CN104270151B - 一种用于流水线模数转换器的输出延时电路 - Google Patents

一种用于流水线模数转换器的输出延时电路 Download PDF

Info

Publication number
CN104270151B
CN104270151B CN201410485216.1A CN201410485216A CN104270151B CN 104270151 B CN104270151 B CN 104270151B CN 201410485216 A CN201410485216 A CN 201410485216A CN 104270151 B CN104270151 B CN 104270151B
Authority
CN
China
Prior art keywords
circuit
delay
delay unit
basic time
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410485216.1A
Other languages
English (en)
Other versions
CN104270151A (zh
Inventor
吕坚
阙隆成
刘慧芳
张壤匀
周云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201410485216.1A priority Critical patent/CN104270151B/zh
Publication of CN104270151A publication Critical patent/CN104270151A/zh
Application granted granted Critical
Publication of CN104270151B publication Critical patent/CN104270151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Pulse Circuits (AREA)

Abstract

本发明实施例公开了一种用于流水线模数转换器的输出延时电路,包括时钟产生电路、奇数次延时电路和偶数次延时电路。时钟产生电路产生两相不交叠控制信号控制奇数次延时电路和偶数次延时电路中的相邻基本延时单元电路交替导通,实现对输入数据的延时。本发明的实施例中的用于流水线模数转换器的输出延时电路结构简单,并且能够大大减小芯片占用面积。

Description

一种用于流水线模数转换器的输出延时电路
技术领域
本发明涉及流水线模数转换器技术领域,尤其是涉及一种用于流水线模数转换器的输出延时电路。
背景技术
常见的模数转换器(ADC)包括闪烁型 ADC、两步式 ADC、流水线 ADC、逐次逼近ADC等,且不同结构的 ADC 具有不同的特点。其中,流水线 ADC 在面积、功耗、速度和精度方面有着较好的折中,逐渐成为高速高精度 ADC 的实现方式之一。流水线 ADC 广泛地应用于数据获取系统(data acquisition systems)、数字通信系统(digital communicationsystems),这些系统都需要模数转换器具有较高的精度和速度。
CMOS晶体管的特征尺寸(feature size)不断缩小,其有效线宽已经从微米量级进入到纳米量级。研究怎样在此基础上进一步减小芯片的面积,增加其集成度,就成为一种可行的方法。
由于输出信号不是同时输出的,所以在信号到达数字校正模块之前要将各位进行校准使他们在时间上同步。传统的由D触发器为延时单元电路构成的输出延时电路比较复杂,单个D触发器所包含的管子数目就有几十,占用芯片的面积较大。
发明内容
本发明的目的之一是提供一种结构简单、能够大大减小芯片的占用面积的用于流水线模数转换器的输出延时电路。
本发明公开的技术方案包括:
提供了一种用于流水线模数转换器的输出延时电路,其特征在于,包括:时钟产生电路10,所述时钟产生电路10产生第一控制信号CK0、第二控制信号CK1、第一控制反相信号CKB0和第二控制反相信号CKB1,其中所述第一控制反相信号CKB0与所述第一控制信号CK0反相,所述第二控制反相信号CKB1与所述第二控制信号CK1反相;奇数次延时电路30,所述奇数次延时电路30对输入数据做奇数次延时,所述奇数次延时电路30包括偶数个基本延时单元电路,所述偶数个基本延时单元电路顺序连接;偶数次延时电路20,所述偶数次延时电路20对输入数据做偶数次延时,所述偶数次延时电路20包括奇数个基本延时单元电路和第一反相器,所述奇数个基本延时单元电路顺序连接,所述第一反相器的输入端连接到所述奇数个基本延时单元电路中的最靠近所述第一反相器的基本延时单元电路的输出端。
本发明的一个实施例中,每个所述基本延时单元电路包括传输门30和第二反相器31,其中:所述传输门30的输入端连接到所述基本延时单元电路的输入端,所述传输门30的输出端连接到所述第二反相器31的输入端;所述第二反相器31的输出端连接到所述基本延时单元电路的输出端。
本发明的一个实施例中,在所述偶数次延时电路20和所述奇数次延时电路30中,相邻的两个基本延时单元中的一个基本延时单元的传输门的第一控制端连接到所述第一控制信号CK0、第二控制端连接到所述第一控制反相信号CKB0,而所述相邻的两个基本延时单元中的另一个基本延时单元的传输门的第一控制端连接到所述第二控制信号CK1、第二控制端连接到所述第二控制反相信号CKB1。
本发明的一个实施例中,所述第一控制信号CK0与所述第二控制信号CK1相互不交叠。
本发明的实施例中的用于流水线模数转换器的输出延时电路结构简单,并且能够大大减小芯片占用面积。
附图说明
图1是本发明一个实施例的用于流水线模数转换器的输出延时电路的结构示意图。
图2是本发明一个实施例的基本延时单元电路的结构示意图。
图3是本发明一个实施例的两个相邻的基本延时单元电路的连接的示意图。
图4为本发明一个实施例的8位PL_ADC的输出延时电路的奇数次延时电路的结构示意图。
图5为本发明一个实施例的8位PL_ADC的输出延时电路的时钟产生电路的示意图。
图6为本发明一个实施例的8位PL_ADC的输出延时电路的偶数次延时电路的结构示意图。
图7为图5中的时钟产生电路产生的控制信号的示意图。
具体实施方式
下面将结合附图详细说明本发明的实施例的用于流水线模数转换器的输出延时电路的具体结构。
如图1所示,本发明的一个实施例中,一种用于流水线模数转换器的输出延时电路包括时钟产生电路10、奇数次延时电路30和偶数次延时电路20。
如图1所示,时钟产生电路10产生第一控制信号CK0、第二控制信号CK1、第一控制反相信号CKB0和第二控制反相信号CKB1。这里,第一控制反相信号CKB0与第一控制信号CK0反相,第二控制反相信号CKB1与第二控制信号CK1反相。
本发明的一个实施例中,这里的第一控制信号CK0与第二控制信号CK1相互不交叠,相应地,第一控制反相信号CKB0与第二控制反相信号CKB)也相互不交叠,即,它们是两相不交叠控制信号。
本发明的实施例中,奇数次延时电路30对输入数据做奇数次延时。如图1所示,奇数次延时电路30可以包括偶数个基本延时单元电路(例如,图1中的虚线框中的电路),这偶数个基本延时单元电路顺序连接,即一个基本延时单元电路的输入端连接到前一个基本延时单元的输出端、输出端连接到后一个基本延时单元电路的输入端。容易理解,这里,所说的“前”和“后”是相对于该延时电路中信号的传输方向而定义的,位于信号传输方向的“上游”的为前一个基本延时单元电路,类似地,位于信号传输方向的“下游”的为后一个基本延时单元电路。
实际上,奇数次延时电路30对输入数据做奇数次延时,因此需要奇数个基本延时单元电路,但是考虑到第0个基本延时单元电路不对输入数据产生延时,因此奇数次延时电路30实际需要偶数个基本延时单元电路。这样,信号的相位不会改变。第0个基本延时单元电路的输入端连接需要延时的数字信号(即输入数据),第1个基本延时单元电路的输入端连接到第0个基本延时单元电路的输出端,依次类推,这样按照要延时的次数依次接入每一个基本延时单元电路,最后一个基本延时单元电路输出最终的信号(即已经被延时了的输出数据)。
如图1所示,偶数次延时电路20对输入数据做偶数次延时。偶数次延时电路20包括奇数个基本延时单元电路(例如,图1中的虚线框中的电路)和第一反相器。这奇数个基本延时单元电路顺序连接,即,一个基本延时单元电路的输入端连接到前一个基本延时单元的输出端、输出端连接到后一个基本延时单元电路的输入端。容易理解,这里,所说的“前”和“后”也是相对于该延时电路中信号的传输方向而定义的,位于信号传输方向的“上游”的为前一个基本延时单元电路,类似地,位于信号传输方向的“下游”的为后一个基本延时单元电路。
第一反相器的输入端连接到这奇数个基本延时单元电路中最靠近该第一反相器的那个基本延时单元电路的输出端。
实际上,偶数次延时电路20做输入数据做偶数次延时,因此需要偶数个基本延时单元电路。考虑到第0个基本延时单元电路不对输入数据产生延时,因此偶数次延时电路20实际需要奇数个基本延时单元电路。此时,信号的相位会改变,为了保持信号相位不变,因此在最后一个基本延时单元电路后再连接一个第一反相器。第0个基本延时单元电路的输入端连接需要延时的数字信号(即输入数据),第1个基本延时单元电路的输入端连接到第0个基本延时单元电路的输出端,依次类推,这样按照要延时的次数依次接入每一个基本延时单元电路,最后一个基本延时单元电路的输出连接到第一反相器的输入端,第一反相器的输出端输出最终的信号(即已经被延时了的输出数据)。
