CN104332642A - 一种基于聚四氟乙烯的钒电池用离子交换膜及其制备方法 - Google Patents

一种基于聚四氟乙烯的钒电池用离子交换膜及其制备方法 Download PDF

Info

Publication number
CN104332642A
CN104332642A CN201410453877.6A CN201410453877A CN104332642A CN 104332642 A CN104332642 A CN 104332642A CN 201410453877 A CN201410453877 A CN 201410453877A CN 104332642 A CN104332642 A CN 104332642A
Authority
CN
China
Prior art keywords
nafion
composite membrane
sio
ptfe
redox flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410453877.6A
Other languages
English (en)
Inventor
滕祥国
戴纪翠
毕方圆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Harbin Institute of Technology Weihai
Original Assignee
Harbin Institute of Technology Weihai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Weihai filed Critical Harbin Institute of Technology Weihai
Priority to CN201410453877.6A priority Critical patent/CN104332642A/zh
Publication of CN104332642A publication Critical patent/CN104332642A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/94Non-porous diffusion electrodes, e.g. palladium membranes, ion exchange membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种全钒液流电池用离子交换膜复合膜制备方法,包括如下几个步骤:将高分子聚合物聚四氟乙烯(PTFE)多孔膜在无水乙醇中浸泡,以除去表面的有机物;然后在PTFE上浇铸全氟磺酸树脂(Nafion)与纳米SiO2混合溶液;将复合膜在普通干燥箱中加热以除去有机溶剂,待表面无明显流动后转入真空干燥箱进一步烘干以制得PTFE/Nafion/SiO2复合膜。本发明所制备的复合质子交换膜具有厚度易调控,成本低,操作简单的特点,且具有较高的质子电导率及阻钒性能,可极大地降低全钒液流电池用隔膜的成本。

Description

一种基于聚四氟乙烯的钒电池用离子交换膜及其制备方法
技术领域
本发明涉及一种全钒液流电池用离子交换膜复合膜及其制备方法,具体地说是一种聚四氟乙烯/全氟磺酸树脂/纳米SiO2复合膜及其制备方法。
背景技术
随着全球可再生资源生产能力迅速提高,能够稳定、连续输出能力的能量存储技术亟需发展。在众多能量存储技术中,全钒氧化还原液流电池(钒电池)是公认的高效能量存储装置,并具有电池结构设计灵活,可通过电堆数量和电解液容量来增加输出功率和储能容量的优势,因此,全钒液流电池在大型储能方面具有重要的发展前景。
质子交换膜是全钒液流电池的关键功能材料之一,其作用主要表现在两个方面,一是传导质子连通电堆内电路;二是阻止正负极电解液间不同价态钒离子的相互渗透,从而减少能量损失。目前尚无专门用于全钒液流电池商用化隔膜,现阶段全钒液流电池所采用的质子交换膜主要为美国DuPont公司生产的Nafion膜。Nafion膜具有较高的电化学性能,且结构稳定,但是Nafion膜成本高,在全钒液流电池中对钒离子和水的阻隔性较差,因此Nafion膜的应用受到限制。
近年来在对全钒液流电池质子交换膜的研究主要集中在两方面:一是通过物理或者化学修饰Nafion膜,使其更好适用于全钒液流电池;二是制备新型低氟或非氟离子交换膜以替代Nafion膜。但是目前全氟树脂在电化学性能和化学稳定性方面具有其他材料不可比拟的优势。因此开发全氟磺酸树脂和高分子聚合物的复合膜就非常必要。通过制备复合膜,一方面减少Nafion树脂用量,降低成本;另一方面加入高分子聚合物作为复合膜基底,提高了复合膜的机械性能和稳定性。通过重铸法制备的复合膜厚度可控,具有广阔的生产前景。
在CN101773793A中采用溶胶-凝胶法将Nafion膜浸泡在正硅酸乙酯的水解液中,其中纳米级的SiO2原位生长在Nafion膜中,所制得复合膜SiO2分布均匀,但制备过程中SiO2含量很难控制,且该膜是供燃料电池而非钒电池使用。
发明内容
针对现存技术问题,本发明提供一种聚四氟乙烯/全氟磺酸树脂/纳米SiO2超薄离子膜的制备方法。该方法操作简单,制备复合膜一步完成,且强度高,阻钒性能良好,成本低,可以很好的适用于钒电池中。
本发明的技术方案如下:
商业Nafion膜在使用前要进行预处理,具体操作步骤如下:(1) 将Nafion膜浸入3%的H2O2溶液中,水浴恒温80 °C保持1h;(2) 将Nafion膜从H2O2溶液中取出并用去离子水洗净,再次浸入到1mol/LH2SO4溶液中,恒温水浴80 °C保持1h;(3) 将Nafion膜从H2SO4溶液中取出,用去离子水洗净,再次浸入到去离子水中,恒温水浴80 °C保持1h。预处理结束后将Nafion膜放入真空干燥箱中80 °C恒温干燥24h。
制备5%全氟磺酸树脂(Nafion)溶液,称取3 g上述步骤干燥后Nafion膜,将其剪碎后放入反应釜中,向反应釜中加入体积比为1:1的乙醇/水溶液,将反应釜放入干燥箱中190 °C加热10 h。
多孔聚四氟乙烯薄膜的预处理,将聚四氟乙烯薄膜浸泡在无水乙醇中进行亲水性处理,设置条件为55°C,保持2.5 h。其中所采用的聚四氟乙烯薄膜应具有以下特征:孔隙率达到85%以上,孔径在0.3~0.5 μm,厚度在15 μm。
称取一定量上述制备的5%的Nafion溶液于表面皿中80 °C加热10 h,得到Nafion树脂,向表面皿中加入一定量溶剂使其溶解后,转入烧杯中;另称一定量SiO2,将其转入含有Nafion的有机溶液中,超声使SiO2溶解,得均一透明溶液;将混合液移至水平玻璃板上,将玻璃板放入干燥箱中加热于140 °C加热10h得不同含量SiO2的复合膜,所制得复合膜的厚度在20 ~ 40μm之间。
将不同SiO2含量的复合膜在80 ℃下干燥24 h后测其厚度,然后再将复合膜放在去离子水中浸泡24 h以上,取出后用螺旋测微器再次测量其厚度,计算其溶胀率。
对所制备的PTFE/Nafion/SiO2复合膜进行钒渗透系数(P)测试。复合膜不同时间渗透的钒离子浓度对时间的响应曲线及不同浓度钒离子与吸光度之间的标准曲线,根据钒渗透系数计算公式计算得出复合膜的钒渗透系数P
将所制备不同含量SiO2后复合膜组装单体电池在LAND测试仪进行性能测试。钒单体电池电池结构包括最两段的端板,铜板,带有蛇形槽的石墨板,石墨碳毡,中间夹层为离子交换膜。电解质溶液正极侧为1.5 mol/L的VOSO+ 2.5 mol/L的H2SO4溶液,负极侧为1.5 mol/L的V3+ + 2.5 mol/L的H2SO4溶液,两侧均为18 mL,通过蠕动泵的作用使电解液流动循环。电池测试设置电流密度分别为60 mA/cm2,充放电终止电压分别为1.7 V和0.8 V。
本发明具有如下优点:
本发明所制备的钒电池用PTFE/Nafion/SiO2复合膜,其制备过程条件温和,方法简单易行,本发明使用PTFE基膜作为复合膜的增强材料,能显著提高复合膜的机械强度。所制备复合膜厚度仅为20 ~ 40 μm,制备过程中可极大减少价格昂贵的商业全氟磺酸树脂的用量,同时,所加入的SiO2可有效抑制钒离子的渗透。本发明所制备的PTFE/Nafion/SiO2合膜采用重铸法制备,厚度可控,所需的SiO2含量可根据加入的Nafion树脂的量进行调控,灵活性强。4. 本发明所制备复合膜具有良好的表面形态、比空白PTFE/Nafion更低的溶胀率和更小的钒离子渗透率。上述特点使PTFE/Nafion/SiO2复合膜在钒电池使用方面有广阔的应用前景。
具体实施方式
为更好地说明本发明,将结合实例进一步阐明本发明的内容。
实施例1
按上述所述方法制备5%的Nafion树脂的乙醇与水的混合溶液,移取适量,于80 °C加热10 h,得到干燥的Nafion树脂,称量后,向干燥中树脂加入一定量的N,N-二甲基甲酰胺(DMF),并于80 °C加热加速溶解。称取纳米SiO2并控制其与Nafion干树脂比例为1:99(质量比),在超声搅拌下加入上述Nafion树脂的DMF溶液中,进一步超声2 h至形成透明稳定的混合溶液。
剪取厚度15 μm的PTFE孔薄膜,将其放入无水乙醇中浸泡,55 °C下保持2.5 h,改善PTFE膜的亲水性。将处理后的薄膜在水平玻璃板上展开待用。
将上述Nafion树脂及SiO2的DMF溶液浇铸在聚四氟乙烯薄膜上,放入干燥箱中于80 °C下初步干燥,随后转入真空干燥箱140 °C干燥10 h即可得到SiO2含量为1%的PTFE/Nafion/SiO2复合膜。
按本实施例所得复合膜的厚度约27 μm,溶胀率为7.4%,钒渗透率为1.95×10-7 cm2/min,组装单体电池测其库仑效率为83.2%,能量效率为74.6%。
实施例2
按上述所述方法制备5%的Nafion树脂的乙醇与水的混合溶液,移取适量,于80 °C加热10 h,得到干燥的Nafion树脂,称量后,向干燥中树脂加入一定量的N,N-二甲基甲酰胺(DMF),并于80 °C加热加速溶解。称取纳米SiO2并控制其与Nafion干树脂比例为3:97(质量比),在超声搅拌下加入上述Nafion树脂的DMF溶液中,进一步超声2 h至形成透明稳定的混合溶液。
剪取厚度15 μm的PTFE孔薄膜,将其放入无水乙醇中浸泡,55 °C下保持2.5 h,改善PTFE膜的亲水性。将处理后的薄膜在水平玻璃板上展开待用。
将上述Nafion树脂及SiO2的DMF溶液浇铸在聚四氟乙烯薄膜上,放入干燥箱中于80 °C下初步干燥,随后转入真空干燥箱140 °C干燥10 h即可得到SiO2含量为3%的PTFE/Nafion/SiO2复合膜。
按本实施例所得复合膜的厚度约30μm,溶胀率为7.1%,钒渗透率为1.51×10-7 cm2/min,组装单体电池测其库仑效率为86.3%,能量效率为73.6%。
实施例3
按上述所述方法制备5%的Nafion树脂的乙醇与水的混合溶液,移取适量,于80 °C加热10 h,得到干燥的Nafion树脂,称量后,向干燥中树脂加入一定量的N,N-二甲基甲酰胺(DMF),并于80 °C加热加速溶解。称取纳米SiO2并控制其与Nafion干树脂比例为5:95(质量比),在超声搅拌下加入上述Nafion树脂的DMF溶液中,进一步超声2 h至形成透明稳定的混合溶液。
剪取厚度15 μm的PTFE孔薄膜,将其放入无水乙醇中浸泡,55 °C下保持2.5 h,改善PTFE膜的亲水性。将处理后的薄膜在水平玻璃板上展开待用。
将上述Nafion树脂及SiO2的DMF溶液浇铸在聚四氟乙烯薄膜上,放入干燥箱中于80 °C下初步干燥,随后转入真空干燥箱140 °C干燥10 h即可得到SiO2含量为5%的PTFE/Nafion/SiO2复合膜。
按本实施例所得复合膜的厚度约32 μm,溶胀率为6.7%,钒渗透率为1.71×10-7 cm2/min,组装单体电池测其库仑效率为84.3%,能量效率为73.1%。
实施例4
按上述所述方法制备5%的Nafion树脂的乙醇与水的混合溶液,移取适量,于80 °C加热10 h,得到干燥的Nafion树脂,称量后,向干燥中树脂加入一定量的N,N-二甲基甲酰胺(DMF),并于80 °C加热加速溶解。称取纳米SiO2并控制其与Nafion干树脂比例为7:93(质量比),在超声搅拌下加入上述Nafion树脂的DMF溶液中,进一步超声2 h至形成透明稳定的混合溶液。
剪取厚度15 μm的PTFE孔薄膜,将其放入无水乙醇中浸泡,55 °C下保持2.5 h,改善PTFE膜的亲水性。将处理后的薄膜在水平玻璃板上展开待用。
将上述Nafion树脂及SiO2的DMF溶液浇铸在聚四氟乙烯薄膜上,放入干燥箱中于80 °C下初步干燥,随后转入真空干燥箱140 °C干燥10 h即可得到SiO2含量为7%的PTFE/Nafion/SiO2复合膜。
按本实施例所得复合膜的厚度约34 μm,溶胀率为6.7%,钒渗透率为1.3×10-7 cm2/min,组装单体电池测其库仑效率为84.5%,能量效率为72.3%。

Claims (13)

1.一种全钒液流电池用超薄复合膜制备方法,其特征在于:采用高分子聚合物多孔膜聚四氟乙烯(PTFE)为基膜,采用溶液浇铸的方法把全氟磺酸树脂(Nafion)与纳米SiO2混合溶液均匀浇铸在PTFE多孔膜上,将所制备得合膜在普通干燥箱中进行蒸发除去有机溶剂,并进一步用真空干燥箱烘干,即可制得钒电池用超薄PTFE/Nafion/SiO2复合膜,具体包括以下步骤。
2.准确移取一定量5%的Nafion醇溶液,放入表面皿中,将表面皿置于55 ~75 °C的水浴锅上加热8 ~ 24 h,保证得到干燥的Nafion树脂,冷却至室温后进行称量,读数后加入一定量的高沸点有机溶剂,然后在55 ~75 °C的水浴锅上加热至溶解,即得到Nafion/高沸点有机溶剂的溶液。
3.按上述溶液中干燥Nafion树脂的量称取一定比例的纳米SiO2,加入到Nafion/高沸点有机溶液中,超声2~8 h溶解,得到均一透明的Nafion/SiO2混合溶液。
4.裁剪一定尺寸的15 μm左右的PTFE薄膜,浸入到无水乙醇中恒温水浴加热45 ~ 65 °C,保持2.5 ~5 h。
5.将上述制备混合液移至水平玻璃板上,并移入普通干燥箱中60 ~100 °C加热1 ~ 5 h,再转入真空干燥箱进一步处理,即可制得PTFE/Nafion/ SiO2复合膜。
6.在如权利要求1所述的全钒液流电池用超薄复合膜制备方法,其特征在于所述步骤(1)中的高沸点有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜或N-甲基吡咯烷酮。
7. 如权利要求1所述的全钒液流电池用离子交换膜复合膜制备方法,其特征在于,所述的全氟磺酸树脂具有磺酸基的H型树脂,具有较强的离子传导性。
8.如权利要求1所述的全钒液流电池用超薄复合膜的制备方法,其特征在于所述的全氟磺酸树脂与纳米SiO2混合溶液是将纳米SiO2进行超声溶解到全氟磺酸树脂溶液中。
9.如权利要求1所述的全钒液流电池用超薄复合膜的制备方法,其特征在于所用PTFE多孔膜具有立体网状结构,其孔径在0.3μm左右,厚度在15μm左右,孔径率达到85%以上。
10.如权利要求1所述的全钒液流电池用离子交换膜复合膜制备方法,其特征在于,所述的真空进一步干燥加热成膜温度为120 °C以上,加热时间为10 h以上。
11.如权利要求1所述的全钒液流电池用离子交换膜复合膜制备方法,其特征在于,所制备PTFE/Nafion/SiO2复合膜中纳米SiO2的含量为0% ~ 20% ,优选为3% ~ 10%。
12.如权利要求1所述的全钒液流电池用离子交换膜复合膜制备方法,其特征在于,复合膜制备过程中纳米SiO2的加入方法为溶液铸膜法。
13.如权利要求1所述的全钒液流电池用离子交换膜复合膜制备方法,其特征在于,所制备PTFE/Nafion/SiO2复合膜的厚度为20 ~ 40 μm。
CN201410453877.6A 2014-09-09 2014-09-09 一种基于聚四氟乙烯的钒电池用离子交换膜及其制备方法 Pending CN104332642A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410453877.6A CN104332642A (zh) 2014-09-09 2014-09-09 一种基于聚四氟乙烯的钒电池用离子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410453877.6A CN104332642A (zh) 2014-09-09 2014-09-09 一种基于聚四氟乙烯的钒电池用离子交换膜及其制备方法

Publications (1)

Publication Number Publication Date
CN104332642A true CN104332642A (zh) 2015-02-04

Family

ID=52407328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410453877.6A Pending CN104332642A (zh) 2014-09-09 2014-09-09 一种基于聚四氟乙烯的钒电池用离子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN104332642A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882625A (zh) * 2015-04-24 2015-09-02 哈尔滨工业大学(威海) 一种钒电池用高分散纳米SiO2复合膜及其制备方法
CN105140543A (zh) * 2015-08-28 2015-12-09 中国东方电气集团有限公司 液流电池离子交换膜组件、其制备方法及包括其的液流电池
CN109473685A (zh) * 2018-11-12 2019-03-15 湖南国昶能源科技有限公司 一种石墨烯复合碳毡的制备方法
CN110957514A (zh) * 2019-12-04 2020-04-03 大连融科储能技术发展有限公司 强疏水性离子交换膜及其制备方法和应用
CN111048813A (zh) * 2018-10-12 2020-04-21 中国科学院金属研究所 一种铁铬液流电池用有机-无机复合膜及其制备方法
CN112757731A (zh) * 2020-12-25 2021-05-07 南京大学 一种高耐久性增强型质子交换膜及其制备方法和应用
CN114006018A (zh) * 2021-10-27 2022-02-01 长园泽晖新能源材料研究院(珠海)有限公司 一种燃料电池用复合质子交换膜的制备方法
CN116845308A (zh) * 2023-08-18 2023-10-03 山西国润储能科技有限公司 一种全氟磺酸类增强质子交换膜及其制备方法和应用
CN117913331A (zh) * 2024-03-14 2024-04-19 中海储能科技(北京)有限公司 一种用于铁铬液流电池的质子交换膜改性方法及全氟磺酸复合膜

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050285A (zh) * 2007-04-27 2007-10-10 新源动力股份有限公司 一种新型复合质子交换膜成型工艺
CN101773793A (zh) * 2009-12-07 2010-07-14 山东东岳神舟新材料有限公司 一种SiO2/全氟磺酸树脂复合质子交换膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050285A (zh) * 2007-04-27 2007-10-10 新源动力股份有限公司 一种新型复合质子交换膜成型工艺
CN101773793A (zh) * 2009-12-07 2010-07-14 山东东岳神舟新材料有限公司 一种SiO2/全氟磺酸树脂复合质子交换膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANGGUO TENG等: "Ultra-thin polytetrafluoroethene/Nafion/silica composite membrane with high performance for vanadium redox flow battery", 《JOURNAL OF POWER SOURCES》 *
王晓恩等: "Nafion/SiO2/PTFE复合膜的制备及性能", 《电池》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882625A (zh) * 2015-04-24 2015-09-02 哈尔滨工业大学(威海) 一种钒电池用高分散纳米SiO2复合膜及其制备方法
CN105140543A (zh) * 2015-08-28 2015-12-09 中国东方电气集团有限公司 液流电池离子交换膜组件、其制备方法及包括其的液流电池
CN111048813B (zh) * 2018-10-12 2022-02-01 中国科学院金属研究所 一种铁铬液流电池用有机-无机复合膜及其制备方法
CN111048813A (zh) * 2018-10-12 2020-04-21 中国科学院金属研究所 一种铁铬液流电池用有机-无机复合膜及其制备方法
CN109473685A (zh) * 2018-11-12 2019-03-15 湖南国昶能源科技有限公司 一种石墨烯复合碳毡的制备方法
CN110957514B (zh) * 2019-12-04 2023-04-25 大连融科储能技术发展有限公司 强疏水性离子交换膜及其制备方法和应用
CN110957514A (zh) * 2019-12-04 2020-04-03 大连融科储能技术发展有限公司 强疏水性离子交换膜及其制备方法和应用
CN112757731A (zh) * 2020-12-25 2021-05-07 南京大学 一种高耐久性增强型质子交换膜及其制备方法和应用
CN112757731B (zh) * 2020-12-25 2022-04-05 南京大学 一种高耐久性增强型质子交换膜及其制备方法和应用
CN114006018A (zh) * 2021-10-27 2022-02-01 长园泽晖新能源材料研究院(珠海)有限公司 一种燃料电池用复合质子交换膜的制备方法
CN116845308A (zh) * 2023-08-18 2023-10-03 山西国润储能科技有限公司 一种全氟磺酸类增强质子交换膜及其制备方法和应用
CN117913331A (zh) * 2024-03-14 2024-04-19 中海储能科技(北京)有限公司 一种用于铁铬液流电池的质子交换膜改性方法及全氟磺酸复合膜
CN117913331B (zh) * 2024-03-14 2024-06-07 中海储能科技(北京)有限公司 一种用于铁铬液流电池的质子交换膜改性方法及全氟磺酸复合膜

Similar Documents

Publication Publication Date Title
CN104332642A (zh) 一种基于聚四氟乙烯的钒电池用离子交换膜及其制备方法
Xi et al. Broad temperature adaptability of vanadium redox flow battery—Part 2: Cell research
CN102569839B (zh) 一种液流储能电池用无机物填充有孔复合膜及其应用
CN102516531B (zh) 咪唑类离子液体接枝speek质子交换膜材料及其制备方法
CN101768284B (zh) 一种全氟型高温质子导体复合膜的制备方法
CN104282923B (zh) 全钒液流电池用阳/增强/阴两性复合膜及其制备方法
CN103762375B (zh) 聚四氟乙烯夹层保护离子交换膜、其制备方法及液流电池
CN104716353A (zh) 一种液流电池用多孔膜及其制备和应用
CN105219082B (zh) 一种复合膜及其应用
CN102544541B (zh) 一种非对称性psfa/pp/speek复合隔膜的制备方法
CN104332576A (zh) 一种非对称性speek/pp/fcb电池用复合隔膜的制备方法
CN104716355A (zh) 一种液流电池用复合膜及其应用
CN101510617B (zh) 一种基于共辐射技术制备质子交换膜的方法
CN108878933A (zh) 一种Nafion/lignin复合质子交换膜的制备方法
CN104124463A (zh) 氢氯燃料电池用离子液体-聚合物复合膜及其制备和应用
CN101768283A (zh) 一种适用于钒电池的磺化聚合物复合膜的制备方法
CN103881123B (zh) 一种高温燃料电池用pbi/h3po4掺杂膜的制备方法
CN102453262B (zh) 钒电池用电解质隔膜及其制备方法
CN102847449B (zh) 一种磷钨酸-聚乙烯醇复合质子交换膜的制备方法
CN110197911A (zh) 一种全钒液流电池用多孔隔膜及其制备方法和用途
CN101225181B (zh) Y2o3改性磺化聚醚醚酮质子交换膜及其制备方法
CN104269511A (zh) 一种液流电池隔膜及其制备方法
CN105226223A (zh) C基多孔复合膜及其应用
CN107546399B (zh) 主链与离子交换基团分离的离子交换膜及其制备和应用
CN101250310A (zh) 一种有机无机复合中温质子导电膜材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150204