CN110112013B - 一种碳微纳球结构及超级电容器的制备方法 - Google Patents

一种碳微纳球结构及超级电容器的制备方法 Download PDF

Info

Publication number
CN110112013B
CN110112013B CN201910451363.XA CN201910451363A CN110112013B CN 110112013 B CN110112013 B CN 110112013B CN 201910451363 A CN201910451363 A CN 201910451363A CN 110112013 B CN110112013 B CN 110112013B
Authority
CN
China
Prior art keywords
substrate
carbon micro
flow rate
nano sphere
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910451363.XA
Other languages
English (en)
Other versions
CN110112013A (zh
Inventor
王如志
张曼晨
王炳荣
严辉
张铭
王长昊
王波
汪浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201910451363.XA priority Critical patent/CN110112013B/zh
Publication of CN110112013A publication Critical patent/CN110112013A/zh
Application granted granted Critical
Publication of CN110112013B publication Critical patent/CN110112013B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明提供了一种基于碳微纳球结构及超级电容器的制备方法,将多活性位点衬底放入微波等离子体化学气相沉积系统的反应腔体中,设置如下参数:反应腔压:10‑100torr;温度700℃‑900℃;N2流速50‑150cm3/min;H2流速20‑100cm3/min;碳源气体流速1‑20cm3/min;偏压负200‑负50V;微波功率为500‑1500W,调节设备阻抗旋钮至得到不闪烁的橙黄色辉光等离子体气体,反应1‑6h,最终得到碳微纳球材料。碳微纳米球形貌丰富,直径4‑15μm,电容性能良好,电压窗口为‑0.5V‑‑0.5V时,可到达116mF/cm2。采用石墨类衬底作为集流体,增强材料电容性能,提升材料与衬底接触稳定性,原材料廉价易得,方法简单,性能稳定,具有高重复性。

Description

一种碳微纳球结构及超级电容器的制备方法
技术领域:
本发明涉及碳微纳球材料制备及电容器电极设计,属于碳微纳米功能材料制备与应用领域。
背景技术:
目前,超级电容器的主要电极材料为碳材料。市场上应用广泛的碳材料为活性炭。活性炭具有成本低、比表面积大等优势,但是存在大量微孔结构,在电解液中电阻较大,电解液渗透电极过程慢,不利于电荷的存储与传输。相比于传统活性碳,一些新型碳材料如石墨烯等具有良好的电容性能,但是这些材料制备繁杂、价格昂贵,难以推广使用。因此,制备出性能好、成本低的电极材料是当前超级电容器领域的主要研究方向,对超级电容器的大规模实用化具有重大意义。
本发明固定前期优选的反应室气体比例、微波功率等参数,通过反应时间、温度的调控,创造性地采用MPCVD法在无催化剂的条件下,以石墨类材料为基体制备出了特殊形貌碳微球材料,该材料直径4-15μm;测试其恒流充放电性能,发现其电容性能优异。电压窗口为-0.5V--0.5V时,面积比电容高达116mF/cm2。同时,本专利涉及的石墨基材料作为集流体,不仅降低了成本,提升了碳微纳球材料与集流体的结合力,更降低了整个体系的接触电阻,相对传统涂覆法制备的电极样品,导电效率极大提高。另一方面,石墨基材料作为活性物质本身具有一定比电容,可提升改性后材料的整体电容性能。因此,本专利制备的石墨基碳微纳球结构较传统碳电极材料具有极强的优势。该方法制备简单,材料性能稳定,具有高重复性,推动了碳微纳米电容材料制备与应用技术的发展。
发明内容:
本发明提供了一种MPCVD法制备碳微球材料及以该碳微球材料为负极设计电容器件的方法。
本发明中制备碳微纳米球的方法,包括以下工艺步骤:
(1)衬底预处理:将依次用丙酮、乙醇、去离子水超声清洗后的石墨类(包括石墨片与石墨箔等)衬底,放于烘箱烘干备用;对干燥后的石墨类衬底,采用氢、氮或氧等离子体预处理,设置参数为:反应腔压10-30torr;气体流量50-200cm3/min;得到符合实验要求的多活性位点衬底;
(2)将步骤(1)得到多活性位点衬底预处理后的石墨类衬底放入微波等离子体化学气相沉积系统的反应腔体中,设置如下参数:反应腔压:10-100torr;反应温度700℃-900℃;N2流速50-150cm3/min;H2流速20-100cm3/min;碳源气体(CH4、C2H2等)流速1-20cm3/min;偏压负200-负50V;微波功率为500-1500W,调节设备阻抗旋钮功率得到不闪烁的橙黄色辉光的等离子气体气体;反应时间为1-6h,最终得到碳微纳球材料。
(3)所制备的碳微纳米球材料,由碳微纳米颗粒负载而成,表面由粗糙及光滑界面共同构成,整体为类球形结构;
(4)碳微纳米球材料与石墨类衬底以共价键形式结合,牢固不易脱落,这一特点相比传统的涂覆法制备的电极更具优势。
(5)用步骤(2)制备的碳微纳球材料作为负极制备电容器件,正极可选用NiO、ZnO等金属氧化物制备不对称电容器件,也可选用碳微纳球材料制备对称电容器件;本发明对器件的力学性能不做限定,若制备柔性器件,隔膜可选用PVA/KOH凝胶电解质;制备刚性器件,可采用浸润KOH的纤维素隔膜或PVA/KOH凝胶电解质用作隔膜。所制备电容器件至少有一个电极为步骤(2)中制备的碳微纳球材料。
本发明设计的碳微纳球电极中,石墨片基底不仅作为集流体进行电荷转移,而且能够提供部分电容贡献。这一设计大幅降低了活性物质与集流体间的接触阻抗,特别是能够赋予集流体额外功能,因而表现出优异的电容性能和循环稳定性,这对推动超级电容器产业革命具有显著意义。本发明设计的电容器对器件的力学性能不做限定,设计的器件可为柔性电容器也可是刚性电容器,具体情况视要求而定。
本发明的有益效果在于:
(1)本发明以便宜、易得的石墨类材料为衬底,首次制备形貌丰富的多级碳微纳米球材料,直径4-15μm;
(2)所制备的材料可被用作电容材料,电压窗口为-0.5V--0.5V时,面积比电容高达116mF/cm2
(3)该碳微纳米球电容性能稳定,多次测试后具有较高重复性,可被用作电容器电极材料;
(4)采用石墨基材料作为集流体,石墨类材料本身具有一定的电容性能,作为碳微纳球生长基底,碳微纳球材料与基底共价键结合,提升材料结构稳定性的同时增强材料电容性能,可制备柔性及刚性电容器,用于不同应用。
附图说明:
图1为实施例1制备的碳微纳米球的SEM图谱
图2为实施例1制备的碳微纳米球的循环伏安曲线图谱
图3为实施例1制备的碳微纳米球的恒流充放电曲线图谱
图4为超级电容器示意图;电容器结构图(左),电容器截面图(右)
具体实施方式:
下面通过实施例对本发明近行进一步说明,本发明绝非局限于所陈述的实施例。
实施例1
(1)将依次采用丙酮、乙醇、去离子水超声的清洗后的石墨衬底,于烘箱60℃条件下烘干;
(2)将烘干后的石墨衬底放于MPCVD系统中预处理,具体参数为:温度700℃,微波功率800W,H2流速100cm3/min,腔压20torr,预处理时间为20min;
(3)在MPCVD系统中进行碳微纳米球生长实验,具体参数为:温度700℃,微波功率1500W,H2流速40cm3/min,N2流速100cm3/min,CH4流速5cm3/min,偏压-150V,腔压60torr,反应时间为2h条件下制备的碳微纳米球。其SEM图谱见图1,循环伏安曲线图谱见图2,恒流充放电曲线图谱见图3;
(4)以该材料为负极材料,在泡沫镍上涂覆氧化镍材料用作正电极材料,用6mol/LKOH溶液浸润的纤维素隔膜作为隔膜材料,制备电容器件。
实施例2
(1)将依次采用丙酮、乙醇、去离子水超声的清洗后的石墨衬底,于烘箱60℃条件下烘干;
(2)将烘干后的石墨衬底放于MPCVD系统中预处理,具体参数为:温度700℃,微波功率800W,H2流速100cm3/min,腔压30torr,预处理时间为20min;
(3)在MPCVD系统中进行碳微纳米球生长实验,具体参数为:温度800℃,微波功率1500W,H2流速60cm3/min,N2流速80cm3/min,CH4流速10cm3/min,偏压-130V,腔压50torr,反应时间为4h条件下制备的碳微纳米球;
(4)以该材料为负极材料,在碳布上涂覆MnO2材料用作正电极材料,用6mol/L KOH溶液浸润的纤维素隔膜作为隔膜材料,制备电容器件。
实施例3
(1)将依次采用丙酮、乙醇、去离子水超声的清洗后的石墨箔衬底,于烘箱60℃条件下烘干;
(2)将烘干后的石墨衬底放于MPCVD系统中预处理,具体参数为:温度800℃,微波功率900W,H2流速150cm3/min,腔压40torr,预处理时间为15min;
(3)在MPCVD系统中进行碳微纳米球生长实验,具体参数为:温度900℃,微波功率1300W,H2流速40cm3/min,N2流速120cm3/min,CH4流速15cm3/min,偏压-180V,腔压60torr,反应时间为6h条件下制备的碳微纳米球;
(4)以该材料为负极材料,在碳布上涂覆ZnO材料用作电极材料,用6mol/L KOH溶液浸润的纤维素隔膜作为隔膜材料,制备柔性电容器件。

Claims (3)

1.一种碳微纳球材料的制备方法,其特征在于,包括以下步骤:
(1)衬底预处理:将依次用丙酮、乙醇、去离子水超声清洗后的石墨类衬底,放于烘箱烘干备用;对干燥后的石墨类衬底,采用氢、氮或氧等离子体预处理,设置参数为:反应腔压10-30torr;气体流量50-200cm3/min;得到多活性位点衬底;
(2)将步骤(1)得到多活性位点衬底放入微波等离子体化学气相沉积系统的反应腔体中,设置如下参数:反应腔压:10-100torr;反应温度700℃-900℃;N2流速50-150cm3/min;H2流速20-100cm3/min;碳源气体流速1-20cm3/min;偏压负200-负50V;微波功率为500-1500W,调节设备阻抗旋钮至得到不闪烁的橙黄色辉光等离子体气体;反应时间为1-6h,最终得到碳微纳球材料。
2.一种电容器,其具有一对电极、以及介于他们之间的非水电解质隔膜,其中所述一对电极中,至少有一个电极为权利要求1所述的碳微纳球材料。
3.根据权利要求2所述的一种电容器,其特征在于:
当采用各向同性石墨衬底作为刚性衬底制备刚性电容器时,采用浸润KOH的纤维素隔膜或PVA/KOH凝胶电解质类材料用作隔膜材料;
当采用石墨箔衬底作为柔性衬底制备柔性电容器时,隔膜选用PVA/KOH凝胶电解质类材料。
CN201910451363.XA 2019-05-28 2019-05-28 一种碳微纳球结构及超级电容器的制备方法 Active CN110112013B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910451363.XA CN110112013B (zh) 2019-05-28 2019-05-28 一种碳微纳球结构及超级电容器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910451363.XA CN110112013B (zh) 2019-05-28 2019-05-28 一种碳微纳球结构及超级电容器的制备方法

Publications (2)

Publication Number Publication Date
CN110112013A CN110112013A (zh) 2019-08-09
CN110112013B true CN110112013B (zh) 2021-04-16

Family

ID=67492638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910451363.XA Active CN110112013B (zh) 2019-05-28 2019-05-28 一种碳微纳球结构及超级电容器的制备方法

Country Status (1)

Country Link
CN (1) CN110112013B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963479B (zh) * 2019-12-27 2021-05-04 陕西科技大学 一种木质素微波辅助大规模制备纳米碳球的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568853A (zh) * 2012-03-01 2012-07-11 浙江大学 一种基于垂直取向石墨烯的超级电容器电极及其制作方法
US8609060B1 (en) * 2006-08-15 2013-12-17 U.S. Department Of Energy Method of producing carbon coated nano- and micron-scale particles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660383B2 (ja) * 1984-08-09 1994-08-10 松下電器産業株式会社 炭素皮膜及びその製造方法
US5405645A (en) * 1993-07-28 1995-04-11 Applied Science And Technology Inc. High growth rate plasma diamond deposition process and method of controlling same
JP2005293850A (ja) * 2002-03-08 2005-10-20 Akira Fujishima 電力貯蔵体用電極、電力貯蔵体、および電力貯蔵方法
TW201204863A (en) * 2010-05-17 2012-02-01 Carnegie Inst Of Washington Production of large, high purity single crystal CVD diamond
US9187823B2 (en) * 2011-09-07 2015-11-17 National Science Foundation High electric field fabrication of oriented nanostructures
CN103709339B (zh) * 2013-12-25 2016-03-02 武汉大学 内核为微纳碳球的离子型球型聚电解质刷及其制备方法
CN104269283B (zh) * 2014-10-27 2017-03-22 哈尔滨工业大学 一种高比电容石墨烯超级电容器电极材料的制备方法
CN105448542A (zh) * 2015-12-04 2016-03-30 大连理工常州研究院有限公司 一种等离子体增强化学气相沉积法制备多孔碳膜的方法
CN106744931B (zh) * 2016-12-09 2018-11-02 哈尔滨工业大学 一种等离子体刻蚀石墨制备金刚石颗粒的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609060B1 (en) * 2006-08-15 2013-12-17 U.S. Department Of Energy Method of producing carbon coated nano- and micron-scale particles
CN102568853A (zh) * 2012-03-01 2012-07-11 浙江大学 一种基于垂直取向石墨烯的超级电容器电极及其制作方法

Also Published As

Publication number Publication date
CN110112013A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
Senthilkumar et al. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte
Long et al. Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors
Gu et al. Silicon carbide nanowires@ Ni (OH) 2 core–shell structures on carbon fabric for supercapacitor electrodes with excellent rate capability
CN105152170A (zh) 一种蝉蜕基用于电化学电容器的多孔碳材料的制备方法
CN107601501A (zh) 一种生物质基多孔碳的制备方法及其应用
CN106449179A (zh) 一种mof/氮掺杂活性炭非对称超级电容器器件的组装方法
CN102610398B (zh) 常压下制备垂直石墨烯双电层电容器电极的装置和方法
CN110265226B (zh) 一种硫化镍/碳化三聚氰胺泡沫复合电极材料及其制备方法
CN105914056B (zh) 一种石墨烯/泡沫镍复合材料电极的制备方法
Zhu et al. Influence of nitric acid acitivation on structure and capacitive performances of ordered mesoporous carbon
CN112038114B (zh) 一种碳纤维基石墨烯/纳米聚苯胺复合材料的制备方法
CN104577059A (zh) 泡沫镍基底上直接生长碳纳米管来制备电池电极的方法
CN108365229A (zh) 一种大比表面积n掺杂碳布电极及其制备方法、应用
CN108711520A (zh) 一种基于聚丙烯腈的氧化碳布的制备方法及其应用
CN105140052A (zh) 一种基于杉科植物球果制备超级电容器碳电极材料的方法
CN104003371A (zh) 一种以羊绒为原料制备超级电容器用多孔炭材料的方法
JP2016538715A (ja) 経年劣化性能が改善されたウルトラキャパシタ
CN110112013B (zh) 一种碳微纳球结构及超级电容器的制备方法
Zhu et al. Synergistic effect of porous structure and heteroatoms in carbon materials to boost high‐performance supercapacitor
Xiao et al. Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high energy density
CN108470634A (zh) 一种基于氮掺杂热解碳包覆的石墨烯微型超级电容器制作方法
Liao et al. Lavender-like cobalt hydroxide nanoflakes deposited on nickel nanowire arrays for high-performance supercapacitors
CN104445443B (zh) 一种制备纳米片结构氧化钴电极的方法
Wulandari et al. Production of activated carbon from palm empty fruit bunch as supercapacitor electrode material
CN113394027B (zh) 用于交流线路滤波领域的碳纳米洋葱薄膜基超级电容器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant