构中的应力将固定梳齿与活动梳齿在垂直方向上产生一定位移,从而形成了自对准高低梳齿。相对于多层机构的MEMS省去了多次键合的工艺,简化了制造工艺,大大降低加工成本和加工难度,提高成品率。
附图说明
图1(a)、图1(b)分别为2段折叠梁抬升结构的正面图和侧面图,图1(c)、图1(d)分别为3段折叠梁抬升结构的正面图和侧面图。
图2为自对准高低梳齿的结构图。
图3(a)、图3(b)分别为采用自对准高低梳齿MEMS静电驱动器、MEMS电容式位移传感器。
具体实施方式
下面结合附图对发明的技术方案进行详细说明。
2段折叠梁的抬升结构如图1所示,抬升结构的一端固定在衬底上。如图1(a)的正面图所示,抬升结构梁的两段与其余部分的材料组成不完全一样,且这两段不一样的梁一个位于折弯之前(位置A),一个位于变形之后(位置B)。该抬升结构的侧面图如图1(b)所示,抬升结构主要由一层相对较厚的材料(比如硅)构成,而在位置A和B处的结构梁比其余结构梁多一层薄膜,该薄膜层材料(比如金属材料如铝或半导体材料如多晶硅或介电质材料如氮化硅等)厚度相对较小。利用双金属(Bimorph)效应,薄膜层材料在一定条件下淀积在较厚材料层上之后整个结构会由于应力作用而发生弯曲。控制该薄膜生长工艺包括气压、温度、淀积速率等可控制位置A和B处结构梁的曲率,这两段弯曲梁是形成整体结构垂直抬升的基础。假设位置A处梁向上弯曲,紧接着的那段梁(因由单一材料M1构成而是直梁)产生向上位移;此处已形成抬升但有倾斜。所以增加一段横梁并紧跟一段往反方向的折叠梁,该折叠梁的初始段(即位置B处)也往上翘,但翘曲方向与A段相反。所以形成末端垂直位移。并利用第一层材料M1作为折叠梁放大位移。该结构完全释放后末端将得到相对于衬底面垂直的位移。
其中,这里柔性Bimorph结构连接件弯曲角度其中ρ是柔性Bimorph结构连接件的曲率半径;Δε;t1、t2分别指柔性Bimorph结构材料M1和薄膜材料M2的厚度;βb是柔性Bimorph结构连接件曲率系数,其可由下式得出:
β b = 6 · ( 1 + t 1 t 2 ) 2 E 1 ′ E 2 ′ · ( t 1 t 2 ) 3 + 4 · ( t 1 t 2 ) 2 + 6 · t 1 t 2 + 4 + ( E 1 ′ E 2 ′ ) - 1 · ( t 1 t 2 ) - 1
其中,E1'、E'2分别指柔性Bimorph结构连接件材料1和材料2的双轴弹性模量,E1'、E'2的值由薄膜材料的弹性模量和泊松比决定:
E i ′ = E i 1 - v i , i = 1,2 ;
其中,Ei为第i层薄膜材料的弹性模量;vi为第i层薄膜材料的泊松比。
多层叠加抬升结构达到不同抬升高度,3段折叠梁抬升结构的正面图和侧面图如图1(c)、图1(d)所示。
自对准高低梳齿如图2所示,包括活动梳齿,固定梳齿和一端固定在衬底上而另一端与活动梳齿或者固定梳齿连接的抬升结构,所述抬升结构由至少一段弯曲梁和至少一段直梁组成,所述弯曲梁与所述直梁一起构成至少一个折弯的折叠梁结构,所述弯曲梁使所述折叠梁结构在垂直方向产生位移,从而带动与其连接的活动梳齿/固定梳齿)与固定梳齿/活动梳齿处于不同平面,形成高低梳齿。加工硅片采用SOI(Silicon-On-Insulator,绝缘衬底上的硅)硅片。淀积图形化在SOI正面单晶硅器件层上的第二层材料,第二层材料的内应力使折叠梁结构的局部发生弯曲,局部弯曲后的折叠梁结构(即为图2中的Bimorph变形梁)组成的抬升结构带动与其连接的固定梳齿或活动梳齿在垂直方向上移动,从而形成自对准梳齿。
图3(a)为利用MEMS自对准高低梳齿制作能产生面外运动的MEMS静电驱动器。其机械结构层形成有:质量块(反射镜面),固定质量块的锚点,固定自对准高低梳齿的锚点,柔性连接质量块与锚点的连接梁。驱动梳齿即为上述MEMS自对准高低梳齿,附着在质量块边缘的固定梳齿,与固定梳齿相对应的活动梳齿以及与活动梳齿连接的抬升机构活动端,机械结构层上淀积有相邻折叠梁连接处的变形薄膜层,折叠梁在变形薄膜层应力作用下局部弯曲后形成Bimorph变形梁。
图3(b)为利用MEMS自对准高低梳齿制作能测量面外运动的MEMS电容式位移传感器,包括抬升结构、柔性变形梁、梳齿式电容、电连接点。利用抬升结构抬升梳齿后,可以形成高低梳齿式电容,当抬升结构高度发生变化可通过检测梳齿结构间电容的变化而检测高度的变化。并通过改变柔性梁结构,可检测高度变化、转动角度变化等物理量。
综上所述,本发明采用单次深硅刻蚀工艺可形成高低梳齿,引入的抬升机构与梳齿对依次形成于机械结构层上,在不需要多次刻蚀工艺的前提下形成了自对准高低梳齿,相对于多层机构的MEMS省去了多次键合的工艺,简化了制造工艺,大大降低加工成本和加工难度,提高成品率。

Claims (10)

1.一种MEMS自对准高低梳齿,其特征在于,包括活动梳齿,固定梳齿和一端固定在衬底上而另一端与活动梳齿或者固定梳齿连接的抬升结构,所述抬升结构由至少一段弯曲梁和至少一段直梁组成,所述弯曲梁与所述直梁一起构成至少一个折弯的折叠梁结构,所述弯曲梁使所述折叠梁结构在垂直方向产生位移,从而带动与其连接的活动梳齿/固定梳齿与固定梳齿/活动梳齿处于不同平面,形成高低梳齿。
2.根据权利要求1所述的MEMS自对准高低梳齿,其特征在于,所述抬升结构中至少一个弯曲梁位于所述折弯之前,且至少一个弯曲梁位于所述折弯之后。
3.根据权利要求1所述的MEMS的自对准高低梳齿,其特征在于,所述抬升结构由均匀连续的第一层材料、覆盖在第一层材料上的非连续、分段的第二层材料构成,所述直梁由第一层材料单独构成,所述弯曲梁由第一层材料及其覆盖的第二层材料构成。
4.根据权利要求3所述的MEMS自对准高低梳齿,其特征在于,第一层材料是单晶硅或多晶硅。
5.根据权利要求3所述的MEMS自对准高低梳齿,其特征在于,第二层材料是单层薄膜或多层薄膜。
6.根据权利要求5所述的MEMS自对准高低梳齿,其特征在于,第二层材料是一层或多层金属薄膜。
7.根据权利要求5所述的MEMS自对准高低梳齿,其特征在于,第二层材料是一层或多层非金属薄膜。
8.根据权利要求5所述的MEMS自对准高低梳齿,其特征在于,第二层材料是一种复合薄膜,含有至少一层金属薄膜和一层非金属薄膜。
9.权利要求4所述MEMS自对准高低梳齿的制造方法,采用SOI衬底,其特征在于包括如下步骤:    
a,在SOI正面单晶硅器件层上淀积薄膜层,图形化薄膜层形成抬升结构的第二层材料,所述第二层材料为薄膜层;
b,对SOI背面进行深硅刻蚀,形成背腔;
c,刻蚀SOI正面单晶硅器件层形成梳齿以及抬升结构的第一层材料;
d,薄膜层中的内应力使折叠梁结构的局部发生弯曲,局部弯曲后的折叠梁结构组成的抬升结构带动与其连接的固定梳齿/活动梳齿在垂直方向上移动,从而形成自对准梳齿。
10.根据权利要求9所述MEMS自对准高低梳齿的制造方法,其特征在于,控制薄膜层生长工艺中的气压长、温度、淀积速率以控制薄膜层的应力。
CN201410599134.XA 2014-10-30 2014-10-30 一种mems自对准高低梳齿及其制造方法 Active CN104370272B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410599134.XA CN104370272B (zh) 2014-10-30 2014-10-30 一种mems自对准高低梳齿及其制造方法
PCT/CN2015/078711 WO2016065887A1 (zh) 2014-10-30 2015-05-11 一种mems自对准高低梳齿及其制造方法
US15/503,192 US10077184B2 (en) 2014-10-30 2015-05-11 MEMS automatic alignment high-and-low comb tooth and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410599134.XA CN104370272B (zh) 2014-10-30 2014-10-30 一种mems自对准高低梳齿及其制造方法

Publications (2)

Publication Number Publication Date
CN104370272A true CN104370272A (zh) 2015-02-25
CN104370272B CN104370272B (zh) 2016-07-06

Family

ID=52549519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410599134.XA Active CN104370272B (zh) 2014-10-30 2014-10-30 一种mems自对准高低梳齿及其制造方法

Country Status (3)

Country Link
US (1) US10077184B2 (zh)
CN (1) CN104370272B (zh)
WO (1) WO2016065887A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065887A1 (zh) * 2014-10-30 2016-05-06 无锡微奥科技有限公司 一种mems自对准高低梳齿及其制造方法
CN105607249A (zh) * 2015-12-21 2016-05-25 西安励德微系统科技有限公司 一种单侧不等高梳齿驱动的微扭转镜
CN111413653A (zh) * 2019-01-07 2020-07-14 中国科学院上海微系统与信息技术研究所 磁场传感器结构及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7035323B2 (ja) * 2017-03-15 2022-03-15 株式会社リコー 可動回折素子及び分光装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073261A1 (en) * 2001-08-28 2003-04-17 Solgaard Olav Self-aligned vertical combdrive actuator and method of fabrication
CN101329446A (zh) * 2007-06-21 2008-12-24 Jds尤尼弗思公司 具有角度垂直梳状驱动器的mems装置
CN101718906A (zh) * 2009-11-12 2010-06-02 中国电子科技集团公司第十三研究所 微反射镜阵列制造方法
CN101907769A (zh) * 2010-07-01 2010-12-08 西北工业大学 一种基于soi晶圆双掩膜刻蚀的垂直梳齿驱动微扭转镜及其制作方法
CN102062604A (zh) * 2009-11-17 2011-05-18 北京大学 一种电容式微机械音叉陀螺仪
CN102963857A (zh) * 2012-10-17 2013-03-13 东南大学 一种电磁驱动调变齿间隙的微机电梳齿机构
CN103086316A (zh) * 2011-10-28 2013-05-08 中国科学院上海微系统与信息技术研究所 Mems垂直梳齿微镜面驱动器的制作方法
CN103091835A (zh) * 2013-02-05 2013-05-08 无锡微奥科技有限公司 一种垂直大位移mems微镜及加工工艺

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992233A (en) * 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope
US5998906A (en) * 1998-01-13 1999-12-07 Seagate Technology, Inc. Electrostatic microactuator and method for use thereof
US6539143B1 (en) * 2000-07-31 2003-03-25 Sarcon Microsystems, Inc. Optical switching system
US7005775B2 (en) * 2001-05-09 2006-02-28 Chang Feng Wan Microfabricated torsional drive utilizing lateral electrostatic force
US6747389B2 (en) * 2001-06-11 2004-06-08 Intel Corporation Apparatus for adjusting the resonance frequency of a microelectromechanical (MEMS) resonator using tensile/compressive strain and applications therefor
US6625004B1 (en) * 2001-08-31 2003-09-23 Superconductor Technologies, Inc. Electrostatic actuators with intrinsic stress gradient
WO2003028059A1 (en) * 2001-09-21 2003-04-03 Hrl Laboratories, Llc Mems switches and methods of making same
US6661069B1 (en) * 2002-10-22 2003-12-09 International Business Machines Corporation Micro-electromechanical varactor with enhanced tuning range
US7019434B2 (en) * 2002-11-08 2006-03-28 Iris Ao, Inc. Deformable mirror method and apparatus including bimorph flexures and integrated drive
US7015885B2 (en) * 2003-03-22 2006-03-21 Active Optical Networks, Inc. MEMS devices monolithically integrated with drive and control circuitry
US6948940B2 (en) * 2003-04-10 2005-09-27 Formfactor, Inc. Helical microelectronic contact and method for fabricating same
US6940630B2 (en) * 2003-05-01 2005-09-06 University Of Florida Research Foundation, Inc. Vertical displacement device
US6996306B2 (en) * 2003-08-25 2006-02-07 Asia Pacific Microsystems, Inc. Electrostatically operated micro-optical devices and method for manufacturing thereof
US7091057B2 (en) * 2003-12-19 2006-08-15 Agency For Science, Technology And Research Method of making a single-crystal-silicon 3D micromirror
US7265019B2 (en) * 2004-06-30 2007-09-04 International Business Machines Corporation Elastomeric CMOS based micro electromechanical varactor
US20070068308A1 (en) * 2005-09-22 2007-03-29 Greywall Dennis S MEMS actuator
JP4834443B2 (ja) * 2006-03-31 2011-12-14 株式会社東芝 圧電駆動型memsアクチュエータ
WO2007124357A2 (en) * 2006-04-19 2007-11-01 The Regents Of The University Of California Integrated mems metrology device using complementary measuring combs
US8138564B2 (en) * 2006-07-20 2012-03-20 Konica Minolta Opto, Inc. Image sensor unit and image sensor apparatus
US7538927B1 (en) 2006-10-13 2009-05-26 Advanced Numicro Systems, Inc. MEMS mirror with short vertical comb teeth and long in-plane comb teeth
WO2009079460A1 (en) * 2007-12-14 2009-06-25 University Of Florida Research Foundation, Inc. Electrothermal microactuator for large vertical displacement without tilt or lateral shift
US8624616B2 (en) * 2008-07-01 2014-01-07 Intel Corporation Suspended IO trace design for SSP cantilever data read / write
CN102273059B (zh) * 2008-11-10 2014-05-28 康奈尔大学 自供电的压电表面声波装置和方法
US7834524B2 (en) * 2009-01-30 2010-11-16 Integrated Device Technology, Inc. Micro-electromechanical devices having variable capacitors therein that compensate for temperature-induced frequency drift in acoustic resonators
JP5721697B2 (ja) * 2009-04-17 2015-05-20 シーウェア システムズSi−Ware Systems 長い移動範囲を有するmemsアクチュエータ
FI124103B (fi) * 2010-02-22 2014-03-14 Murata Electronics Oy Parannettu mikromekaaninen resonaattori
JP5842467B2 (ja) * 2010-11-16 2016-01-13 株式会社リコー アクチュエータ装置、このアクチュエータ装置用の保護カバー、このアクチュエータの製造方法、このアクチュエータ装置を用いた光偏向装置、二次元光走査装置及びこれを用いた画像投影装置
US8525393B1 (en) * 2011-01-12 2013-09-03 The United States Of America As Represented By The Secretary Of The Navy Bimaterial microelectromechanical system (MEMS) solar power generator
CN102564650A (zh) 2011-12-20 2012-07-11 华中科技大学 一种测量相变存储器应力的mems传感器及其制备工艺
JP6195051B2 (ja) * 2013-03-04 2017-09-13 セイコーエプソン株式会社 ジャイロセンサー、電子機器、及び移動体
US20140305478A1 (en) * 2013-04-15 2014-10-16 Mossey Creek Solar, LLC Method for Producting a Thermoelectric Material
US9272426B2 (en) * 2013-06-26 2016-03-01 The Uniteed States of America as represented by the Secretary of the Army Optically-actuated mechanical devices
TW201508890A (zh) * 2013-08-21 2015-03-01 Richtek Technology Corp 微機電系統元件製造方法及以此方法製造之微機電系統元件
CN104007549B (zh) 2014-05-05 2017-02-15 深圳市盛喜路科技有限公司 一种状态可自锁定的大位移mems光开关
CN104370272B (zh) 2014-10-30 2016-07-06 无锡微奥科技有限公司 一种mems自对准高低梳齿及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073261A1 (en) * 2001-08-28 2003-04-17 Solgaard Olav Self-aligned vertical combdrive actuator and method of fabrication
CN101329446A (zh) * 2007-06-21 2008-12-24 Jds尤尼弗思公司 具有角度垂直梳状驱动器的mems装置
CN101718906A (zh) * 2009-11-12 2010-06-02 中国电子科技集团公司第十三研究所 微反射镜阵列制造方法
CN102062604A (zh) * 2009-11-17 2011-05-18 北京大学 一种电容式微机械音叉陀螺仪
CN101907769A (zh) * 2010-07-01 2010-12-08 西北工业大学 一种基于soi晶圆双掩膜刻蚀的垂直梳齿驱动微扭转镜及其制作方法
CN103086316A (zh) * 2011-10-28 2013-05-08 中国科学院上海微系统与信息技术研究所 Mems垂直梳齿微镜面驱动器的制作方法
CN102963857A (zh) * 2012-10-17 2013-03-13 东南大学 一种电磁驱动调变齿间隙的微机电梳齿机构
CN103091835A (zh) * 2013-02-05 2013-05-08 无锡微奥科技有限公司 一种垂直大位移mems微镜及加工工艺

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065887A1 (zh) * 2014-10-30 2016-05-06 无锡微奥科技有限公司 一种mems自对准高低梳齿及其制造方法
US10077184B2 (en) 2014-10-30 2018-09-18 Wuxi Wio Technolgy Co. MEMS automatic alignment high-and-low comb tooth and manufacturing method thereof
CN105607249A (zh) * 2015-12-21 2016-05-25 西安励德微系统科技有限公司 一种单侧不等高梳齿驱动的微扭转镜
CN105607249B (zh) * 2015-12-21 2018-06-26 西安励德微系统科技有限公司 一种单侧不等高梳齿驱动的微扭转镜
CN111413653A (zh) * 2019-01-07 2020-07-14 中国科学院上海微系统与信息技术研究所 磁场传感器结构及其制备方法

Also Published As

Publication number Publication date
WO2016065887A1 (zh) 2016-05-06
US10077184B2 (en) 2018-09-18
CN104370272B (zh) 2016-07-06
US20170233244A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
CN104370272B (zh) 一种mems自对准高低梳齿及其制造方法
JP5512694B2 (ja) 電気機械トランスデューサデバイスおよびその製造方法
US8921974B2 (en) Semiconductor manufacturing and semiconductor device with semiconductor structure
CN102257609B (zh) 具有隔离的微结构的微机电器件及其生产方法
JP5605952B2 (ja) 電気機械トランスデューサデバイスおよびその製造方法
CN109485011B (zh) 基于Si-Si-Si-玻璃晶圆键合技术的MEMS谐振压力传感器及制造工艺
US10483876B2 (en) Electrostatically deflectable micromechanical device
JP6738187B2 (ja) 積層体中に微小電気機械構造を製造する方法及び微小電気機械構造を備える相応の電子素子
JPH06503423A (ja) 力を検出しまたは力を印加するマイクロ素子とその製造法
US20110031959A1 (en) Acceleration sensor
CN103234567B (zh) 基于阳极键合技术的mems电容式超声传感器
JP6108792B2 (ja) 異なる厚さの領域を有する少なくとも1つの活性部を備える構造を製造する方法
CN105043606B (zh) 一种电容式压力传感器及其制备方法
CN102539033A (zh) 微机电系统压力传感器的制作方法
US20220369041A1 (en) Mems device with enhanced membrane structure and method of forming the same
CN101565162B (zh) 利用阶梯形电极实现纳米梁驱动与压阻检测结构及其制作方法与应用
EP1932803B1 (en) MEMS device with Z-axis asymetry
CN102951593B (zh) 一种电热驱动调变齿间隙的微机电梳齿机构
US20130228881A1 (en) High aspect ratio capacitively coupled mems devices
CN114647077B (zh) 一种集成压阻反馈的电热式微镜
CN114132893A (zh) 一种压阻式角度反馈传感器moems微镜制备方法
US20150188029A1 (en) Piezoelectric actuator module, method of manufacturing the same, and mems sensor having the same
Nonomura et al. Chip-level warp control of SOI 3-axis accelerometer with the zigzag-shaped Z-electrode
JP4628018B2 (ja) 容量型力学量センサとその製造方法
US9156685B2 (en) Method for the prevention of suspended silicon structure etching during reactive ion etching

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221221

Address after: B2-305, No. 200, Linghu Avenue, Xinwu District, Wuxi City, Jiangsu Province, 214000

Patentee after: Wuxi Weiwen Semiconductor Technology Co.,Ltd.

Address before: Room 8905, Software Park, No. 16, Changjiang Road, Wuxi New District, Wuxi City, Jiangsu Province, 214028

Patentee before: WUXI WIO TECHNOLOGY Co.,Ltd.