CN104269283B - 一种高比电容石墨烯超级电容器电极材料的制备方法 - Google Patents

一种高比电容石墨烯超级电容器电极材料的制备方法 Download PDF

Info

Publication number
CN104269283B
CN104269283B CN201410583583.5A CN201410583583A CN104269283B CN 104269283 B CN104269283 B CN 104269283B CN 201410583583 A CN201410583583 A CN 201410583583A CN 104269283 B CN104269283 B CN 104269283B
Authority
CN
China
Prior art keywords
pressure
argon
graphene
radio
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410583583.5A
Other languages
English (en)
Other versions
CN104269283A (zh
Inventor
亓钧雷
王旭
张夫
费维栋
冯吉才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Haituo Technology Co., Ltd.
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201410583583.5A priority Critical patent/CN104269283B/zh
Publication of CN104269283A publication Critical patent/CN104269283A/zh
Application granted granted Critical
Publication of CN104269283B publication Critical patent/CN104269283B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)

Abstract

一种高比电容石墨烯超级电容器电极材料的制备方法,本发明涉及石墨烯超级电容器电极材料的制备方法。本发明要解决现有石墨烯制备方法中,温度过高可能会引起石墨烯结构性质的变化和石墨烯褶皱的形成,阻碍了电荷的传输,使电荷湮灭几率增大,且由于石墨烯的疏水性,使石墨烯与电解液之间不能很好地润湿,导致电荷传导和存储的有效面积大大降低的问题。方法:将基底材料置于等离子体增强化学气相沉积真空装置中,通入氩气,调节压强并升温,通入碳源气体,进行沉积,沉积结束后,停止通入碳源气体,进行射频等离子体刻蚀,射频等离子体刻蚀结束后,冷却至室温。本发明用于一种高比电容石墨烯超级电容器电极材料的制备。

Description

一种高比电容石墨烯超级电容器电极材料的制备方法
技术领域
本发明涉及石墨烯超级电容器电极材料的制备方法。
背景技术
随着信息化时代的到来,人们对储能设备有了更高的要求。超级电容器具有目前应用广泛的锂电池无法比拟的优势:功率密度高,充放电速率快,循环寿命达万次以上,工作温度范围宽等。因此,超级电容器目前在汽车、消费性电子产品等行业已得到了广泛的应用。如何提高超级电容器的能量密度,高性能电极材料的开发是关键技术之一。目前,碳纳米材料由于具有良好的电学和机械性能、抗腐蚀性、化学及高温稳定性等诸多优势,是超级电容器理想的电极材料之一。使用石墨烯制造超级电容器,可以很好的解决其他碳材料比表面小、导电性差、比容量小等问题,比目前所有的超级电容器的能量存储密度都高。
然而,在传统石墨烯制备方法中,温度过高可能会引起石墨烯结构性质的变化和石墨烯褶皱的形成,最主要的是无法控制石墨烯的层数,易发生堆叠。大量堆叠的石墨烯不仅阻碍了电荷的传输,使电荷湮灭几率增大,也导致电荷传导和存储的有效面积大大降低。同时,由于石墨烯的疏水本质,使石墨烯与电解液之间不能很好地润湿,进一步降低电荷传导和存储的有效面积。因此,石墨烯超级电容器电极材料一般性能较低,无法满足实际需求。然而,尽管采用一系列防止堆叠的方式来保证石墨烯的高表面,但通常效果不佳。
发明内容
本发明要解决现有石墨烯制备方法中,温度过高可能会引起石墨烯结构性质的变化和石墨烯褶皱的形成,阻碍了电荷的传输,使电荷湮灭几率增大,且由于石墨烯的疏水性,使石墨烯与电解液之间不能很好地润湿,导致电荷传导和存储的有效面积大大降低的问题,而提供一种高比电容石墨烯超级电容器电极材料的制备方法。
一种高比电容石墨烯超级电容器电极材料的制备方法,具体是按照以下步骤进行的:
一、将基底材料置于等离子体增强化学气相沉积真空装置中,抽真空至压强为5Pa以下,以气体流量为10sccm~50sccm通入氩气,调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为100Pa~300Pa,并在压强为100Pa~300Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为700℃~900℃;
二、通入碳源气体,调节碳源气体的气体流量为5sccm~35sccm、氩气的气体流量为80sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa~1000Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为150W~250W、压强为200Pa~1000Pa和温度为700℃~900℃的条件下进行沉积,沉积时间为40min~80min;
三、沉积结束后,停止通入碳源气体,抽真空至压强为5Pa以下,继续通入氩气,调节氩气的气体流量为10sccm~50sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为100Pa~300Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为50W~200W、压强为100Pa~300Pa和温度为700℃~900℃的条件下进行射频等离子体刻蚀,射频时间为10s~300s;
四、射频等离子体刻蚀结束后,关闭射频电源和加热电源,继续以气体流量为10sccm~50sccm通入氩气,在氩气气氛下从温度为700℃~900℃冷却至室温,即得到高比电容石墨烯超级电容器电极材料。
本发明的有益效果是:1、本发明利用等离子体增强化学气相沉积方法,在衬底材料上沉积出少层石墨烯,基底铂薄膜不仅具有优异的导电性能,可直接用作集电体使用,而且在化学气相沉积过程中所形成的独特三维结构有效地增加了比表面积。
2、本发明引入了等离子体的反应增强和刻蚀作用,不仅避免了利用高温来热解碳源气体,而且极大地提高了碳源气体的分解效率。基底材料在沉积前预退火处理形成的独特三维结构有效地增加了比表面积。用等离子体气相沉积法制备的石墨烯直接垂直生长在基底表面,不仅不会发生堆叠现象,而且与表面结合很好。竖直生长的石墨烯参与电荷储存的边缘平面可以直接接触,减少电荷存储的再分配,从而增加储存能力和减小电荷湮灭几率;开放性的结构使材料的多孔效应大为降低,减小离子阻力;石墨烯不光本身导电性能好,而且可以在导电性能优异的材料表面生长,减小了电子阻力。通过利用氩离子刻蚀后的原位垂直生长的石墨烯,在垂直生长石墨烯表面引入大量缺陷,显著地改善了石墨烯与电解液之间的润湿性,进而提升超级电容器的电化学性能。
3、本发明方法简单,高效,低成本,便于工业化生产,制备得到的石墨烯质量高,在微纳米电子器件、太阳能电池电极、光电转换器、透明导电薄膜等领域具有良好的应用前景。
本发明用于一种高比电容石墨烯超级电容器电极材料的制备方法。
附图说明
图1为实施例一制备氩等离子体刻蚀前石墨烯的扫描电镜图片;
图2为实施例一制备氩等离子体刻蚀后高比电容石墨烯的扫描电镜图片;
图3为实施例一制备高比电容石墨烯的拉曼光谱;1为D峰,2为G峰,3为2D峰;
图4为实施例一制备高比电容石墨烯的透射电镜图片;
图5为实施例一制备高比电容石墨烯材料作为电极材料的电化学测试结果,1为扫速50mV/s;2为扫速20mV/s;3为扫速10mV/s;4为扫速5mV/s;5为扫速2mV/s。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式所述的一种高比电容石墨烯超级电容器电极材料的制备方法,具体是按照以下步骤进行的:
一、将基底材料置于等离子体增强化学气相沉积真空装置中,抽真空至压强为5Pa以下,以气体流量为10sccm~50sccm通入氩气,调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为100Pa~300Pa,并在压强为100Pa~300Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为700℃~900℃;
二、通入碳源气体,调节碳源气体的气体流量为5sccm~35sccm、氩气的气体流量为80sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa~1000Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为150W~250W、压强为200Pa~1000Pa和温度为700℃~900℃的条件下进行沉积,沉积时间为40min~80min;
三、沉积结束后,停止通入碳源气体,抽真空至压强为5Pa以下,继续通入氩气,调节氩气的气体流量为10sccm~50sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为100Pa~300Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为50W~200W、压强为100Pa~300Pa和温度为700℃~900℃的条件下进行射频等离子体刻蚀,射频时间为10s~300s;
四、射频等离子体刻蚀结束后,关闭射频电源和加热电源,继续以气体流量为10sccm~50sccm通入氩气,在氩气气氛下从温度为700℃~900℃冷却至室温,即得到高比电容石墨烯超级电容器电极材料。
本实施方式的有益效果是:1、本实施方式利用等离子体增强化学气相沉积方法,在衬底材料上沉积出少层石墨烯,基底铂薄膜不仅具有优异的导电性能,可直接用作集电体使用,而且在化学气相沉积过程中所形成的独特三维结构有效地增加了比表面积。
2、本实施方式引入了等离子体的反应增强和刻蚀作用,不仅避免了利用高温来热解碳源气体,而且极大地提高了碳源气体的分解效率。基底材料在沉积前预退火处理形成的独特三维结构有效地增加了比表面积。用等离子体气相沉积法制备的石墨烯直接垂直生长在基底表面,不仅不会发生堆叠现象,而且与表面结合很好。竖直生长的石墨烯参与电荷储存的边缘平面可以直接接触,减少电荷存储的再分配,从而增加储存能力和减小电荷湮灭几率;开放性的结构使材料的多孔效应大为降低,减小离子阻力;石墨烯不光本身导电性能好,而且可以在导电性能优异的材料表面生长,减小了电子阻力。通过利用氩离子刻蚀后的原位垂直生长的石墨烯,在垂直生长石墨烯表面引入大量缺陷,显著地改善了石墨烯与电解液之间的润湿性,进而提升超级电容器的电化学性能。
3、本实施方式方法简单,高效,低成本,便于工业化生产,制备得到的石墨烯质量高,在微纳米电子器件、太阳能电池电极、光电转换器、透明导电薄膜等领域具有良好的应用前景。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述的基底材料为铂硅衬底材料,铂硅衬底材料中铂厚度为100nm~500nm。其它与具体实施方式一相同。
本具体实施方式所述的基底材料可作为超级电容器的集电体使用。
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是:步骤二中所述的碳源气体为甲烷。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中在压强为100Pa~300Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为800℃。其它与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二中调节碳源气体的气体流量为20sccm、氩气的气体流量为80sccm。其它与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二中调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为600Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为200W、压强为600Pa和温度为800℃的条件下进行沉积,沉积时间为60min。其它与具体实施方式一至五相同。
采用以下实施例验证本发明的有益效果:
实施例一:
本实施例所述的一种高比电容石墨烯超级电容器电极材料的制备方法,具体是按照以下步骤进行的:
一、将基底材料置于等离子体增强化学气相沉积真空装置中,抽真空至压强为5Pa以下,以气体流量为40sccm通入氩气,调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,并在压强为200Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为800℃;
二、通入碳源气体,调节碳源气体的气体流量为20sccm、氩气的气体流量为80sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为600Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为200W、压强为600Pa和温度为800℃的条件下进行沉积,沉积时间为60min;
三、沉积结束后,停止通入碳源气体,抽真空至压强为5Pa以下,然后通入氩气,调节氩气的气体流量为40sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为100W、压强为200Pa和温度为800℃的条件下进行射频等离子体刻蚀,射频时间为30s;
四、射频等离子体刻蚀结束后,关闭射频电源和加热电源,继续以气体流量为40sccm通入氩气,在氩气气氛下从温度为800℃冷却至室温,即得到高比电容石墨烯超级电容器电极材料。
步骤一中所述基底材料为铂硅衬底材料,铂硅衬底材料中铂厚度为200nm。
步骤二中所述的碳源气体为甲烷。
图1为实施例一制备氩等离子体刻蚀前石墨烯的扫描电镜图片;图2为实施例一制备氩等离子体刻蚀后高比电容石墨烯的扫描电镜图片;从扫描电镜图片可看出,在氩离子刻蚀前后,石墨烯的形貌无显著变化,片层状的石墨烯均匀垂直生长在铂基底上。
图3为实施例一制备高比电容石墨烯的拉曼光谱;1为D峰,2为G峰,3为2D峰;通过拉曼光谱中D,G,2D峰的位置以及相对的峰强比值,可以说明刻蚀前获得的碳纳米材料质量好,缺陷较少,且为少层石墨烯,刻蚀后的石墨烯仍为少层石墨烯,但是表面缺陷却大量增加。
图4为实施例一制备高比电容石墨烯的透射电镜图片;由图可知石墨烯的层数很少,且为垂直生长。
图5为实施例一制备高比电容石墨烯材料作为电极材料的电化学测试结果,1为扫速50mV/s;2为扫速20mV/s;3为扫速10mV/s;4为扫速5mV/s;5为扫速2mV/s。利用电化学工作站测试,在扫描速率为50mV/s、20mV/s、10mV/s、5mV/s和2mV/s时比电容分别为614μF/cm、685μF/cm2、770μF/cm2、864μF/cm2和1093μF/cm2
由以上可知,本实施例引入了等离子体的反应增强和刻蚀作用,不仅避免了利用高温来热解碳源气体,而且极大地提高了碳源气体的分解效率。基底材料在沉积前预退火处理形成的独特三维结构有效地增加了比表面积。用等离子体气相沉积法制备的石墨烯直接垂直生长在基底表面,不仅不会发生堆叠现象,而且与表面结合很好。竖直生长的石墨烯参与电荷储存的边缘平面可以直接接触,减少电荷存储的再分配,从而增加储存能力和减小电荷湮灭几率;开放性的结构使材料的多孔效应大为降低,减小离子阻力;石墨烯不光本身导电性能好,而且可以在导电性能优异的材料表面生长,减小了电子阻力。通过利用氩离子刻蚀后的原位垂直生长的石墨烯,在垂直生长石墨烯表面引入大量缺陷,显著地改善了石墨烯与电解液之间的润湿性,进而提升超级电容器的电化学性能。
实施例二:
本实施例所述的一种高比电容石墨烯超级电容器电极材料的制备方法,具体是按照以下步骤进行的:
一、将基底材料置于等离子体增强化学气相沉积真空装置中,抽真空至压强为5Pa以下,以气体流量为40sccm通入氩气,调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,并在压强为200Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为800℃;
二、通入碳源气体,调节碳源气体的气体流量为20sccm、氩气的气体流量为80sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为600Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为200W、压强为600Pa和温度为800℃的条件下进行沉积,沉积时间为60min;
三、沉积结束后,停止通入碳源气体,抽真空至压强为5Pa以下,然后通入氩气,调节氩气的气体流量为40sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为100W、压强为200Pa和温度为800℃的条件下进行射频等离子体刻蚀,射频时间为10s;
四、射频等离子体刻蚀结束后,关闭射频电源和加热电源,继续以气体流量为40sccm通入氩气,在氩气气氛下从温度为800℃冷却至室温,即得到高比电容石墨烯超级电容器电极材料。
步骤一中所述的基底材料为铂硅衬底材料,铂硅衬底材料中铂厚度为200nm。
步骤二中所述的碳源气体为甲烷。
实施例二制备高比电容石墨烯材料作为电极材料的电化学测试结果,利用电化学工作站测试在扫描速率为50mV/s、20mV/s、10mV/s、5mV/s和2mV/s时比电容分别为473μF/cm2、544μF/cm2、608μF/cm2、693μF/cm2和774μF/cm2
实施例三:
本实施例所述的一种高比电容石墨烯超级电容器电极材料的制备方法,具体是按照以下步骤进行的:
一、将基底材料置于等离子体增强化学气相沉积真空装置中,抽真空至压强为5Pa以下,以气体流量为40sccm通入氩气,调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,并在压强为200Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为800℃;
二、通入碳源气体,调节碳源气体的气体流量为20sccm、氩气的气体流量为80sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为600Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为200W、压强为600Pa和温度为800℃的条件下进行沉积,沉积时间为60min;
三、沉积结束后,停止通入碳源气体,抽真空至压强为5Pa以下,然后通入氩气,调节氩气的气体流量为40sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为100W、压强为200Pa和温度为800℃的条件下进行射频等离子体刻蚀,射频时间为60s;
四、射频等离子体刻蚀结束后,关闭射频电源和加热电源,继续以气体流量为40sccm通入氩气,在氩气气氛下从温度为800℃冷却至室温,即得到高比电容石墨烯超级电容器电极材料。
步骤一中所述基底材料为铂硅衬底材料,铂硅衬底材料中铂厚度为200nm。
步骤二中所述的碳源气体为甲烷。
实施例三制备高比电容石墨烯材料作为电极材料的电化学测试结果,利用电化学工作站测试在扫描速率为50mV/s、20mV/s、10mV/s、5mV/s和2mV/s时比电容分别为574μF/cm2、622μF/cm2、695μF/cm2、814μF/cm2和934μF/cm2
实施例四:
本实施例所述的一种高比电容石墨烯超级电容器电极材料的制备方法,具体是按照以下步骤进行的:
一、将基底材料置于等离子体增强化学气相沉积真空装置中,抽真空至压强为5Pa以下,以气体流量为40sccm通入氩气,调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,并在压强为200Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为800℃;
二、通入碳源气体,调节碳源气体的气体流量为20sccm、氩气的气体流量为80sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为600Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为200W、压强为600Pa和温度为800℃的条件下进行沉积,沉积时间为60min;
三、沉积结束后,停止通入碳源气体,抽真空至压强为5Pa以下,然后通入氩气,调节氩气的气体流量为40sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为100W、压强为200Pa和温度为800℃的条件下进行射频等离子体刻蚀,射频时间为120s;
四、射频等离子体刻蚀结束后,关闭射频电源和加热电源,继续以气体流量为40sccm通入氩气,在氩气气氛下从温度为800℃冷却至室温,即得到高比电容石墨烯超级电容器电极材料。
步骤一中所述基底材料为铂硅衬底材料,铂硅衬底材料中铂厚度为200nm。
步骤二中所述的碳源气体为甲烷。
实施例四制备高比电容石墨烯材料作为电极材料的电化学测试结果,利用电化学工作站测试在扫描速率为50mV/s、20mV/s、10mV/s、5mV/s和2mV/s时比电容分别为455μF/cm2、561μF/cm2、630μF/cm2、720μF/cm2和819μF/cm2
实施例五:
本实施例所述的一种高比电容石墨烯超级电容器电极材料的制备方法,具体是按照以下步骤进行的:
一、将基底材料置于等离子体增强化学气相沉积真空装置中,抽真空至压强为5Pa以下,以气体流量为40sccm通入氩气,调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,并在压强为200Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为800℃;
二、通入碳源气体,调节碳源气体的气体流量为20sccm、氩气的气体流量为80sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为600Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为200W、压强为600Pa和温度为800℃的条件下进行沉积,沉积时间为60min;
三、沉积结束后,停止通入碳源气体,抽真空至压强为5Pa以下,然后通入氩气,调节氩气的气体流量为40sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为100W、压强为200Pa和温度为800℃的条件下进行射频等离子体刻蚀,射频时间为300s;
四、射频等离子体刻蚀结束后,关闭射频电源和加热电源,继续以气体流量为40sccm通入氩气,在氩气气氛下从温度为800℃冷却至室温,即得到高比电容石墨烯超级电容器电极材料。
步骤一中所述基底材料为铂硅衬底材料,铂硅衬底材料中铂厚度为200nm。
步骤二中所述的碳源气体为甲烷。
实施例五制备高比电容石墨烯材料作为电极材料的电化学测试结果,利用电化学工作站测试在扫描速率为50mV/s、20mV/s、10mV/s、5mV/s和2mV/s时比电容分别为289μF/cm2、401μF/cm2、496μF/cm2、587μF/cm2和663μF/cm2
实施例六:
本实施例所述的一种高比电容石墨烯超级电容器电极材料的制备方法,具体是按照以下步骤进行的:
一、将基底材料置于等离子体增强化学气相沉积真空装置中,抽真空至压强为5Pa以下,以气体流量为40sccm通入氩气,调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,并在压强为200Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为800℃;
二、通入碳源气体,调节碳源气体的气体流量为20sccm、氩气的气体流量为80sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为600Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为200W、压强为600Pa和温度为800℃的条件下进行沉积,沉积时间为60min;
三、沉积结束后,停止通入碳源气体,抽真空至压强为5Pa以下,然后通入氩气,调节氩气的气体流量为40sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为50W、压强为200Pa和温度为800℃的条件下进行射频等离子体刻蚀,射频时间为30s;
四、射频等离子体刻蚀结束后,关闭射频电源和加热电源,继续以气体流量为40sccm通入氩气,在氩气气氛下从温度为800℃冷却至室温,即得到高比电容石墨烯超级电容器电极材料。
步骤一中所述基底材料为铂硅衬底材料,铂硅衬底材料中铂厚度为200nm。
步骤二中所述的碳源气体为甲烷。
实施例六制备高比电容石墨烯材料作为电极材料的电化学测试结果,利用电化学工作站测试在扫描速率为50mV/s、20mV/s、10mV/s、5mV/s和2mV/s时比电容分别为543μF/cm2、608μF/cm2、669μF/cm2、745μF/cm2和820μF/cm2
实施例七:
本实施例所述的一种高比电容石墨烯超级电容器电极材料的制备方法,具体是按照以下步骤进行的:
一、将基底材料置于等离子体增强化学气相沉积真空装置中,抽真空至压强为5Pa以下,以气体流量为40sccm通入氩气,调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,并在压强为200Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为800℃;
二、通入碳源气体,调节碳源气体的气体流量为20sccm、氩气的气体流量为80sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为600Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为200W、压强为600Pa和温度为800℃的条件下进行沉积,沉积时间为60min;
三、沉积结束后,停止通入碳源气体,抽真空至压强为5Pa以下,然后通入氩气,调节氩气的气体流量为40sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为150W、压强为200Pa和温度为800℃的条件下进行射频等离子体刻蚀,射频时间为30s;
四、射频等离子体刻蚀结束后,关闭射频电源和加热电源,继续以气体流量为40sccm通入氩气,在氩气气氛下从温度为800℃冷却至室温,即得到高比电容石墨烯超级电容器电极材料。
步骤一中所述基底材料为铂硅衬底材料,铂硅衬底材料中铂厚度为200nm。
步骤二中所述的碳源气体为甲烷。
实施例七制备高比电容石墨烯材料作为电极材料的电化学测试结果,利用电化学工作站测试在扫描速率为50mV/s、20mV/s、10mV/s、5mV/s和2mV/s时比电容分别为609μF/cm2、677μF/cm2、768μF/cm2、823μF/cm2和951μF/cm2

Claims (5)

1.一种高比电容石墨烯超级电容器电极材料的制备方法,其特征在于一种高比电容石墨烯超级电容器电极材料的制备方法是按照以下步骤进行的:
一、将基底材料置于等离子体增强化学气相沉积真空装置中,抽真空至压强为5Pa以下,以气体流量为10sccm~50sccm通入氩气,调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为100Pa~300Pa,并在压强为100Pa~300Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为700℃~900℃;
步骤一中所述的基底材料为铂硅衬底材料,铂硅衬底材料中铂厚度为100nm~500nm;
二、通入碳源气体,调节碳源气体的气体流量为5sccm~35sccm、氩气的气体流量为80sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为600Pa~1000Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为150W~250W、压强为600Pa~1000Pa和温度为700℃~900℃的条件下进行沉积,沉积时间为60min~80min;
三、沉积结束后,停止通入碳源气体,抽真空至压强为5Pa以下,继续通入氩气,调节氩气的气体流量为40sccm~50sccm,并调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为200Pa~300Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为50W~100W、压强为200Pa~300Pa和温度为700℃~900℃的条件下进行射频等离子体刻蚀,射频时间为10s~30s;
四、射频等离子体刻蚀结束后,关闭射频电源和加热电源,继续以气体流量为40sccm~50sccm通入氩气,在氩气气氛下从温度为700℃~900℃冷却至室温,即得到高比电容石墨烯超级电容器电极材料。
2.根据权利要求1所述的一种高比电容石墨烯超级电容器电极材料的制备方法,其特征在于步骤二中所述的碳源气体为甲烷。
3.根据权利要求1所述的一种高比电容石墨烯超级电容器电极材料的制备方法,其特征在于步骤一中在压强为100Pa~300Pa和氩气气氛下,以升温速率为30℃/min将温度升温至为800℃。
4.根据权利要求1所述的一种高比电容石墨烯超级电容器电极材料的制备方法,其特征在于步骤二中调节碳源气体的气体流量为20sccm、氩气的气体流量为80sccm。
5.根据权利要求1所述的一种高比电容石墨烯超级电容器电极材料的制备方法,其特征在于步骤二中调节抽真空速度将等离子体增强化学气相沉积真空装置中压强控制为600Pa,然后在沉积系统射频电源频率为13.56MHz、射频功率为200W、压强为600Pa和温度为800℃的条件下进行沉积,沉积时间为60min。
CN201410583583.5A 2014-10-27 2014-10-27 一种高比电容石墨烯超级电容器电极材料的制备方法 Active CN104269283B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410583583.5A CN104269283B (zh) 2014-10-27 2014-10-27 一种高比电容石墨烯超级电容器电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410583583.5A CN104269283B (zh) 2014-10-27 2014-10-27 一种高比电容石墨烯超级电容器电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN104269283A CN104269283A (zh) 2015-01-07
CN104269283B true CN104269283B (zh) 2017-03-22

Family

ID=52160795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410583583.5A Active CN104269283B (zh) 2014-10-27 2014-10-27 一种高比电容石墨烯超级电容器电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN104269283B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118690A (zh) * 2015-09-14 2015-12-02 哈尔滨工业大学 一种缺陷诱导石墨烯基电极材料的制备方法
CN105448531A (zh) * 2015-11-13 2016-03-30 哈尔滨工业大学 一种针状二氧化锰/石墨烯复合电极材料的制备方法
CN105448542A (zh) * 2015-12-04 2016-03-30 大连理工常州研究院有限公司 一种等离子体增强化学气相沉积法制备多孔碳膜的方法
CN106532074B (zh) * 2016-11-30 2018-11-02 哈尔滨工业大学 一种纳米钴/石墨烯核壳结构电催化剂的制备方法
CN110112013B (zh) * 2019-05-28 2021-04-16 北京工业大学 一种碳微纳球结构及超级电容器的制备方法
CN110706937A (zh) * 2019-10-28 2020-01-17 常江 一种石墨烯电极材料的制备方法
CN112047327B (zh) * 2020-08-21 2022-11-11 山西大学 一种三维竖直石墨烯的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103646789A (zh) * 2013-12-20 2014-03-19 哈尔滨工业大学 一种石墨烯-铂超级电容器复合电极材料的制备方法
TW201428787A (zh) * 2012-12-19 2014-07-16 Basf Se 以石墨烯爲基之平面內超電容器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201428787A (zh) * 2012-12-19 2014-07-16 Basf Se 以石墨烯爲基之平面內超電容器
CN103646789A (zh) * 2013-12-20 2014-03-19 哈尔滨工业大学 一种石墨烯-铂超级电容器复合电极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J L Qi等.Ar plasma treatment on few layer graphene sheets for enhancing their field emission properties.《Journal of Physics D: Applied Physics》.2010,第43卷 *
Ronald A Quinlan等.Investigation of defects generated in vertically oriented graphene.《carbon》.2013,第64卷 *

Also Published As

Publication number Publication date
CN104269283A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
CN104269283B (zh) 一种高比电容石墨烯超级电容器电极材料的制备方法
Ma et al. Recent advances in preparation and application of laser-induced graphene in energy storage devices
CN105552382B (zh) 一种金属二次电池负极用集流体及其制备方法和用途
CN102891008A (zh) 一种氢氧化镍纳米片薄膜材料、制备方法及其应用
CN102568853A (zh) 一种基于垂直取向石墨烯的超级电容器电极及其制作方法
CN105679551B (zh) 基于Ni(OH)2/NiO纳米颗粒的石墨烯纳米墙超级电容器电极制作方法
CN103219166A (zh) 一种垂直取向石墨烯表面修饰的集流体及其制备方法
CN104319117B (zh) 一种3d碗状混合纳米结构石墨烯超级电容器电极材料的制备方法
CN105186004B (zh) 一种锂离子电池负极用铜集流体及其制备方法和应用
CN102583339A (zh) 三维多孔炭材料石墨烯化的方法及三维多孔石墨烯
CN104218114A (zh) 一种二维异质结太阳能电池及其制备方法
CN105185599A (zh) 一种超级电容碳复合材料及其制备方法和应用
CN106449156A (zh) 一种用于电容器电极的多孔氮掺杂石墨烯材料的制备方法
CN103880091B (zh) 一种纳米六边形氧化铁的制备方法
CN104064378A (zh) 一种低成本三维结构石墨烯-铝超级电容器复合电极材料的制备方法
CN202473615U (zh) 一种基于垂直取向石墨烯的超级电容器电极
CN104477892A (zh) 一种鳞片状石墨烯的制备方法和使用该方法制备的鳞片状石墨烯器件
CN107221447B (zh) 一种石墨烯柔性复合电极、其制备方法及柔性超级电容器
CN103646789B (zh) 一种石墨烯-铂超级电容器复合电极材料的制备方法
CN107871627A (zh) 泡沫铜担载CuO纳米片的高电容柔性电极材料及其制备方法
CN105551832A (zh) 一步法合成NiO/Co3O4复合电极材料的研究
CN105428092A (zh) 一种掺杂纳米Co(OH)2/Co3O4的石墨烯纳米墙电极的制作方法
Lv et al. Investigation of microstructures of ZnCo2O4 on bare Ni foam and Ni foam coated with graphene and their supercapacitors performance
CN103824704B (zh) 一种碳纳米管-石墨烯超级电容器复合电极材料的制备方法
CN204333111U (zh) 一种铜基石墨烯聚合物锂电池负极结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Qi Junlei

Inventor before: Qi Junlei

Inventor before: Wang Xu

Inventor before: Zhang Fu

Inventor before: Fei Weidong

Inventor before: Feng Jicai

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190212

Address after: 130000 Silicon Valley Street, Changchun High-tech Industrial Development Zone, Jilin Province

Patentee after: Changchun Haituo Technology Co., Ltd.

Address before: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Patentee before: Harbin Institute of Technology