如图1和图2所示,本发明的一个实施例中,前述的每个基本延时单元电路可以包括传输门30和第二反相器31。
传输门30的输入端连接到基本延时单元电路的输入端,传输门30的输出端连接到第二反相器31的输入端。
第二反相器31的输出端连接到基本延时单元电路的输出端。
本发明的实施例中,前述的奇数次延时电路30和偶数次延时电路20均由多个这样的基本延时单元电路构成。
如图3所示,本发明的一个实施例中,在偶数次延时电路20和奇数次延时电路30中,相邻的两个基本延时单元中的一个基本延时单元的传输门的第一控制端连接到第一控制信号CK0、第二控制端连接到第一控制反相信号CKB0,而相邻的两个基本延时单元中的另一个基本延时单元的传输门的第一控制端连接到第二控制信号CK1、第二控制端连接到第二控制反相信号CKB1。
由前文所述,第一控制信号CK0与第二控制信号CK1相互不交叠,相应地,第一控制反相信号CKB0与第二控制反相信号CKB)也相互不交叠,它们是两相不交叠控制信号。因此,根据图3的连接方式,在两相不交叠控制信号的控制下,相邻的前后两个基本延时单元电路是交替导通的。即,前一个基本延时单元电路导通期间,与它相邻的后一个基本延时单元电路是关断的,它们导通的时间相差T/2(这里,T为周期)。所以信号在前一个基本延时单元电路中保持时间T/2再传到后一个基本延时单元电路,这样就实现了后一个基本延时单元电路的半周期延时。因此,第0个基本延时单元电路没有延时,以后每增加一个基本延时单元电路就多半个时钟延迟。
本实施例中,这种基本延时单元电路构成的延时电路与传统的流水线模数转换器(PL-ADC)的D触发器单元延时电路相比,所用管子的数目从8对减少到2对,所以它能够大大减小芯片面积。
图4至6为本发明一个实施例的用于8 位PL_ADC的输出延时电路的结构示意图。其中图4为该8位PL_ADC的输出延时电路的奇数次延时电路的结构示意图,图5为该8位PL_ADC的输出延时电路的时钟产生电路的示意图,图6为该8位PL_ADC的输出延时电路的偶数次延时电路的结构示意图。此外,图7为图5中的时钟产生电路产生的控制信号的示意图。
如图4至7所示,PL_ADC由6级1.5bit sub ADC和2bit flash ADC组成,因此需要对前6 个子级进行延时使8 bit数字信号同时输出。
时钟产生电路用于产生两相不交叠时钟控制信号CK1、CK0及它们的反相信号CK1B,CK0B,它们分别用于控制相邻两个基本延时单元电路,使它们交替导通,它们的时序图如图7中所示。
该延时电路在两相不交叠时钟信号的控制下,前一个基本延时单元电路导通期间,与它相邻的后一个基本延时单元电路是关断的,它们导通的时间相差T/2,所以信号在前一个基本延时单元电路中保持时间T/2,这样就实现了后一个基本延时单元电路的半周期延时,因此第0个基本延时单元电路没有延时,以后每增加一个基本延时单元电路就多半个时钟延迟。为了使8 bit数字信号同时输出,考虑到是用到6个1.5 bit 的sub ADC ,所以就要将第j(j=1,2,…6)个子级进行(6-j+1)T/2的延迟,又因为第0个基本延时单元电路不延时,所以第j个子级的一个延时电路需要6-j+2个基本延时单元电路。
第6个子级输出的数字信号需要T/2的延时才能与flash ADC 输出的2 bit信号对齐,需要第1奇数次延时电路,考虑到每个子级数字信号为1.5bit,所以需要两个第1奇数次延时电路,每个第1奇数次延时电路中,第0个基本延时单元电路的输入端接PL_ADC的数字信号,第1个基本延时单元电路的输入端连接到所述的第0个基本延时单元电路的输出端,所述第1个单元电路的输出端输出最终信号。
同理第5个子级输出的数字信号需要的延时为2(T/2),需要两个第2偶数次延时电路,每个第2偶数次延时电路中,第0个基本延时单元电路的输入端接PL_ADC的数字信号,第1个基本延时单元电路的输入端连接到所述的第0位信号传输电路的输出端,第2个单元电路的输入端连接到第1个延时单元电路的输出端,第2个单元电路的输出端连接到反相器的输入端,反相器的输出端输出最终信号。
第4个子级输出的数字信号需要的延时为3(T/2),需要两个第3奇数次延时电路,每个第3奇数次延时电路中,第0个基本延时单元电路的输入端接PL_ADC的数字信号,第1个基本延时单元电路的输入端连接到第0个基本延时单元电路的输出端,第2个基本延时单元电路的输入端连接到第1个基本延时单元电路的输出端,第3个基本延时单元电路的输入连接到第2个基本延时单元电路的输出端,第3个基本延时单元电路的输出端输出最终信号。
第3个子级输出的数字信号需要的延时为4(T/2),需要两个第4偶数次延时电路,每个第4偶数次延时电路中,第0个基本延时单元电路的输入端接PL_ADC的数字信号,第1个基本延时单元电路的输入端连接到第0个基本延时单元电路的输出端第,第2个基本延时单元电路的输入端连接到第1个基本延时单元电路的输出端,第3个基本延时单元电路的输入连接到第2个基本延时单元电路的输出端,第4个基本延时单元电路的输出端输入端连接到第3个基本延时单元电路的输出端,第4个基本延时单元电路的输出端连接反相器的输入端,反相器的输出端输出最终信号。
第2个子级输出的数字信号需要的延时为5(T/2),需要两个第5奇数次延时电路,每个第5奇数次延时电路中,第0个基本延时单元电路的输入端接PL_ADC的数字信号,第1个基本延时单元电路的输入端连接到第0个基本延时单元电路的输出端,第2个基本延时单元电路的输入端连接到第1个延时基本延时单元电路的输出端,第3个基本延时单元电路的输入连接到第2基本延时单元电路的输出,第4个基本延时单元电路的输出端输入端连接到第3个单元的输出端,第4个基本延时单元电路的输入端连接到第3个基本延时单元电路的输出端,第5个基本延时单元电路的输出端输出最终信号。
第1个子级输出的数字信号需要的延时为6(T/2),需要两个第6偶数次延时电路,每个第6偶数次延时电路中,第0个基本延时单元电路的输入端接PL_ADC的数字信号,第1个基本延时单元电路的输入端连接到第0个基本延时单元电路的输出端,第2个基本延时单元电路的输入端连接到第1个基本延时单元电路的输出端,第3个基本延时单元电路的输入连接到第2基本延时单元电路的输出,第4个基本延时单元电路的输出端输入端连接到第3个基本延时单元电路的输出端,第5个基本延时单元电路的输入端连接到第4个基本延时单元电路的输出端,第6个基本延时单元电路的输入端连接到第5个基本延时单元电路的输出端,第6个基本延时单元电路的输出端连接反相器的输入端,反相器的输出端输出最终信号。
本发明的实施例中的用于流水线模数转换器的输出延时电路结构简单,并且能够大大减小芯片占用面积。
以上通过具体的实施例对本发明进行了说明,但本发明并不限于这些具体的实施例。本领域技术人员应该明白,还可以对本发明做各种修改、等同替换、变化等等,这些变换只要未背离本发明的精神,都应在本发明的保护范围之内。此外,以上多处所述的“一个实施例”表示不同的实施例,当然也可以将其全部或部分结合在一个实施例中。

Claims (3)

1.一种用于流水线模数转换器的输出延时电路,其特征在于,包括:
时钟产生电路(10),所述时钟产生电路(10)产生第一控制信号(CK0)、第二控制信号(CK1)、第一控制反相信号(CKB0)和第二控制反相信号(CKB1),其中所述第一控制反相信号(CKB0)与所述第一控制信号(CK0)反相,所述第二控制反相信号(CKB1)与所述第二控制信号(CK1)反相;
奇数次延时电路(30),所述奇数次延时电路(30)对输入数据做奇数次延时,所述奇数次延时电路(30)包括偶数个基本延时单元电路,所述偶数个基本延时单元电路顺序连接;
偶数次延时电路(20),所述偶数次延时电路(20)对输入数据做偶数次延时,所述偶数次延时电路(20)包括奇数个基本延时单元电路和第一反相器,所述奇数个基本延时单元电路顺序连接,所述第一反相器的输入端连接到所述奇数个基本延时单元电路中的最靠近所述第一反相器的基本延时单元电路的输出端;
其中:
在所述偶数次延时电路(20)和所述奇数次延时电路(30)中,相邻的两个基本延时单元中的一个基本延时单元的传输门的第一控制端连接到所述第一控制信号(CK0)、第二控制端连接到所述第一控制反相信号(CKB0),而所述相邻的两个基本延时单元中的另一个基本延时单元的传输门的第一控制端连接到所述第二控制信号(CK1)、第二控制端连接到所述第二控制反相信号(CKB1)。
2.如权利要求1所述的电路,其特征在于:每个所述基本延时单元电路包括传输门(30)和第二反相器(31),其中:
所述传输门(30)的输入端连接到所述基本延时单元电路的输入端,所述传输门(30)的输出端连接到所述第二反相器(31)的输入端;
所述第二反相器(31)的输出端连接到所述基本延时单元电路的输出端。
3.如权利要求1至2中任意一项所述的电路,其特征在于:所述第一控制信号(CK0)与所述第二控制信号(CK1)相互不交叠。
CN201410485216.1A 2014-09-22 2014-09-22 一种用于流水线模数转换器的输出延时电路 Active CN104270151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410485216.1A CN104270151B (zh) 2014-09-22 2014-09-22 一种用于流水线模数转换器的输出延时电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410485216.1A CN104270151B (zh) 2014-09-22 2014-09-22 一种用于流水线模数转换器的输出延时电路

Publications (2)

Publication Number Publication Date
CN104270151A CN104270151A (zh) 2015-01-07
CN104270151B true CN104270151B (zh) 2017-05-03

Family

ID=52161652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410485216.1A Active CN104270151B (zh) 2014-09-22 2014-09-22 一种用于流水线模数转换器的输出延时电路

Country Status (1)

Country Link
CN (1) CN104270151B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11251781B2 (en) 2018-06-25 2022-02-15 Canaan Creative Co., Ltd. Dynamic D flip-flop, data operation unit, chip, hash board and computing device
CN111682877B (zh) 2020-05-29 2023-04-28 成都华微电子科技股份有限公司 流水线模数转换器的模数转换方法、流水线模数转换器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359579B1 (en) * 2000-02-17 2002-03-19 Advanced Micro Devices, Inc. Digital logic correction circuit for a pipeline analog to digital (A/D) converter
CN101562440A (zh) * 2009-05-12 2009-10-21 华为技术有限公司 延迟模块和方法、时钟检测装置及数字锁相环

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359579B1 (en) * 2000-02-17 2002-03-19 Advanced Micro Devices, Inc. Digital logic correction circuit for a pipeline analog to digital (A/D) converter
CN101562440A (zh) * 2009-05-12 2009-10-21 华为技术有限公司 延迟模块和方法、时钟检测装置及数字锁相环

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
多参数流水线A/D转换器的系统模型设计与仿真;张东路等;《微电子学》;20100228;第40卷(第1期);第114-117页 *

Also Published As

Publication number Publication date
CN104270151A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
CN104617957B (zh) 异步逐次逼近型模数转换器
CN104021753B (zh) 移位寄存器
CN104124971B (zh) 基于逐次逼近原理的两级流水线型模数转换器
CN102931994B (zh) 应用于信号处理芯片的高速信号采样和同步的架构及方法
CN104270151B (zh) 一种用于流水线模数转换器的输出延时电路
CN104378114A (zh) 一种实现多通道模数转换器同步的方法
CN103236169B (zh) 城市干线公交站间双向分段绿波信号设置方法
CN106877868A (zh) 一种高速逐次逼近型模数转换器
CN104460803B (zh) 带隙基准电压产生电路
CN103152050A (zh) 一种高速逐次逼近型模数转换器
CN104796636B (zh) 用于超大面阵拼接cmos图像传感器的复用型像元控制电路
CN104283561B (zh) 一种异步时钟并串转换半周期输出电路
CN104883188B (zh) 一种全数字实现的闪烁型模数转换器
CN105446702A (zh) 一种基于串行fft ip核的宽带数字信道化并行处理方法
CN102006071A (zh) 用于流水线结构模数转换器的余量增益电路
CN204242561U (zh) 栅极驱动电路及显示装置
CN202513820U (zh) 电荷泵单级电路及电荷泵电路
CN106209067A (zh) 一种接口复用的接收电路
CN103077258B (zh) 高速同步数据采集卡
CN102201802A (zh) 防毛刺时钟选择器的时序优化方法及其电路
CN105932980B (zh) 跳蛙式多回路反馈开关电流滤波器
CN205176265U (zh) 一种精密可编程延时电路
CN107134247A (zh) 一种栅极驱动电路
CN203278775U (zh) 一种可编程的非交叠时钟产生电路
CN103546164A (zh) 一种信号采集装置及其工作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant