CN1043567C - 高岭土衍生物 - Google Patents

高岭土衍生物 Download PDF

Info

Publication number
CN1043567C
CN1043567C CN94192986A CN94192986A CN1043567C CN 1043567 C CN1043567 C CN 1043567C CN 94192986 A CN94192986 A CN 94192986A CN 94192986 A CN94192986 A CN 94192986A CN 1043567 C CN1043567 C CN 1043567C
Authority
CN
China
Prior art keywords
kaolin
kad
alkali metal
reaction
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN94192986A
Other languages
English (en)
Other versions
CN1128527A (zh
Inventor
约翰·杰拉尔德·汤普森
伊恩·唐纳德·理查德·麦金农
萨沙·孔
内尔·戈比塔斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Queensland UQ
Original Assignee
University of Queensland UQ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Queensland UQ filed Critical University of Queensland UQ
Publication of CN1128527A publication Critical patent/CN1128527A/zh
Application granted granted Critical
Publication of CN1043567C publication Critical patent/CN1043567C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/14Base exchange silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/46Amorphous silicates, e.g. so-called "amorphous zeolites"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

高岭族矿物的无定形衍生物,其特征在于具有高比表面积和/或高的阳离子交换能力,并且其27Al MAS NMR谱中~55ppm处有一个相对于Al(H2O)6 3+的主峰。这种衍生物是通过将高岭族矿物与一种试剂,例如一种碱金属卤化物或一种卤化铵进行反应,从而将高岭族矿物中的大部分六配位铝转化为四配位铝而制备的。这种衍生物对于金属离子Pb2+、Cu2+、Ni2+、Co2+、Cr3+、Sr2+、Zn2+、Nd3+和UO2的阳离子交换表现出高的选择性。

Description

高岭土衍生物
本发明涉及高岭族矿物的衍生物,特别是涉及那些具有高的比表面积和/或高的阳离子交换能力的衍生物。
高岭族矿物包括高岭石、珍珠石、地开石和埃洛石,是自然界里最普通的粘土矿物。它们具有1∶1的层结构,每一层由一个四面体硅酸盐面和一个八面体面组成,其中三分之二的八面体位置由铝占有。高岭石、珍珠石和地开石都具有Al2Si2O5(OH)4的标准化学组成,它们之间的区别仅仅是在1∶1层结构中彼此的堆积方式不同。完全水化形式的埃洛石具有Al2Si2O5(OH)4.2H2O的标准化学组成,它与高岭族中其他三种矿物的区别是在其层间含有分子水。
在高岭族矿物中,高岭石的资源最丰富,其结构、性质和工业应用已引起人们的最大注意。然而由于其与上述多类型的高度相似性,高岭石的许多性能和用途也适用于其他多类型。因此为了方便起见,在下面的描述中主要是限定于高岭石和埃洛石,但是应该考虑到本发明同样能运用于珍珠石和地开石,这对于本领域的普通技术人员是很容易接受的。
自然界生长的高岭土一般其颗粒尺寸和颗粒晶化度范围较宽,元素组成较少,类杂反应的化学反应活性较低。拣选出的0.5-2.0毫米范围颗粒大小的高岭土一般具有大约5m2g-1的比表面积和10meq./100gm或更低的阳离子交换能力。这些性质以及其他性质如不透明性和流变性使得高岭土有广泛的用途,包括用做纸张涂料和填料、陶器、瓷器和卫生用品,以及颜料和橡胶的填料等。但是,这些性质不允许高岭土能方便地用做下述的其它用途。然而,如果其比表面积和/或阳离子交换能力能提高,不仅其可用性将提高,而且还可在其他许多领域中得到应用,包括用做催化剂、金属捕获剂、载体、吸附剂等等。据此,有人考虑并尝试发现一种方法将层状高岭结构进行层剥离或增加其表面积,因为这样会具有在层间产生合适的大反应表面积的潜力。尽管高岭石和其多类型的夹层方面做了许多工作,但从实验数据来看层剥离未获成功。最近由N.Lahav[(1990),Clays and Clay Minerals.38,219-222]的研究指出将高岭石用二甲亚砜和氟化铵的水溶液处理后能得到稳定的层离高岭石的悬浮体。这一结果是根据颗粒大小的变化推测的,没有高岭石反应产物独立存在的证据。
因此本发明的目的是提供一种高岭族矿物的衍生物,它至少部分层离,因而比高岭族矿物本身具有更高的比表面积和/或更高的阳离子交换能力。
本发明的一个方面是提供一种制备高岭土无定形衍生物的方法,该方法包括将一种高岭族矿物与一种试剂反应,该试剂能将高岭族矿物中的大部分八面体配位的铝转化成四面体配位的铝。
优选的试剂是含水的碱金属卤化物,其中碱金属卤化物(MX)与高岭族矿物(Al2Si2O5(OH)4)的合适的摩尔比是从5到碱金属卤化物的饱和浓度。这种方法不需限定于均匀、单相的高岭土,那些含有杂质相如锐钛矿、钛铁矿、geothite、石英或方晶石的高岭土在按相同方式处理后也可得到主要由高岭土无定形衍生物组成的材料。
高岭土可以从上述标准的化学计量式明显地衍变,例如可含有2%(重量)以下的氧化铁。上述形成高岭土无定形衍生物的方法也可用于那些在其结构中或单个晶体的表面上含有显著量的阳离子如Fe2+或Fe3+的高岭土。
碱金属卤化物与高岭土的优选的摩尔比为15~25。
本发明的另一方面涉及高岭土无定形衍生物本身。
反应适于在较高的温度下进行足够长的时间以便能转化为高岭土无定形衍生物。标准压力条件便可满足该转化反应。然而,通过采用反应温度,压力,时间的合适的结合并选择合适的反应剂,可以使主要带有八配位铝的化合物发生转化变为主要带有四面体配位铝的无定形衍生物。例如,在高达300℃的温度下通过与一种碱金属卤化物反应多至100小时可以从高岭土形成高岭土无定形衍生物这一点是在本发明的权利要求的宽范围之内。另一方面,高岭土和碱金属卤化物在较高的压力(高达1kbar)反应较短的时间。
高岭土的反应优选的是将其在碱金属卤化物的水溶液中完全悬浮分散并在大气压力下将此分散体加热至70~150℃维持1分钟至100小时直至反应完全转化。然后通过用水漂洗将过量的碱金属卤化物从反应混合物中除去直至在洗提液中检测不到卤化物为止。所得的固体中含有一种KAD和相对难溶的卤化副产物的混合物。通过用碱金属氢氧化物漂洗该固体混合物可以除去卤化副产物,从而获得较纯的高岭土无定形衍生物。
该反应条件仅仅是使个别高岭土层发生部分改性而不是使它们完全分解或溶解,在进行化学改性后使某些“层”的内表面向外暴露,结果使得与未反应的高岭土相比其比表面积大大增加。
用上述方法制备的干燥的高岭土无定形衍生物是一种白色粉末,其比表面积在45m2/g和400m2/g之间,是起始材料的许多倍。由扫描电镜中的能量扩散X射线谱,湿化学分析和电子显微镜结合而测得当碱金属卤化物是KF时,这种高岭土无定形衍生物的典型化学组成为:
K1.1Al1.33Si2O5.5(OH)2.0F0.1·1.9H2O
高岭土无定形衍生物的组成取决于起始材料的组成,反应是否已进行完全(即残留有多少高岭土起始材料),以及反应副产物通过用水和碱金属氢氧化物漂洗而被除去的程度。如果我们假定不存在上述的矿物性杂质,并且反应产物已经过彻底漂洗,则高岭土无定形衍生物的组成一般将落入下面的范围内:
MpAlqSi2Or(OH)sXt·uH2O其中M是一种碱金属的阳离子,X是一种卤素,0.5≤p≤2.0,1.0≤q≤2.2,4.5≤r≤8.0,1.0≤s≤3.0,0.0≤l≤1.0,0.0≤u≤3.0。
存在的可交换的阳离子决定了上述组合物的阳离子交换能力,用从水溶液中对铵离子或金属阳离子的交换测得其阳离子交换能力是每100g为50-450meq,更优选是每100g为300meq。
上述的高岭土无定形衍生物的结构和形态通过NMR(核磁共振)XRD(X射线衍射),SEM(扫描电子显微镜)和TEM(透射电子显微镜)进行了分析。
固体NMR能够提供磁性核的局部化学环境的信息。具体来说,27Al NMR对于配位环境是灵敏的,即它可以判断出该原子是4,5或者6配位,同样地,对于骨架硅酸铝来说,29Si NMR也可以提供有关相邻四配位位置的数目和占有情况的信息,即它可以解析Si(nAl),n=0~4。
高岭土无定形衍生物的27Al MAS NMR谱给出中心为-55ppm(FWHM-16ppm)的一个主峰(见图1b),它被解释为四面体配位Al。这与高岭石的27Al MAS NMR谱不同,它只在-0ppm(FWHM-20ppm)处出现一个对应于八面体配位Al的共振峰。
高岭土无定形衍生物的29Si MAS NMR谱由中心为-86ppm的一个宽信号(FWHM-13ppm)组成(见图2b)。而高岭石在中心为-91.5ppm(FWHM-1.4ppm)处观察到一个非常窄的信号。这个宽峰可以解释为层结构破坏的结果,当不考虑这个峰的宽化时,其平均化学环境与高岭石起始材料基本相同。
高岭土无定形衍生物通常表现为X射线衍射(XRD)无定形,这就是说它没有显示任何基本的长程有序结构。KAD的XRD轮廓图基本上是由14°到40°2θ之间(CuKα发射源)的一个宽峰所组成。除了属于来自高岭土原料的杂质相如锐钛或石英以外没有观察到窄的衍射峰。如果KAD没有用水和碱金属氢氧化物水溶液彻底漂洗,则少量的反应副产物不能完全避免。如果所用碱金属卤化物是RbX或CsX,则在XRD图中在归因于KAD的宽峰包的中心出现一个宽的衍射峰。
高放大倍数的扫描电子显微镜和透射电子显微镜分析都表明KAD是由近似直径小于50nm的非常小的下反角颗粒的聚集所组成。图3a和图3b分别显示了反应前的高岭石颗粒和反应后的KAD产物的典型TEM照片,可以注意到高岭石的大的微米级六角形片结构(图3a)发生了明显的变化,成为聚结成大团(尺寸为~1μm)的纳米级(~40nm)的下反角颗粒。图4a和图4b分别显示了典型的筒形埃洛石颗粒和由此材料反应成的KAD产物的TEM照片。
如上所述,高岭土无定形衍生物的一种形式具有下列化学组成:
MpAlqSi2Or(OH)sXt·uH2O其中M为一种可交换的碱金属阳离子,X为卤素,0.5≤p≤2.0,1.0≤q≤2.2,4.5≤r≤8.0,1.0≤s≤3.0,0.0≤t≤1.0,0.0≤u≤3.0。在此以及以后的描述中,“KAD”缩写是指具有上述化学组成的高岭土无定形衍生物。在一种具体的形式中,高岭土无定形衍生物含有元素钾,即M=K。
在上述KAD中,碱金属阳离子可以至少部分地被任何在水溶液中稳定的阳离子所交换。这些交换阳离子包括其它碱金属阳离子,碱土阳离子,过渡金属阳离子,镧系和锕系阳离子,重金属阳离子以及铵。当所有阳离子不能交换完全时,有许多过渡金属阳离子(如Mn2+,Cr3+,Co2+,Ni2+,Cu2+,Zn2+,Ag+),镧系阳离子(如La3+,Nd3+)和重金属阳离子(如Pb2+,Cd2+,Hg2+)可以交换完全。对于某些阳离子在室温下3小时后可以交换完全(如Pb2+,Cu2+),而其它一些离子则需要更长的时间和高达110℃的温度(如Zn2+)。
这种阳离子交换基本上保持了上述未交换高岭土无定形衍生物的XRD无定形特性。然而交换后的材料的比表面积根据交换的阳离子的不同而有所增加或者降低,但仍然是高岭土原料的许多倍。这样的一些例子列于表1中。
表1.一些金属交换KAD的表面积对比
      样品 BET表面积m2g-1
    Ni-KAD     49
    Ag-KAD     129
    K-KAD     150
    Co-KAD     200
    Cu-KAD     230
    Zn-KAD     283
这种阳离子交换的速率可以由本领域的普通技术人员利用化学技术进行改变。例如,如图5所示,50℃时用K+交换Pb2+的速率要比室温下交换的速率提高。另外,当将交换后的KAD(如Cu-KAD)进行适当处理以后,这种交换反应可以反向进行。这种对Cu交换KAD进行处理的一个例子是使用氨水溶液生成一种可溶的氨络合物。在这种交换中,由NH4+取代Cu2+离子。这种性质在用KAD将过渡金属或其它阳离子从溶液或浆液中除去而回收是特别有用的。
比表面积的实质性提高使得高岭土无定形衍生物可以作为传统催化剂,例如那些用于碳氢化合物的重排和转化的催化剂的有用的替代物,同时使其在这一领域有新的用途。
另一种用途是在氧化还原催化反应中在高岭土无定形衍生物上负载镧系和/或过渡金属。这种例子是甲醇脱氢而生成甲酸甲酯。
对于受过训练的读者还可以发现许多其它的用途。
下面是关于从自然生长的高岭土合成KAD以及离子交换和催化反应的具体实施例。
实施例1从高岭石制备KAD
将1.0克从澳大利亚昆士兰的Weipa得到的高岭石和4.5g氟化钾与2.0ml水充分混合。将此混合物在烘箱中于100℃加热2.5小时。然后将反应产物分散在100ml蒸馏水中,并且离心直至固体成分完全沉降。将含有过量盐和少量微溶氟化物副产物的洗提液倾倒掉。重复进行这种漂洗过程直至在洗提液中加入硝酸银溶液时检测不到氟为止,一般需3~4次漂洗。将遗留的固体在110℃空气气氛下烘干,该固体含有KAD和相对难溶的由XRD显示(见图6b)的氟化物副产物的混合物。该混合物的结合重量为1.19克。
通过将固体混合物在室温下在40ml 0.02M的氢氧化钾溶液(pH=13)中分散30分钟而将氟化物副产物除去。然后将该分散体进行离心分离直至固体成分完全沉降。将含有溶解的氟化物副产物的碱性洗提液倾倒掉。将遗留的固体用冷水进行漂洗直至洗提液的pH降至8时为止。所得固体在110℃下干燥,得到0.95克终产物,它含有KAD并伴有少量由XRD证明(见图6c)的杂质矿物锐钛矿。图6a为在反应变为KAD之前的高岭石的XRD图。
这种KAD在经过110℃预处理4小时后测得其BET表面积为100(1)m2g-1。由高岭石制备的KAD粉末以及加热至650℃ C后的同一KAD粉末制备成合适的圆膜后,用电子显微探针分析得到了其体相组成,其结果列于表2中。在该表中,括弧中的数值是按照常规的统计方法计算出的氧化物重量百分数相对于上一个显著的数值而估算出的标准偏差。
      表2.从Weipa高岭石制得的KAD的组成
          (所有数值为重量百分数)
    氧化物(重量百分数) KAD     KAD(加热至650℃以后)
显微探针分析K2OAl2O3SiO2Fe2O3TiO2合计 19.27(60)25.25(51)44.80(80)1.49(11)140(3)92.19(56) 19.22(24)26.26(41)46.89(75)1.63(22)1.26(59)95.26(57)
制得的KAD在加热时的重量损失110℃(20小时)650℃(64小时)合计损失 11.56.017.5
    氟含量(用离子选择电极测定) 0.43 0.37
实施例2从埃洛石制备KAD
将从新西兰Northland的MatauraBay获得的10.0克埃洛石和42.0克氟化钾与20.0毫升水充分混合。将该混合物在烘箱中于95℃下加热1.0小时。将反应产物分散在1升蒸馏水中并让固体沉降2小时。将含有过量盐和少量微溶的氟化物副产物的洗提液倾倒掉。重复进行这种漂洗过程直到向洗提液中加入硝酸银溶液时检测不到氟为止,典型的是进行5次漂洗。最后一次漂洗后的浆液进行离心分离直到固体完全沉降。将遗留的固体于110℃空气气氛中干燥,XRD显示(见图7b)该固体含有KAD和相对难溶的氟化物副产物的混合物,其结合重量为13.9克。通过将该固体混合物于室温下在400ml 0.02M的氢氧化钾溶液(pH=13)中分散30分钟而将氟化物副产物除去。然后将该分散体进行离心分离直至固体成分完全沉降。将含有溶解的氟化物副产物的碱性洗提液倾倒掉。遗留的固体用冷水漂洗直到洗提液的PH降至8。将固体于110℃干燥后得到9.7克终产物,它包含KAD及由XRD证明的(见图7c)少量杂质矿物石英砂和方晶石。图7a为埃洛石在反应转化为无定形衍生物之前的XRD图。
这种KAD在经过110℃预处理4小时后的BET表面积为167(1)m2g1
由埃洛石制备的KAD粉末以及加热至650℃后的同一KAD粉末制备成合适的圆膜后,用电子显微探针分析得到了其体相组成,其结果列于表3中。在该表中,括弧中的数值是按照常规统计方法计算出的氧化物重量百分数相对于上一个显著的数值而估算出的标准偏差。
   表3.从Mataura Bay筒形埃洛石制得的KAD的组成
          (所有数值都为重量百分数)
    氧化物(重量百分数) KAD     KAD(加热至650℃以后)
显微探针分析K2OAl2O3SiO2Fe2O3TiO2合计 19.20(103)23.37(152)48.82(401)0.27(6)0.06(3)91.72(238) 18.80(91)24.88(86)52.50(198)0.28(3)0.06(2)96.48(65)
制得的KAD在加热时的重量损失110℃(20小时)650℃(64小时)合计损失 11.05.816.8
    氟含量(用离子选择性电极测量) 0.4 0.41
在含水分散体中,其中金属离子是碱金属或铵阳离子的KAD对于某些其它阳离子具有特殊的亲合力。这些阳离子包括碱土离子Mg2+,Ca2+和Sr2+,过渡金属离子Cr3+,Mn2+,Co2+,Fe2+,Ni2+,Cu2+,Zn2+,Ag+,Cd2+和Hg2+以及Pb2+,镧系的Nd3+,以及锕系的UO2 2+。由于三价的镧系元素的化学性能相似,因此可以假定Nd3+所具有的性能也可推广到所有的三价的镧系元素,包括Y3+
KAD对这些阳离子的亲合性可以通过测定从含有低浓度(10~100ppm)的该阳离子和相对高浓度的Na+(0.1M)的溶液中KAD对这种阳离子的吸收百分数而得到证明。这些实验及其结果的详情在实施例10中给出。
KAD对于这些阳离子的选择性水平与温度相对无关,但是交换速率随温度提高而显著增加。这种交换速率的增加将在后面的实施例中描述。实施例3 Cu2+交换的动力学
将0.25克KAD分散在含有100ppm Cu2+的100ml 0.1M的NaNO3溶液中。在整个实验过程中一直搅拌KAD,而且以时间为函数取出部分溶液。取出的溶液立即离心分离去掉悬浮的KAD并对溶液进行遗留Cu2+的分析。室温(20℃)及50℃下Cu2+的除去百分数与时间的关系列于下面的表4中。
        表4 从标准溶液中除去Cu2+的百分数
 时间(分钟)       室温20℃   较高温度50℃
    1        -     39.5
    2        -     53.9
    5       36.7     72.0
    10       65.7      -
    15       76.4     95.9
    30       88.6     98.3
    60       92.6      -
    90        -     98.7
   120       96.6      -
   240       98.1     99.1
  1440       98.8      -
实施例4 Pb2+交换的动力学
将0.25克KAD在含有100ppm Pb2+的100ml 0.1M的NaNO3水溶液中完全分散。该分散体在室温下搅拌3小时然后离心分离。所得洗提液的原子吸收光谱(AAS)分析表明用KAD处理后的溶液仅仅含有1ppm的Pb2+,这说明在富Na+溶液中Pb2+浓度降低了99%。这一交换反应在三个不同溶液温度下所得到的数据描述于图5中。
KAD对于这些不同的阳离子的选择性水平在跨越很宽范围的pH条件下基本保持不变。特别重要的是KAD的选择性在低pH时的稳定和保持,而在这种酸性条件下上述的大多数阳离子是可溶性的。这一性质对于用KAD从工业或矿山废水中分离或回收这些阳离子是特别有价值的。KAD在碱性条件(pH高达13)下也是稳定的,由于此时上述的大多数阳离子的溶解度可以忽略不计,因此没有试验KAD的选择性。实施例5 Pb2+交换时pH的影向。
分别将0.25g其中M为钾的KAD分散在含100ppm Pb2+的100ml 0.1MNaNO3溶液和含100ppm Pb2+的100m10.1MCa(NO3)2溶液中。用稀HNO3溶液或稀NaOH溶液将溶液的pH调到合适的值。将溶液在室温(20℃)下搅拌24小时,然后离心分离除去KAD并分析溶液中遗留的Pb2+,从而得到在特定pH下从溶液中被除去的Pb2+的量,其结果列于下面的表5中。
表5 在不同pH下从溶液中除去的Pb2+的百分数
pH 含100ppmPb2+的0.1M Ca(NO3)2 含100ppmPb2+的0.1M NaNO3
    2.5     86.1     97.2
    4.0     98.6     98.3
    6.0     97.6     97.9
    8.0     83.3     96.9
实施例6 用KAD作为软水剂或洗涤剂的助洗剂螯合水溶液中的Ca2+和Mg2+优于螯合Na2+
分别将80毫克的KAD粉末分散在25ml四种不同溶液中并搅拌2小时。然后将KAD从上清液中除去,分析上清液中Ca2+和Mg2+的浓度。这四种不同的水溶液含有:(1)蒸馏水中含10ppm的Ca2+和Mg2+,18℃(对照样品);(2)0.1MNaCl溶液中含10ppm的Ca2+和Mg2+,18℃;(3)0.1MNaCl溶液中含10ppm的Ca2+和Mg2+,50℃;(4)0.1MNaCl溶液中含有100ppm的Ca2+和Mg2+,18℃。实验数据列于表6中。
     表6.Ca2+和Mg2+选择性的比较
 10ppmCa+Mg蒸馏水18℃  10ppmCa+Mg0.1M NaCl18℃  10ppmCa+Mg0.1M NaCl18℃   100ppmCa+Mg0.1M NaCl18℃
%Mg2+遗留     17     11     5     90
%Ca2+遗留     0     36     23     79
如表6所示,KAD具有从溶液中螯合Ca2+和Mg2+的能力,适于用做洗涤剂助洗剂或软水剂。
在某些用KAD作为螯合剂从溶液中选择性除去阳离子的用途中,可能必须利用那些不是作为分散粉末形式的KAD。刚制备的KAD具有非常细的颗粒或聚结粒度而很容易分散。在某些应用中,这一性质可能会妨碍其交换性能的开发利用,因为交换后的KAD从处理的水溶液中的物理分离可能困难或昂贵。
在需要各种形状的机械稳定的整体时,可将KAD与有机聚合物或与胶体SiO2结合而使KAD粘结在一起,从而显著增加其总的聚结粒度,解决交换的KAD与处理溶液的物理分离问题。该粘性材料随后可以形成一种硬性球粒或其他聚结体,或者可以粘结在基材如木纤维上而形成阳离子选择性过滤纸。下面将描述用一种有机聚合物或胶体SiO2形成粒子的方法的实施例:实施例7 用聚碳酸酯树脂粘结KAD的方法
将0.012g聚碳酸酯树脂溶解在20ml甲苯中。取2.5ml这种溶液加入到0.2g KAD中,等于加入0.075%(重量)的聚合物。将所得浆体用马达或研杆充分均质,然后在40℃干燥30分钟。用压粒机并用约500kg/cm2的同轴压力从这种材料得到粒子。实施例8 用胶体SiO2粘结KAD的方法
将0.0304g Ludox AM(du Pont)溶解在0.6ml水中。取0.3ml这种混合物加入到0.25g KAD中,等于加入的2%(重量)的胶体SiO2。然后加入另外0.9ml水,所得浆体用马达或研杆充分均质,然后在85℃干燥18分钟。用压粒机并用大约500kg cm-2的同轴压力从这种材料得到粒子。最后将该粒子在85℃下加热1.25小时。
无论是用有机聚合物还是用胶体SiO2而粘结成的KAD整粒或圆片都保持了其对上述阳离子的离子交换性能。KAD的这一性能将在下面的实施例中描述。实施例9 粘结成粒子的KAD对Cu2+的选择性
下面的实验既用使用聚碳酸酯树脂作为粘结剂制备的KAD粒子也用使用胶体SiO2作为粘结剂制备的KAD粒子来进行。
将2×0.015g KAD粒子放在5ml 0.1M的含有100ppm Cu2+的NaNO3溶液中。该溶液在室温(20℃)下搅拌。24小时后取出一个子粒并取2.5ml溶液分析其中遗留的Cu2+。剩下的溶液在室温下继续搅拌2天然后取出第二个粒子并再次分析残留溶液中的Cu2+。这些数据能够确定用这些粘结的KAD粒子从溶液中除去的Cu2+的量,测定结果列于表7中。
         表7用由不同粘结剂制得的KAD粒子从
            溶液中除去的Cu2+的百分数
时间(天)   胶体SiO2 聚碳酸酯树脂
    1     70     37
    3     94     94
实施例10KAD对各种阳离子的选择性的比较
用实施例1中制得的KAD样品(从高岭石制备)和实施例2中制得的KAD样品(从埃洛石制备)进行了一组交换实验。在每种情况中,与其他阳离子的交换实验都是在0.1M NaNO3溶液中于室温下进行16小时。具体来说是将90mg KAD分散在30ml溶液中。交换实验的结果,即测得的从溶液中除去的阳离子的百分数列于表8中。在该表中除另有说明外,交换溶液的pH接近中性。除了Nd3+和UO2 2+交换前后的浓度是用紫外/可见光谱测定以外,交换前后的阳离子的浓度是用原子吸收光谱测定的。
表8.实施例1和2中所述的KAD对各种阳离子的选择性
阳离子 起始浓度(ppm)     阳离子除去百分数
    KAD(实施例1)     KAD(实施例2)
    Ni2+      10      99      97
    Co2+      10      99      95
    Ag+      10      98      94
    Zn2+      10      99      99
 Hg2+PH2.5     100      77      76
 Cd2+PH1.5Cd2+PH5.5      1010      598      698
 Pb2+PH1.0Pb2+PH3.5      2020      32100      35100
    Fe2+      10     100     100
    Cr3+      20     100     100
    Mn2+      10      99      99
    Al3+     100      99      97
    Sr2+      40     100     100
    Ca2+      20      99     100
    Mg2+      10      90      90
    Cu2+     100     100     100
    Nd3+     100    >80
    UO2 2+     6000    >80
实施例11在较高压力和较高温度下KAD的制备
将1.0g从澳大利亚昆士兰的Weipa得到的高岭石和4.0g氟化钾与3ml水充分混合。将该混合物转移到用聚四氟乙烯密封的压力容器中并放入150℃的烘箱中。该压力容器在5分钟内达到80℃并在其后的20分钟后达到150℃。将该容器在此温度下放置5分钟,然后移出烘箱并冷却至80℃以下。然后将反应产物分散在100ml蒸馏水中并进行离心分离直至固体成分完全沉降。将含有过量盐和少量微溶氟化物副产物的洗提液倾倒干净。重复这一漂洗过程直到在洗提液中加入硝酸银溶液进检测不到氟为止;一般进行3到4次漂洗。将留下的固体于110℃空气气氛下干燥,得到1.25g含有KAD、起始高岭石原料以及相对难溶的氟化物副产物的混合物。该固体反应产物的XRD图见图8。实施例12用NaF作为反应剂制备KAD
将0.25g从澳大利亚昆士兰的Weipa得到的高岭石和1.25g氟化钠与5ml水充分混合。将该混合物转移到用聚四氟乙烯密封的压力容器中并在200℃的烘箱中放置20小时。然后将反应产物分散在100ml温的(36~40℃)蒸馏水中,并进行离心分离直到固体成分完全沉降。将含有过量盐和少量微溶的氟化物副产物的洗提液倾倒掉。将该漂洗过程重复6到8次直到在洗提液中检测不到氟为止。将遗留的固体于110℃空气气氛下干燥,得到0.39g含有Na-KAD、起始高岭石、和难溶氟化物副产物的混合物。该固体反应产物的XRD图见图9。实施例13 用RbF或CsF作为反应剂制备KAD
将0.5g从澳大利亚昆士兰的Weipa得到的高岭石和5.0g氟化铷或者7.0g氟化铯与1ml水充分混合。将混合物在110℃的烘箱中加热3.5小时。然后将反应产物分散在40ml蒸馏水中,并进行离心分离直到固体成分完全沉降。将含有过量盐和少量氟化物副产物的洗提液倾倒掉。将该漂洗过程重复3~4次直到在洗提液中检测不到氟为止。将遗留的固体在110℃空气气氛下干燥,该固体为其中M为Rb或Cs的KAD、起始高岭石原料和相对难溶的氟化物副产物的混合物,在M=Rb时其结合重量为0.86g,在M=Cs时其结合重量为0.85g。用这两种反应所得产物的XRD图见图10。对于用RbF制得的KAD,在靠近宽峰中心的d值为3.16处观察到一个宽的单峰(见图10a)。而对于用CsF制得的KAD,观察到相似的衍射图,只是宽峰较弱,而且出现的峰发生少量位移,其d值为3.25(见图10b)。
被容易达到更低价态的过渡金属或镧系元素(如Cu-Cu-Cuo,Ni-Nio,Co-Coo)所交换的KAD当在氢气流中于400~500℃加热时可被还原。当用XRD可观察到有少量未混合的金属时,有大部分还原金属遗留并与KAD结合。在此条件下还原后KAD的比表面积只有少许降低。KAD的这一后来的加工对于各种有机化合物的金属催化的氧化还原反应提供了一个理想的环境。下面将描述这一应用的具体实例。实施例14用Cu-KAD作为催化剂的甲醇脱氢生成甲酸甲酯的反应
在H2气流中于400℃将Cu-KAD还原过夜而活化。用N2气流将甲醇蒸气在200~220℃时通过该催化剂。用液N2冷阱收集反应产物和未反应的甲醇并立即用1H NMR谱进行分析。根据NMR分析而得到的总物料相的摩尔组成为甲醇∶甲酸甲酯∶二甲醚=74∶19∶7。实施例15用Cu-KAD作为催化剂的乙醇脱氢转化为乙醛的反应
在H2气流中于400℃将Cu-KAD还原过液而活化。用N2气流将乙醇蒸气在300℃时通过该催化剂。用液N2冷阱收集反应产物和未反应的乙醇并立即用1H NMR谱进行分析。根据NMR分析而得到的总物料相的摩尔组成为乙醇∶乙醛=56∶44。
虽然上面给出了本发明的描述性实例,但本领域的普通技术人员可以进行许多改进和变化而不脱离本文所陈述的本发明的宽范围和境界。
附图说明:
图1为根据实施例1从Weipa高岭石制备的KA的27Al磁角自旋NMR谱,其中(a)表示用水漂洗以后,(b)表示用KOH漂洗以后。自旋侧带用*表示。
图2为根据实施例1从Weipa高岭石制备的KAD的29Si磁角自旋NMR谱,其中(a)表示用水漂洗以后,(b)表示用KOH漂洗以后。自旋侧带用*表示。
图3为透射电子显微镜照片,其中(a)为反应前的Weipa高岭石粒料,(b)为根据实施例1进行反应以后的KAD粒料。两种照片的放大倍数都是250000倍。在反应形成KAD后粒料的形态和粒度发生了显著的变化。
图4为透射电子显微镜照片,其中(a)为反应前的Matuara Bay筒形埃洛石粒料,(b)为根据实施例2进行反应后的KAD粒料。两张照片的放大倍数都是25000倍。在反应形成KAD后粒料的形态和粒度发生了显著的变化。
图5为按照实施例4所述的方法在三种不同的溶液温度下用KAD进行Pb2+交换的速率曲线。该曲线示出了溶液中遗留的Pb2+的百分数与时间的关系。
图6为X射线粉末衍射图,其中(a)表示Weipa高岭石,(b)表示按照实施例1 从Weipa高岭石制备的KAD用水漂洗后的样品,(c)表示KAD用KOH漂洗后的样品。由原料中的杂质而引起的锐钛矿的衍射峰用+表示,难溶氟化物副产物用*表示。
图7为X射线粉末衍射图,其中的(a)表示Mataura Bay埃洛石,(b)表示按照实施例2从Mataura Bay埃洛石制得的KAD用水漂洗的样品,(c)表示KAD用KOH漂洗后的样品。由原料中的杂质而引起的锐钛矿的衍射峰用+表示,难溶的氟化物副产物用*表示。
图8为按照实施例11的方法在较高的压力和150℃下用KF为反应剂从Weipa高岭石制得的KAD经水漂洗后但在用KOH漂洗之前的样品的X射线粉末衍射图(Cukα)。未反应的高岭石的衍射峰用+表示,难溶氟化物副产物用*表示。
图9为按照实施12的方法用NaF为反应剂从Weipa高岭石制得的KAD经水漂洗后但在用KOH漂洗之前的样品的X射线粉末衍射图(CuKα),未反应的高岭石的衍射峰用+表示,难溶氟化物副产物用*表示。
图10为从Weipa高岭石用(a)RbF和(b)CsF为反应试剂按照实施例13制备的KAD在用水漂洗后但在用KOH漂洗之前的样品的X射线粉末衍射图,未反应的高岭石的衍射峰用+表示,难溶氟化物副产物用*表示。

Claims (17)

1.一种可用作阳离子交换材料的高表面积高岭土无定形衍生物,其化学组成为MpAlqSi2Or(OH)sXt·uH2O,其中M为一种可交换的碱金属阳离子或铵离子,X为卤素,0.5≤p≤2.0,1.0≤q≤2.2,4.5≤r≤8.0,1.0≤s≤3.0,0.0≤t≤1.0,0.0≤u≤3.0,所述的高岭土无定形衍生物具有下述性能:
(a)一个无定形X射线衍射信号,该信号是用X射线粉末衍射得到的CuKα发射源14°到40°2θ之间的一个宽峰;
(b)一个主要为四面体配位的Al,其特征在于其27Al磁角自旋(MAS)核磁共振(NMR)谱中有一个中心约为55ppm的相对于Al(H2O)6 3+的主峰;
(c)具有由BET等温线测得的在45m2g-1-400m2g-1之间的比高岭土高的高表面积;
(d)其阳离子交换能力用从水溶液中交换铵离子或金属阳离子测得是每100克为50-450毫当量;以及
(e)其29Si MAS NMR谱具有一中心约为-86ppm的宽信号(FWHM约13ppm)。
2、按照权利要求1的高岭土无定形衍生物,其中的BET表面积在100m2g-1和200m2g-1之间。
3、按照权利要求1的高岭土无定形衍生物,其中M为NH4 +、Na+、K+、Li+、Rb+或Sr2+,并且至少部分被下列一种离子交换:
·碱土金属-Mg2+、Ca2+、Sr2+和Ba2+
·过渡金属-Cr2+、Mn2+、Co2+、Ni2+、Cu2+、Zn2+、Ag+、Cd2+和重金属Hg2+、Pb2+
·镧系金属La3+和Nd3+以及锕系金属UO2 2+
4、按照权利要求3的高岭土无定形衍生物,其中Na+、K+、Li+、Rb+或Cs+至少部分被Pb2+、Cu2+、Cd2+、Ni2+、Co2+、Cr3+、Sr2+、Zn2+、Nd3+或Uo2 2+交换。
5、按照权利要求4的高岭土无定形衍生物,其中Cu2+至少部分被NH4 +交换。
6、按照权利要求1的高岭土无定形衍生物,其阳离子交换能力是每100克为约300毫当量。
7、按照权利要求1的高岭土无定形衍生物,其由直径约50nm的下反角颗粒的聚集体组成。
8、按照权利要求1的高岭土无定形衍生物,其与有机聚合物或胶体二氧化硅结合,所述的结合使该衍生物形成整体形状。
9、一种制备权利要求1所述的阳离子交换材料的方法,该方法包括将高岭族矿物与一种选自碱金属卤化物和卤化铵的反应试剂进行反应,其中将所述的高岭族矿物与过量的所述反应试剂在溶液中混合并加热到300℃,由此将高岭族矿物中的大部分八面体配位铝转化为四面体配位铝。
10、按照权利要求9的方法,其中的反应试剂为一种碱金属卤化物。
11、按照权利要求10的方法,其中的碱金属卤化物是氟化钾。
12、按照权利要求9的方法,其包括将高岭族矿物与含水的碱金属卤化物反应,其中碱金属卤化物与高岭族矿物的摩尔比为从5到碱金属卤化物的饱和浓度。
13、按照权利要求12的方法,其中碱金属卤化物与高岭族矿物的摩尔比的范围为15-25。
14、按照权利要求9的方法,其中的高岭族矿物为高岭石,其与碱金属卤化物反应至多为100小时。
15、按照权利要求14的方法,其中反应温度为70-150℃,反应时间为1分钟到100小时。
16、权利要求1的阳离子交换材料的应用,其中M为NH4 +、Na+、K+、Li+、Rb+或Sr2+,并且至少部分被下列一种离子交换:
·碱土金属-Mg2+、Ca2+、Sr2+和Ba2+
·过渡金属-Cr2+、Mn2+、Co2+、Ni2+、Cu2+、Zn2+、Ag+、Cd2+和重金属Hg2+、Pb2+
·镧系金属La3+和Nd3+以及锕系金属UO2 2+
17.权利要求1的阳离子交换材料作为催化剂的应用。
CN94192986A 1993-06-17 1994-06-16 高岭土衍生物 Expired - Fee Related CN1043567C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPL9431 1993-06-17
AUPL943193 1993-06-17

Publications (2)

Publication Number Publication Date
CN1128527A CN1128527A (zh) 1996-08-07
CN1043567C true CN1043567C (zh) 1999-06-09

Family

ID=3776978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94192986A Expired - Fee Related CN1043567C (zh) 1993-06-17 1994-06-16 高岭土衍生物

Country Status (14)

Country Link
US (1) US5858081A (zh)
EP (1) EP0703872B1 (zh)
JP (1) JPH08511504A (zh)
KR (1) KR100311654B1 (zh)
CN (1) CN1043567C (zh)
BR (1) BR9407556A (zh)
CA (1) CA2165321C (zh)
DE (1) DE69425742T2 (zh)
ES (1) ES2152316T3 (zh)
MY (1) MY111969A (zh)
NZ (1) NZ267372A (zh)
RU (1) RU2136593C1 (zh)
WO (1) WO1995000441A1 (zh)
ZA (1) ZA944114B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012674A1 (en) * 1994-10-25 1996-05-02 The Australian National University Aluminosilicate cation exchange compounds
AU685326B2 (en) * 1994-12-16 1998-01-15 University Of Queensland, The Process for forming alumino-silicate derivatives
AUPN012194A0 (en) * 1994-12-16 1995-01-19 University Of Queensland, The Alumino-silicate derivatives
AU686895B2 (en) * 1994-12-16 1998-02-12 University Of Queensland, The Alumino-silicate derivatives
AUPN614295A0 (en) * 1995-10-23 1995-11-16 University Of Queensland, The Modified kaolinites
AUPO787797A0 (en) * 1997-07-15 1997-08-07 University Of Queensland, The Catalytic conversion of gases via cation-exchangeable alumino-silicate materials
GB9810271D0 (en) * 1998-05-14 1998-07-15 British Nuclear Fuels Plc Ion exchange materials
ES2406370T3 (es) * 2002-10-24 2013-06-06 Spectra-Kote Corporation Composiciones de revestimiento que comprenden dímeros de alquil ceteno y anhídridos alquil succínicos para su uso en la fabricación de papel
AU2003901594A0 (en) * 2003-04-04 2003-05-01 Nanochem Research Pty Ltd Aluminosilicates of zeolite n structure
US20060102871A1 (en) * 2003-04-08 2006-05-18 Xingwu Wang Novel composition
CN100348570C (zh) * 2004-10-26 2007-11-14 中国科学院长春应用化学研究所 一种催化氧化甲醇制备甲酸甲酯的方法
CN105013539B (zh) * 2014-10-10 2017-04-19 徐震霖 一种制备甲酸甲酯的固相催化剂及其制备方法和应用
CN110078489B (zh) * 2019-05-13 2021-11-16 海宁联丰磁业股份有限公司 一种低损耗软磁铁氧体材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1181491A (en) * 1967-09-20 1970-02-18 Burgess Pigment Company Clay-Derived Pigments and process
US3586523A (en) * 1968-01-15 1971-06-22 Engelhard Min & Chem Calcined kaolin clay pigment
US3663456A (en) * 1969-11-17 1972-05-16 Air Prod & Chem Zeolite a synthesis
US4034058A (en) * 1976-06-29 1977-07-05 Engelhard Minerals & Chemicals Corporation Method for producing synthetic sodium aluminosilicate ion-exchange material from calcined kaolin clay
CN1062331A (zh) * 1990-12-13 1992-07-01 中国石油化工总公司石油化工科学研究院 改善了酸性的交联粘土的制备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA917630A (en) * 1972-12-26 K. Maher Philip Catalyst composition
US3887454A (en) * 1972-12-01 1975-06-03 Chevron Res Layered clay minerals and processes for using
US3899343A (en) * 1973-02-26 1975-08-12 Engelhard Min & Chem Brightness of crystalline layered silicate minerals
SU499887A1 (ru) * 1973-07-12 1976-01-25 Институт Коллоидной Химии И Химии Воды Ан Украинской Сср Способ получени неорганического ионнообменника
SU623825A1 (ru) * 1973-08-30 1978-09-15 Институт Коллоидной Химии И Химии Воды Ан Украинской Сср Способ получени модифицированного каолина
US3939246A (en) * 1974-03-29 1976-02-17 Mobil Oil Corporation Manufacture of crystalline aluminosilicate zeolites
DE2824547A1 (de) * 1978-06-05 1979-12-13 Fette Wilhelm Gmbh Verfahren und einrichtung zum aussortieren von tabletten nach ihrer herstellung in einer tablettiermaschine
JPS60200821A (ja) * 1984-03-26 1985-10-11 Mizusawa Ind Chem Ltd 製紙用無機填料及びその製法
US4952544A (en) * 1987-03-05 1990-08-28 Uop Stable intercalated clays and preparation method
US5145816A (en) * 1990-12-10 1992-09-08 Mobil Oil Corporation Method for functionalizing synthetic mesoporous crystalline material
US5308808A (en) * 1992-02-19 1994-05-03 United States Department Of Energy Organic or organometallic template mediated clay synthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1181491A (en) * 1967-09-20 1970-02-18 Burgess Pigment Company Clay-Derived Pigments and process
US3586523A (en) * 1968-01-15 1971-06-22 Engelhard Min & Chem Calcined kaolin clay pigment
US3663456A (en) * 1969-11-17 1972-05-16 Air Prod & Chem Zeolite a synthesis
US4034058A (en) * 1976-06-29 1977-07-05 Engelhard Minerals & Chemicals Corporation Method for producing synthetic sodium aluminosilicate ion-exchange material from calcined kaolin clay
CN1062331A (zh) * 1990-12-13 1992-07-01 中国石油化工总公司石油化工科学研究院 改善了酸性的交联粘土的制备

Also Published As

Publication number Publication date
EP0703872A4 (en) 1996-11-06
EP0703872A1 (en) 1996-04-03
CA2165321C (en) 2005-05-03
KR100311654B1 (ko) 2002-06-27
RU2136593C1 (ru) 1999-09-10
US5858081A (en) 1999-01-12
EP0703872B1 (en) 2000-08-30
CA2165321A1 (en) 1995-01-05
WO1995000441A1 (en) 1995-01-05
BR9407556A (pt) 1996-12-31
MY111969A (en) 2001-03-31
ZA944114B (en) 1995-02-07
DE69425742T2 (de) 2001-04-19
NZ267372A (en) 1996-11-26
CN1128527A (zh) 1996-08-07
DE69425742D1 (de) 2000-10-05
ES2152316T3 (es) 2001-02-01
JPH08511504A (ja) 1996-12-03

Similar Documents

Publication Publication Date Title
CN1043567C (zh) 高岭土衍生物
WO1996018577A1 (en) Process for forming alumino-silicate derivatives
CN1226874A (zh) Y型沸石的制备
JP2010527902A (ja) Eu−1ゼオライトの新規な調製方法
CN1291917C (zh) 一种y型沸石复合材料的合成方法
KR20160102259A (ko) 무기 세포 일체형 양이온-교환 물질, 이의 제조 방법, 및 이를 사용하는 분리 방법
US8580226B2 (en) Synthesis of sodium titanate and ion exchange use thereof
WO2013076581A2 (en) Multilayer organic-templated-boehmite-nanoarchitecture for water purification
JP5653408B2 (ja) 放射性Cs吸着剤及びその製造方法
CN105776253A (zh) 一种利用钾霞石粉体制备硝酸钾和纳米高岭石的方法
WO2016052611A1 (ja) 結晶性シリコチタネートの製造方法
CN1868876A (zh) 4a型沸石分子筛及其制备方法
GB2031393A (en) Alkali Calcium Silicates and Process for Preparation Thereof
CN1045424C (zh) 一种合成超大孔分子筛的方法
JPH105585A (ja) リチウムイオン吸着剤
WO2016052610A1 (ja) 結晶性シリコチタネートの製造方法
JP6470354B2 (ja) シリコチタネート成形体及びその製造方法、シリコチタネート成形体を含むセシウム又はストロンチウムの吸着剤、及び当該吸着剤を用いる放射性廃液の除染方法
AU674091C (en) Kaolin derivatives
CN109876765A (zh) 复合材料
WO2016056530A1 (ja) 吸着材
JP3456387B2 (ja) 機能性吸着剤及びその製造方法
RU2501603C1 (ru) Способ получения сорбента на основе микросфер зол-уноса для очистки жидких радиоактивных отходов (варианты)
AU674091B2 (en) Kaolin derivatives
JP6898744B2 (ja) 重金属イオン吸着剤
AU685326B2 (en) Process for forming alumino-silicate derivatives

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee