CN104271496A - 不含稀土的能够转变的氮化物磁体及其制造方法 - Google Patents

不含稀土的能够转变的氮化物磁体及其制造方法 Download PDF

Info

Publication number
CN104271496A
CN104271496A CN201280069689.2A CN201280069689A CN104271496A CN 104271496 A CN104271496 A CN 104271496A CN 201280069689 A CN201280069689 A CN 201280069689A CN 104271496 A CN104271496 A CN 104271496A
Authority
CN
China
Prior art keywords
powder
iron
nitrogen
nitride
orderly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280069689.2A
Other languages
English (en)
Inventor
戴维·马太哈斯恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Case Western Reserve University
Original Assignee
Case Western Reserve University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Case Western Reserve University filed Critical Case Western Reserve University
Priority to CN201710302326.3A priority Critical patent/CN107253703B/zh
Publication of CN104271496A publication Critical patent/CN104271496A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0622Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58042Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on iron group metals nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%

Abstract

提供了一种用于生产适合用作永磁材料的有序马氏体铁氮化物粉末的方法。该方法包括:制备具有所期望的组合物和均匀度的铁合金粉末;通过在流化床反应器中使铁合金粉末与氮源接触来对该铁合金粉末进行氮化以产生铁氮化物粉末;将铁氮化物粉末转变成无序马氏体相;将无序马氏体相退火成有序马氏体相;以及从铁氮化物粉末中分离出有序马氏体相以产生有序马氏体铁氮化物粉末。

Description

不含稀土的能够转变的氮化物磁体及其制造方法
本申请要求于2011年12月15日递交的美国临时申请61/570955的权益,为了所有目的,通过引用将其全部并入在此,如同在本文中完全阐述一样。
技术领域
本发明总体上涉及一种适用于永磁体应用诸如风力涡轮发电机、电动汽车马达等的铁氮化物磁粉末的组合物以及生产该粉末的方法。
背景技术
稀土磁体是由稀土元素的合金制成的强永磁体。稀土磁体具有优于铁氧体磁体或铝镍钴磁体的显著性能。有两种类型的稀土磁体:钕磁体和钐钴磁体。到2020年,稀土永磁体的世界市场总量预计为$172亿,中国有望控制这个市场的74%(以吨计)。这个市场的稀土磁体份额有望继续增长并且预计将约占这一总量的30%。因此,强永磁体的市场和需求是巨大的,而其供应是有限的。
Fe16N2已被认为是稀土金属磁体的潜在替代品。图1a示出α”-Fe16N2及其它类永磁体材料的性能(由剩磁表示,Br)随密度的变化。具有高性能和低密度的材料是所期望的,因为这些是实现可扩展性(scalability)和成本的系统级目标的关键因素。α”-Fe16N2优于其它永磁体材料的所预计的成本优势示于图1b中。
本领域当前状态的限制是,仅通过在氮过饱和的环境中溅射或蒸发来实现100%转变成表现出突出的磁特性的单相α”-Fe16N2。然而,当使用传统扩散技术来处理大量粉末或薄膜时,平衡热力学将可利用的氮限制为<10.3at%N。因而,在已报道的文献中,即使使用纳米尺度的起始粉末,也从未实现这些粉末的完全转变。
发明内容
根据本发明的一些方面,提供一种用于生产适合用作永磁材料的有序马氏体铁氮化物粉末的方法。该方法包括:制造具有所期望的组合物和均匀度的铁合金粉末,通过在流化床反应器中使所述铁合金粉末与氮源接触来对所述铁合金粉末进行氮化处理以生产铁氮化物粉末,将所述铁氮化物粉末转变成无序马氏体相,将所述无序马氏体相退火成有序马氏体相,以及从所述铁氮化物粉末中分离出所述有序马氏体相以产生有序马氏体铁氮化物粉末。
在本发明的另一个方面中,提供一种含有由奥氏体相转变而成有序马氏体铁氮化物的永磁体组合物,其中,所述永磁体组合物不包括任何显著量的稀土元素。
在本发明的又一个方面中,提供一种含有有序马氏体铁氮化物粉末的磁体。
附图说明
图1a是挑选的硬永磁材料的剩磁感应对密度的图,所述挑选的硬永磁材料包括根据本发明各方面的α”Fe16N2。
图1b是根据本发明各方面的硬永磁材料的剩磁感应对估计的材料成本的图。
因而,为了可以更好地理解本文中本发明的详细描述,并且为了可以更好地理解本发明对现有技术的贡献,已经相当广泛地概述了本发明的某些实施方式。当然,还有将在下面进行描述的本发明另外的实施方式,并且这些将形成所附权利要求书的主题。
在这方面,在详细解释本发明的至少一个实施方式之前,应当理解,本发明没有将其应用限制于在下面描述中阐述的或在附图中示出的构造的细节和组件的设置。除了所描述的那些方面,本发明能够以多种方式实践和实施。另外,将理解的是,本文中采用的措辞和术语以及摘要是用于描述的目的而不应视为限制。
同样地,本领域技术人员将理解,本发明所基于的概念可以容易地被用作设计用于实施本发明若干目的的其它结构、方法和系统的基础。因此,重要的是,权利要求书应视为包括这些等同构造,只要它们不背离本发明的精神和范围。
具体实施方式
本发明涉及一种取消了永磁体材料中稀土元素的方法和组合物。具体地,大量粉末被转变成α”-Fe16N2,一种有序马氏体。这通过一种新颖的方法而实现,该方法使能够:与在元素Fe中可能溶解的氮相比,在奥氏体铁基合金中溶解更多的氮,通过高能球磨机将富氮的奥氏体转变成马氏体(α’),以及最终通过回火将马氏体转变成有序α”-Fe16N2。在奥氏体铁基合金中,溶解可以具有16:2的金属:氮的比例。
微合金化被用来扩大Fe-N相图中的单相奥氏体(γ-Fe)区域。这使得氮浓度必然能够产生具有最佳化学计量组合物的中间体马氏体。随后的低温老化热处理将完成向α”-Fe16N2的转变。
制造适合作为永磁材料的有序马氏体铁氮化物粉末的方法具有至少五(5)个步骤。这些步骤是:制造具有所期望的组合物和均匀度的铁合金粉末;通过在流化床反应器中使所述铁合金粉末与氮源接触来对所述铁合金粉末进行氮化处理以生产铁氮化物粉末;将所述铁氮化物粉末转变成无序马氏体相;将所述无序马氏体相退火成有序马氏体相,以及从所述铁氮化物粉末中分离出所述有序马氏体相以产生有序马氏体铁氮化物粉末。这些处理步骤中每一个将在下面进行详细解释。
初始步骤是计算并然后制备起始铁合金粉末的正确组合物。使用CALPHAD方法(相图计算,CALculation of Phase Diagrams)来计算组合物。这种方法用于基于碳和氮的合金含量来预测碳和氮在奥氏体钢中的溶解度。该方法的关键顿悟(key insight)是,认识到增加碳和氮的溶解度并且总是与这两种元素形成相对稳定的化合物的合金化元素。因此,目的是添加足以增加溶解度但不足以形成将大大降低溶解度的析出相的合金化元素。
添加合金化金属以使进入γ-Fe相(奥氏体)的填隙氮的浓度从零合金化浓度时的平衡浓度10.3at%增加至所期望的11.1at%的氮。所需要的合金化金属的量取决于合金化材料,例如对于铬为1at%而对于锰为6at%。一旦计算出所期望的组合物,就可以开始四个加工步骤。
现将解释铁合金粉末的制备。可以使用两种明显不同的方法来完成铁合金粉末的制备。第一种方法使用熔体雾化法(melt atomization)。在熔体雾化期间,在电弧熔化器中制造具有20at%的Cr的Fe的母合金。在凝固之后,向母合金中添加额外的纯铁粉末以得到所期望的99at%Fe-1at%Cr合金。使用熔体雾化器工艺熔融并喷雾额外的纯铁粉末。然而,熔体雾化法是一种昂贵的方法。
可以使用一种更具成本效益的方法,其中,最初在混磨机(mixer mill)中对Fe-Cr粉末混合物进行机械合金化一段时间。在根据本发明的一些方面中,Fe-Cr粉末混合物在混磨机中机械合金化48小时。合适的混磨机的例子是SPEX8000磨机,它是一种高能球磨机。然后,在850℃下,使用高温扩散方法使混合物均质化,其中,850℃低于α-Fe相转变成γ-Fe相的温度。而且,在根据本发明的另一个实施方式中,使用碾磨机(attritor mill)来实现机械合金化,随后进行高温扩散方法。这两种方法都能实现在Fe粉末中1.0±0.1at%Cr的组合物均匀度。
其它制备铁合金粉末的合适的方法包括采用基于羰基的生产方法的粉末合成技术。得到铁合金粉末的另一种合适的方法是:浇铸所需要的组合物,随后将大块锭机械地减小成粉末。
将限定若干候选合金化元素在铁中的浓度,所述合金化元素使得在奥氏体相中能够溶解11.1at.%氮。使用基于CALPHAD的溶液热力学模型来确定在奥氏体中氮溶解度和合金化元素浓度之间的关系。使用两者均可用的ThermoCalc软件和独立数据库(independent database)来进行计算。ThermoCalc软件可购自宾夕法尼亚州麦克默里(McMurray)的Thermo-Calc软件公司。
因为软件或者数据库中含有的参数可能有错误,所以该评定存在风险。使用商用ThermoCalc软件所进行的计算和使用独立数据库所进行的计算相互检查以校验结果的准确性。
用该方法来确定在含有宽范围的合金化元素的铁基奥氏体中碳和氮两者的溶解度。对于高于600℃的温度,预测通常是一致的且相当准确,高于600℃的温度范围预期会发生使铁合金粉末氮化的过程。一旦确立若干候选元素例如Cr、Mn、Ni、Co、Al的最低必需的合金含量,那么若干这些组合物可被用于制备粉末。
生产具有由热力学模型所规定(prescribe)的组合物的铁合金粉末。根据具有最小合金含量,即最大铁含量的属性来选择初始粉末组合物。制备铁合金粉末涉及,用所期望的合金化元素对基本纯的铁粉末颗粒进行涂覆或机械合金化,随后退火以产生均质的组合物。
一旦制备了铁合金粉末,就使用与扫描电子显微镜(SEM)连接的能量色散X-射线谱(EDS)来评估颗粒的代表性样品的适当化学性和均匀性。
在成功制备了具有所期望的组合物和均匀度的铁合金粉末之后,对Fe合金粉末进行氮化。将铁合金粉末置于流化床反应器中。流化流速取决于合金粉末的粒度。
例如,从室温和空气大气压力开始,在直径为1英寸(2.54厘米)的反应器中,使用10~20μm的Fe合金粉末可以进行下面的步骤:
1.)流入氮气并加热30分钟至580℃(1076华氏度)用于递增至温度(ramp-to-temperature);
2.)在580℃(1076华氏度)下,流入还原气体混合物(氢/氮混合物)4小时;
3.)在580℃(1076华氏度)下,将气体混合物切换成20%氨/80%氮,并退火18小时;
4.)在10%氨/90%氮中,缓慢冷却约20小时至~50℃(122华氏度);
5.)用氮放空(vent)足够长的时间以允许安全打开系统。
在根据本发明的一个实施方式中,在高于650℃(1202华氏度)的温度下,将铁合金粉末暴露于氢-氨(H2:NH3)环境中,这将使粉末的氮含量增加11.1at%,即α”相的化学计量组合物。起始粉末是α-相,氮化处理使该粉末转变成γ-相。使用受控气氛炉。
使用分析仪器来测量经处理的铁氮化物粉末的氮含量。使用波长色散X-射线谱(WDS)、俄歇电子能谱(AES)和X-射线光电子能谱(XPS,也被称为ESCA)进行分析。然后,在高能球磨机中,使完全γ相的铁氮化物粉末经历剧烈的塑性变形以驱动其转变成α’马氏体。
第三步骤是将氮化的铁合金粉末转变成无序马氏体相,α’-Fe16N2。在使铁合金粉末氮化之后,α-Fe:1at%Cr的粉末具有填隙式溶解于合金中的所期望的11.1%的氮。通过结合机械变形和低温(例如77K的液氮温度)的作用,可以将该相转变成无序α’-Fe16N2相。这通过将氮化的粉末放置到被液氮冷却的高能球磨机中而实现。必须适度放空磨机混合罐(mill mixing vial)以使得不会发生过度加压(over pressurization)。
第四步骤是将无序马氏体相α’-Fe16N2退火成有序马氏体相α”-Fe16N2。需要低温退火以获得有序马氏体相,α”-Fe16N2。低温退火的合适温度为100℃(212华氏度)至300℃(572华氏度)。
含有11.1at.%氮的γ-相氮化的铁粉末将被转变成保持相同氮含量的α’马氏体。氮含量为11.1at.%的粉末相当难以转变成α’。为了使转变能够进行,使γ-相粉末在高能球磨机中经历显著量的塑性变形。打算在室温下进行球磨。或者,球磨可能需要如上所述的液氮温度。如果由于吸收在反复撞击期间的能量,粉末的温度显著上升,或者需要增加驱动力以确保γ完全转变为α’,那么在球磨期间还将采用主动冷却。相对大尺寸的粉末颗粒促进γ到α’的转变。一旦完成α’马氏体的转变,可使用另外的球磨来降低最终平均粉末粒度。使用标准X-射线衍射技术来分析经球磨的粉末以确定是否有任何残留的γ-相。
接着,已被转换成α’的奥氏体粉末将被转变成通过所公开的方法来生产的最终材料α”。为了这个目的,对α’粉末进行回火。该处理步骤的理想温度大约是420K(147℃)。基于该理想温度,所使用的温度范围介于370K(97℃)和470K(197℃)之间,退火时间的范围为1000s至86000s(24h),如果需要。
如果粉末的表面氧化以扰人的快速进行发展,那么将粉末封装在抽真空且Ar-回填的熔凝石英安瓿中。通过XRD(X-射线衍射)和TEM(透射电子显微镜)来验证结果。XRD也通过使用X-射线衍射系统来进行。使用Tecnai F30(FEI)或Libra 200EF(Zeiss)的透射电子显微镜来进行TEM。通过对因为使α”偏离(offset)α’的有序化而造成的衍射图案中出现的超晶格反射进行评估,这两种技术都可以区别α’和α”。
最后的步骤涉及从混合的氮化物粉末中分离出有序马氏体相α”-Fe16N2。可能的是,在完成所有处理步骤之后,混合的粉末存在所期望的有序马氏体相α”-Fe16N2和其它不期望的铁相和铁氮化物相。使用流化床和外部磁场的分离处理以筛选所期望的相。
新的粉末组合物可被用于可形成永磁体,该永磁体可被用于电动机、发电机产品等。新的组合物可被用于制造磁体以取代现有的Nd-Fe-B-永磁体和其它稀土永磁体。
考虑到下面的详细描述、附图和权利要求书,本发明另外的特征、优点和方面可以得以阐明或变得显而易见。而且,将理解的是,本发明的上述概述和下面的详细描述都是示例性的,用于提供进一步的解释而不限制本发明所要求保护的范围。

Claims (20)

1.一种用于生产适合用作永磁材料的有序马氏体铁氮化物粉末的方法,所述方法包括以下步骤:
a)制备具有所期望的组合物和均匀度的铁合金粉末;
b)通过在流化床反应器中使所述铁合金粉末与氮源接触,对所述铁合金粉末进行氮化,以产生铁氮化物粉末;
c)将所述铁氮化物粉末转变成无序马氏体相;
d)将所述无序马氏体相退火成有序马氏体相;以及
e)从所述铁氮化物粉末中分离出所述有序马氏体相,以产生所述有序马氏体铁氮化物粉末。
2.根据权利要求1所述的方法,其中,所述有序马氏体铁氮化物粉末是α”-Fe16N2
3.根据权利要求1所述的方法,其中,制备所述铁合金粉末的步骤包括:与在元素铁中能够溶解的氮相比,使更多的氮溶解在奥氏体铁基合金中。
4.根据权利要求3所述的方法,其中,所述溶解的步骤包括以16:2的金属:氮的比例溶解在所述奥氏体铁基合金中。
5.根据权利要求1所述的方法,其中,制备所述铁合金粉末的步骤包括使用熔体雾化法。
6.根据权利要求1所述的方法,其中,所述制备的步骤包括机械地使铁粉末合金化。
7.根据权利要求1所述的方法,其中,氮化所述铁合金粉末的步骤还包括以下步骤:在还原气体的存在下,在所述流化床反应器中通过加热所述铁合金粉末,对所述铁合金粉末进行还原。
8.根据权利要求1所述的方法,其中,所期望的组合物均匀度为在Fe粉末中含1.0±0.1at%的Cr。
9.根据权利要求1所述的方法,其中,所期望的所述铁合金粉末的组合物是99at%Fe-1at%Cr合金。
10.根据权利要求1所述的方法,其中,氮化步骤产生填隙式溶解入所述铁合金粉末中的11.1at%的氮。
11.根据权利要求7所述的方法,其中,所述还原气体是氢气和氮气的混合物。
12.根据权利要求1所述的方法,其中,氮化所述铁合金粉末的步骤还包括以下步骤:
a.)流入氮气并加热至580℃(1076华氏度);
b.)在580℃(1076华氏度)下,连续4小时流入还原气体混合物;
c.)在580℃(1076华氏度)下,流入20%氨/80%氮的气体混合物并退火18小时;
d.)在10%氨/90%氮中,缓慢冷却约20小时至~50℃(122华氏度);以及
e.)用氮放空所述流化床反应器以避免过度加压。
13.根据权利要求1所述的方法,其中,将所述铁氮化物粉末转变成所述无序马氏体相的步骤包括:使所述铁氮化物粉末在高能球磨机中经历剧烈的塑性变形。
14.根据权利要求1所述的方法,其中,所述退火的步骤发生在100℃(212华氏度)至300℃(572华氏度)的温度下。
15.根据权利要求1所述的方法,其中,所述分离的步骤包括使用流化床。
16.根据权利要求15所述的方法,其中,所述分离的步骤还包括使用外部磁场。
17.一种通过权利要求1所述的方法生产得到的有序马氏体铁氮化物粉末的组合物。
18.一种粘结磁体,含有由权利要求1所述的方法生产得到的有序马氏体铁氮化物。
19.根据权利要求18所述的粘结磁体,用于电动机和发电机中之一。
20.一种永磁体组合物,含有由奥氏体相转变而来的有序马氏体铁氮化物,其中,所述磁体组合物不包括任何显著量的稀土元素。
CN201280069689.2A 2011-12-15 2012-12-17 不含稀土的能够转变的氮化物磁体及其制造方法 Pending CN104271496A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710302326.3A CN107253703B (zh) 2011-12-15 2012-12-17 不含稀土的能够转变的氮化物磁体及其制造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161570955P 2011-12-15 2011-12-15
US61/570,955 2011-12-15
PCT/US2012/070086 WO2013090895A1 (en) 2011-12-15 2012-12-17 Transformation enabled nitride magnets absent rare earths and a process of making the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201710302326.3A Division CN107253703B (zh) 2011-12-15 2012-12-17 不含稀土的能够转变的氮化物磁体及其制造方法

Publications (1)

Publication Number Publication Date
CN104271496A true CN104271496A (zh) 2015-01-07

Family

ID=48613268

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280069689.2A Pending CN104271496A (zh) 2011-12-15 2012-12-17 不含稀土的能够转变的氮化物磁体及其制造方法
CN201710302326.3A Active CN107253703B (zh) 2011-12-15 2012-12-17 不含稀土的能够转变的氮化物磁体及其制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201710302326.3A Active CN107253703B (zh) 2011-12-15 2012-12-17 不含稀土的能够转变的氮化物磁体及其制造方法

Country Status (7)

Country Link
US (1) US9997285B2 (zh)
EP (1) EP2791055A4 (zh)
JP (1) JP6051456B2 (zh)
KR (1) KR20140113684A (zh)
CN (2) CN104271496A (zh)
IN (1) IN2014MN01415A (zh)
WO (1) WO2013090895A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557551A (zh) * 2017-10-27 2018-01-09 华北理工大学 一种钐铁氮系永磁材料的制备方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2745298B1 (en) 2011-08-17 2019-12-11 Regents of the University of Minnesota Technique and system for forming iron nitride permanent magnet
US10867730B2 (en) * 2011-12-15 2020-12-15 Case Western Reserve University Transformation enabled nitride magnets absent rare earths and a process of making the same
CN105074836B (zh) 2013-02-07 2018-01-05 明尼苏达大学董事会 氮化铁永磁体和形成氮化铁永磁体的技术
CA2916483C (en) * 2013-06-27 2017-02-28 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
CN106165027A (zh) 2014-03-28 2016-11-23 明尼苏达大学董事会 包含涂覆的纳米颗粒的氮化铁磁性材料
WO2015193295A1 (en) * 2014-06-16 2015-12-23 Danmarks Tekniske Universitet Process for the preparation of porous nitrided iron material
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
CA2957656A1 (en) 2014-08-08 2016-02-11 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
JP2018510498A (ja) 2015-01-26 2018-04-12 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 異方的形状を有する窒化鉄粉末
JP2016207710A (ja) * 2015-04-16 2016-12-08 株式会社ジェイテクト 磁石の製造方法及び磁石
CN106862574B (zh) * 2017-01-05 2019-04-12 南昌大学 一种高温化学处理工艺制备片状FeSiN合金粉体的方法
US11859271B2 (en) 2017-05-04 2024-01-02 Regents Of The University Of Minnesota Iron nitride compositions
US20190160528A1 (en) * 2017-11-27 2019-05-30 Hamilton Sundstrand Corporation Method and apparatus for improving powder flowability
DE102018200373A1 (de) * 2018-01-11 2019-07-11 Robert Bosch Gmbh Weichmagnetischer Verbundwerkstoff und Verfahren zu seiner Herstellung
WO2020111386A1 (ko) * 2018-11-30 2020-06-04 한양대학교 에리카산학협력단 질화철 자성 와이어 및 그 제조방법
CN109411177B (zh) * 2018-12-11 2019-12-24 江南大学 一种利用液氮高速球磨制备γ’-Fe4N软磁材料的方法
JP7365773B2 (ja) 2019-02-13 2023-10-20 株式会社日立製作所 軟磁性材料及びその製造方法並びに軟磁性材料を用いた電動機
CN110482502B (zh) * 2019-10-05 2021-05-14 湘西自治州丰达合金科技有限公司 一种高效节能的氮化锰生产工艺
JP2022056923A (ja) 2020-09-30 2022-04-11 株式会社日立製作所 軟磁性材料、軟磁性材料の製造方法および電動機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165502A (ja) * 1994-12-09 1996-06-25 Matsushita Electric Ind Co Ltd Fe−N系磁性粉末の製造方法
JPH11340023A (ja) * 1998-05-22 1999-12-10 Dowa Mining Co Ltd 磁性材料およびその製法
CN101669180A (zh) * 2007-04-27 2010-03-10 旭化成株式会社 高频用磁性材料及其制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934126B2 (ja) * 1980-01-14 1984-08-20 日本重化学工業株式会社 窒化鉄の製造方法
JPS60221325A (ja) * 1984-04-13 1985-11-06 Hitachi Maxell Ltd 耐食性のすぐれた窒化鉄基強磁性粉末およびその製造方法
US5164104A (en) * 1989-09-13 1992-11-17 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen and bonded magnet containing the same
JPH03244108A (ja) * 1990-02-22 1991-10-30 Nippon Steel Corp 高飽和磁束密度を有するバルクα〃窒化鉄の製造方法
JPH04221427A (ja) * 1990-12-21 1992-08-11 Nkk Corp 磁気記憶媒体の製造方法
EP0599647B1 (en) * 1992-11-27 1997-02-05 Sumitomo Special Metals Co., Ltd. Production method of a rare earth-iron-nitrogen system permanent magnet
JPH07118702A (ja) * 1993-10-21 1995-05-09 Mitsubishi Materials Corp 高い飽和磁束密度を有するFe−N系軟磁性粉末の製造方法
US5647886A (en) * 1993-11-11 1997-07-15 Seiko Epson Corporation Magnetic powder, permanent magnet produced therefrom and process for producing them
US7559494B1 (en) * 1996-09-03 2009-07-14 Ppg Industries Ohio, Inc. Method of forming non-stoichiometric nanoscale powder comprising temperature-processing of a stoichiometric metal compound
JP2000082610A (ja) * 1998-09-03 2000-03-21 Sumitomo Special Metals Co Ltd 高電気抵抗率希土類永久磁石とその製造方法
WO2004029312A1 (ja) * 2002-09-27 2004-04-08 Nano Technology Institute, Inc 超硬質・強靭で優れた耐食性を有するナノ結晶オ−ステナイト鋼バルク材及びその製造方法
US20070071630A1 (en) * 2003-10-21 2007-03-29 Hiroyuki Fukuhara Wear-resistant elements and method of making same
KR101250673B1 (ko) * 2007-04-27 2013-04-03 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 고주파용 자성 재료와 그 제조 방법
US8535634B2 (en) * 2007-05-04 2013-09-17 Advanced Materials Corporation Iron nitride powders for use in magnetic, electromagnetic, and microelectronic devices
JP2011051814A (ja) * 2009-08-31 2011-03-17 Teijin Ltd 窒化鉄微粒子及びそれを含有するコロイド溶液
JP5769223B2 (ja) * 2009-10-22 2015-08-26 戸田工業株式会社 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165502A (ja) * 1994-12-09 1996-06-25 Matsushita Electric Ind Co Ltd Fe−N系磁性粉末の製造方法
JPH11340023A (ja) * 1998-05-22 1999-12-10 Dowa Mining Co Ltd 磁性材料およびその製法
CN101669180A (zh) * 2007-04-27 2010-03-10 旭化成株式会社 高频用磁性材料及其制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
K.H.JACK: "The synthesis, structure, and characterization of α’’- Fe16N2 (Invited)", 《JOURNAL OF APPLIED PHYSICS》 *
M.Q.HUANG ET AL.: "Synthesis and characterization of Fe16N2 in bulk form", 《JOURNAL OF APPLIED PHYSICS》 *
M.Q.HUANG ET AL.: "Synthesis and characterization of Fe16N2 in bulk form", 《JOURNAL OF APPLIED PHYSICS》, vol. 75, no. 10, 15 May 1994 (1994-05-15) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557551A (zh) * 2017-10-27 2018-01-09 华北理工大学 一种钐铁氮系永磁材料的制备方法
CN107557551B (zh) * 2017-10-27 2019-08-23 华北理工大学 一种钐铁氮系永磁材料的制备方法

Also Published As

Publication number Publication date
EP2791055A1 (en) 2014-10-22
US9997285B2 (en) 2018-06-12
JP2015507354A (ja) 2015-03-05
WO2013090895A1 (en) 2013-06-20
CN107253703B (zh) 2021-08-10
EP2791055A4 (en) 2015-06-03
JP6051456B2 (ja) 2016-12-27
KR20140113684A (ko) 2014-09-24
CN107253703A (zh) 2017-10-17
IN2014MN01415A (zh) 2015-04-03
US20140290434A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
CN104271496A (zh) 不含稀土的能够转变的氮化物磁体及其制造方法
McCallum et al. Practical aspects of modern and future permanent magnets
Zehetbauer et al. Bulk nanostructured functional materials by severe plastic deformation
Jiang et al. Preparation of an α ″‐Fe16N2 magnet via a ball milling and shock compaction approach
Garnero et al. Chemical ordering in bimetallic FeCo nanoparticles: from a direct chemical synthesis to application as efficient high-frequency magnetic material
Park et al. Magnetic and Microstructural Characteristics of Nd-Fe-B Sintered Magnets Doped With Dy $ _2 $ O $ _3 $ and DyF $ _3 $ Powders
CN104599802B (zh) 稀土永磁材料及其制备方法
JP7365773B2 (ja) 軟磁性材料及びその製造方法並びに軟磁性材料を用いた電動機
Abel et al. Enhancing the ordering and coercivity of L10 FePt nanostructures with bismuth additives for applications ranging from permanent magnets to catalysts
CN104376947B (zh) 一种耐热烧结钕铁硼永磁材料及制备方法
CN1938114B (zh) 软磁性材料的制造方法、软磁性粉末和压粉磁芯
Jin et al. CoCrFeMnNi high‐entropy alloy powder with excellent corrosion resistance and soft magnetic property prepared by gas atomization method
Kustas et al. Emerging opportunities in manufacturing bulk soft-magnetic alloys for energy applications: A review
Rahimi et al. On the magnetic and structural properties of neodymium iron boron nanoparticles
KR101818661B1 (ko) 적층성형가공법을 활용한 균일분산강화물 및 그 제조방법
Skotnicova et al. Structural and magnetic engineering of (Nd, Pr, Dy, Tb)–Fe–B sintered magnets with Tb3Co0. 6Cu0. 4Hx composition in the powder mixture
Schäfer et al. A Novel Magnetic Hardening Mechanism for Nd‐Fe‐B Permanent Magnets Based on Solid‐State Phase Transformation
Li et al. Effect of heat treatment on the microstructure and properties of Ni based soft magnetic alloy
Mohapatra et al. Hard and semi-hard Fe-based magnetic materials
US8728390B2 (en) Vibration machines for powder coating
US20190156976A1 (en) Dust core and method for producing same
US20220310292A1 (en) Method of Producing Sintered Magnet
Kong et al. Nanostructured steels for advanced structural applications
Liu et al. Effect of Tempering Temperature on Microstructure and Properties of a New Type of Nitrogen‐Containing Hot‐Work Die Steel 3Cr7Mo2NiSiVN
Mandal et al. Formation of L10 Ordering in FeNi by Mechanical Alloying and Field-Assisted Heat Treatment: Synchrotron XRD Studies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150107

WD01 Invention patent application deemed withdrawn after publication