CN104181966B - 稳压器 - Google Patents

稳压器 Download PDF

Info

Publication number
CN104181966B
CN104181966B CN201410223523.2A CN201410223523A CN104181966B CN 104181966 B CN104181966 B CN 104181966B CN 201410223523 A CN201410223523 A CN 201410223523A CN 104181966 B CN104181966 B CN 104181966B
Authority
CN
China
Prior art keywords
circuit
current
voltage
stablizer
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410223523.2A
Other languages
English (en)
Other versions
CN104181966A (zh
Inventor
矢萩显仁
井村多加志
中下贵雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Publication of CN104181966A publication Critical patent/CN104181966A/zh
Application granted granted Critical
Publication of CN104181966B publication Critical patent/CN104181966B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

本发明提供无需追加测试端子而能够精度良好地调合差动放大电路的尾电流的稳压器。具备:向用于测定保护电路的特性的测试端子输出使差动放大电路的尾电流流过的恒流电路的电流的电流输出电路;停止保护电路的功能的开关电路;以及在测试端子与电流输出电路之间的熔丝。

Description

稳压器
技术领域
本发明涉及稳压器,更具体涉及稳压器的测试电路。
背景技术
图2示出现有的稳压器的框图。
现有的稳压器具备基准电压电路2、分压电路3、输出晶体管4、差动放大电路10、和恒流电路11,从输入电压Vin输出既定的输出电压Vout。
稳压器具备用于过电流保护或过热保护的保护电路13。保护电路13是保护稳压器的电路的重要的电路,因此要求精度。因而,在制造工序中,测定其特性,进行精度的调整。为此,具备测试用的电路或测试端子。
此外,稳压器要求为低消耗电流,因此例如需要精度良好地调整差动放大电路10的尾电流I10。一般,尾电流I10是通过修整(trimming)恒流电路11的晶体管等来调整的(例如,参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开平4-195613号公报。
发明内容
然而,因为仅在集成电路内部使用的恒流,而为了精度良好地调整尾电流I10,需要测定用的端子,因此存在面积变大的课题。
于是,本发明的稳压器,通过将测定差动放大电路10的尾电流I10的端子与保护电路13的测试端子共用,不增加测试端子而能够精度良好地进行测定。
本发明的稳压器,将测定尾电流I10的端子和保护电路13的测试端子共用,因此不会增加测试端子而能够精度良好地进行测定。
附图说明
图1是示出第一实施方式的稳压器的电路图;
图2是现有的稳压器的框图;
图3是示出第二实施方式的稳压器的电路图;
图4是示出第三实施方式的稳压器的电路图。
具体实施方式
以下,参照附图,对本发明的稳压器进行说明。
<第一实施方式>
图1是示出第一实施方式的稳压器的电路图。
第一实施方式的稳压器具备:基准电压电路2、分压电路3、输出晶体管4、差动放大电路10、恒流电路11、保护电路13、电流输出电路14、控制电路15、开关电路16、和熔丝17及18。第一实施方式中,以过热保护电路为例说明保护电路13,但是也可为过电流保护电路或其它的保护电路。
输出晶体管4连接在电源端子1与输出端子5之间。分压电路3连接在输出端子5与接地端子6之间。差动放大电路10的输入端子与基准电压电路2的输出端子和分压电路3的输出端子连接,输出端子与输出晶体管4的控制端子连接。恒流电路11与差动放大电路10连接。保护电路13的输出端子与输出晶体管4的控制端子连接。
在此关于保护电路13,这里以作为过热保护电路进行说明。保护电路13中感温元件101的输出端子经由熔丝18与测试端子Tio连接。此外,被供给工作电流的电流路径上连接有开关电路16。开关电路16是通过控制电路15来控制导通断开。控制电路15也可为例如在检测到输出端子5的过电流时使开关电路16导通的电路。此外,控制电路15也可为例如在检测到输出端子5上输入了表示测试开始的电压时使开关电路16断开的电压检测电路。恒流电路11是使差动放大电路10的工作电流流过的电路,具备恒流源和构成电流镜的晶体管和修整用熔丝。电流输出电路14经由熔丝17连接在测试端子Tio与恒流电路11之间。电流输出电路14具备将恒流电路11的电流镜像的NMOS晶体管21和PMOS晶体管22、23。
如上所述的稳压器如下工作,从而能够测定电路的特性。
首先,说明测定恒流电路11的电流的方法。
控制电路15以使开关电路16断开的方式进行控制。因而,测试端子Tio成为在与接地端子6之间连接二极管的状态。在该状态下,对电源端子1输入电源电压Vin,使稳压器工作。
NMOS晶体管21将恒流电路11的电流镜像。而且,PMOS晶体管22和23构成电流镜电路,将NMOS晶体管21的电流镜像。
因而,若在测试端子Tio与接地间连接电流计,则电流计的阻抗比二极管的阻抗低,因此能够测定恒流电路11的电流。
然后,基于该测定值,修整恒流电路11的电流值、即差动放大电路10的尾电流I10,可精度良好地进行调合。
接着,说明测定保护电路13的特性的方法。
由于结束了恒流电路11的测定,所以熔丝17被切断。控制电路15使开关电路16导通。在该状态下,对电源端子1输入电源电压Vin,使稳压器工作。稳压器从输出端子5输出既定的输出电压Vout。
在此,作为保护电路13的特性,例如在测定开始过热保护的温度的情况下,从测试端子Tio输入代替电压。通过监视输出端子5的输出电压Vout,能够从保护电路13的保护动作和其代替电压值,测定开始过热保护的温度。
并且,基于该测定值,能够通过修整等来精度良好地调合保护电路13的特性。
最后,通过切断熔丝18,测试端子Tio与内部电路被隔离。
如以上说明的那样,第一实施方式的稳压器具备:向测试端子Tio输出恒流电路11的电流的电流输出电路14;使保护电路13的功能停止的开关电路16;以及用于测定保护电路13的特性的测试端子Tio与电流输出电路14之间的熔丝17,因此无需追加用于测定差动放大电路10的尾电流I10的测试端子,因而,无需增加芯片尺寸,而能够精度良好地调合差动放大电路10的尾电流I10。
<第二实施方式>
图3是示出第二实施方式的稳压器的电路图。与图1的不同点在于将开关电路16中有两个的开关设为一个。
保护电路13由检测电路301和传感电路303构成。传感电路303由恒流电路302和感温元件101构成。检测电路301的输出与输出晶体管4的栅极连接,输入经由熔丝18与测试端子Tio连接,电源与电源端子1连接。感温元件101的输出端子经由熔丝18与测试端子Tio连接。恒流电路302连接在感温元件101的输出端子与开关电路16之间。其它与图1相同。
控制电路15以使开关电路16断开的方式进行控制。因而,测试端子Tio成为在与接地端子6之间连接二极管的状态。在该状态下,对电源端子1输入电源电压Vin,使稳压器工作。
NMOS晶体管21将恒流电路11的电流镜像。而且,PMOS晶体管22和23构成电流镜电路,将NMOS晶体管21的电流镜像。
因而,若在测试端子Tio与接地间连接电流计,则电流计的阻抗比二极管的阻抗低,因此能够测定恒流电路11的电流。
然后,基于该测定值修整恒流电路11的电流值、即差动放大电路10的尾电流I10,能够精度良好地进行调合。此外,当测定恒流电路11的电流时,检测电路301工作,但是,由于在检测电路301的输入连接有晶体管的栅极等(未图示),所以电流不会从检测电路301流到测试端子Tio。因此,即便检测电路301工作,电流也不会从检测电路301或传感电路303流入,能够用测试端子Tio来测定恒流电路11的电流。其它与第一实施方式的动作相同。
如以上说明的那样,第二实施方式的稳压器无需追加用于测定差动放大电路10的尾电流I10的测试端子,可以使检测电路301动作的状态下精度良好地调合差动放大电路10的尾电流I10。
<第三实施方式>
图4是示出第三实施方式的稳压器的电路图。与图3的不同点在于将开关电路16移动到检测电路301的电源与电源端子1之间,对电源端子1连接恒流电路302。其它与图3相同。
控制电路15以使开关电路16断开的方式进行控制。因而,测试端子Tio成为在与接地端子6之间连接二极管的状态,使保护电路13的动作停止。在该状态下,对电源端子1输入电源电压Vin,使稳压器工作。
NMOS晶体管21将恒流电路11的电流镜像。而且,PMOS晶体管22和23构成电流镜电路,将NMOS晶体管21的电流镜像。
因而,若在测试端子Tio与接地间连接电流计,则电流计的阻抗比二极管的阻抗低,因此能够测定恒流电路11的电流。如果将流入感温元件101的电流设定为对差动放大电路10的尾电流I10成正比的电流,并且比流过PMOS晶体管23的电流非常小,则在恒流电路11的电流的测定中不受很大影响,能够精度良好地测定恒流电路11的电流。
基于该电流值,修整恒流电路11的电流值、即差动放大电路10的尾电流I10,能够精度良好地进行调合。其它与第二实施方式的动作相同。
如以上说明的那样,第三实施方式的稳压器能够使保护电路13的动作停止并使流入感温元件101的电流与差动放大电路10的尾电流I10成正比,从而能够精度良好地测定恒流电路11的电流并能精度良好地调合差动放大电路10的尾电流I10。
标号说明
10 差动放大电路;11 恒流电路;13 保护电路;14 电流输出电路;15 控制电路;101 感温元件;301 检测电路;302 恒流电路;303 传感电路。

Claims (4)

1.一种稳压器,具备:误差放大电路、供给所述误差放大电路的工作电流的恒流电路、保护电路、和用于测定所述保护电路的特性的测试端子,所述稳压器的特征在于,包括:
用于向所述测试端子输出所述恒流电路的电流的电流输出电路;
设在所述电流输出电路与所述测试端子之间的熔丝;
用于停止所述保护电路的动作的开关电路;以及
用于控制所述开关电路的控制电路,
所述稳压器构成为利用所述测试端子测定所述恒流电路的电流值、即所述误差放大电路的尾电流。
2.根据权利要求1所述的稳压器,其特征在于,
当从所述测试端子输出所述恒流电路的电流时,所述控制电路控制所述开关电路,使所述保护电路的动作停止。
3.根据权利要求1或2所述的稳压器,其特征在于,
所述保护电路具备:
用所述开关电路来停止动作的传感电路;以及
检测所述传感电路的电压的检测电路。
4.根据权利要求3所述的稳压器,其特征在于,
所述传感电路是检测温度的二极管。
CN201410223523.2A 2013-05-23 2014-05-23 稳压器 Expired - Fee Related CN104181966B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-109265 2013-05-23
JP2013109265 2013-05-23
JP2014018757A JP6250418B2 (ja) 2013-05-23 2014-02-03 ボルテージレギュレータ
JP2014-018757 2014-02-03

Publications (2)

Publication Number Publication Date
CN104181966A CN104181966A (zh) 2014-12-03
CN104181966B true CN104181966B (zh) 2017-12-19

Family

ID=51934968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410223523.2A Expired - Fee Related CN104181966B (zh) 2013-05-23 2014-05-23 稳压器

Country Status (5)

Country Link
US (1) US9207694B2 (zh)
JP (1) JP6250418B2 (zh)
KR (1) KR102182027B1 (zh)
CN (1) CN104181966B (zh)
TW (1) TWI592783B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553507B1 (en) * 2016-06-06 2017-01-24 Xcelsem, Llc Self regulating current to current charge pump
JP6793586B2 (ja) * 2017-03-30 2020-12-02 エイブリック株式会社 ボルテージレギュレータ
JP7008523B2 (ja) * 2018-02-05 2022-01-25 エイブリック株式会社 過電流制限回路、過電流制限方法及び電源回路
JP7126931B2 (ja) * 2018-11-30 2022-08-29 エイブリック株式会社 過熱保護回路及び半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872386A (en) * 1973-05-07 1975-03-18 Gabriel J Luhowy Test device
JP2706720B2 (ja) 1990-11-28 1998-01-28 セイコーインスツルメンツ株式会社 ボルテージ・レギュレーター
US5548205A (en) * 1993-11-24 1996-08-20 National Semiconductor Corporation Method and circuit for control of saturation current in voltage regulators
JP4169670B2 (ja) * 2003-09-19 2008-10-22 株式会社リコー 出力制御回路と定電圧源icおよび電子機器
JP2005235932A (ja) * 2004-02-18 2005-09-02 Seiko Instruments Inc ボルテージレギュレータおよびその製造方法
JP4855913B2 (ja) * 2006-12-01 2012-01-18 セイコーインスツル株式会社 ボルテージレギュレータ
JP2008210078A (ja) * 2007-02-26 2008-09-11 Ricoh Co Ltd 定電圧電源回路とそのテスト方法およびそれを用いた電子機器
JP5014194B2 (ja) * 2008-02-25 2012-08-29 セイコーインスツル株式会社 ボルテージレギュレータ
CN101650381A (zh) * 2008-08-14 2010-02-17 联阳半导体股份有限公司 电源转换装置及其电流检测装置
JP5353490B2 (ja) * 2009-07-01 2013-11-27 ミツミ電機株式会社 半導体装置
EP2454643B1 (en) * 2009-07-16 2018-09-05 Telefonaktiebolaget LM Ericsson (publ) Low-dropout regulator
JP5806853B2 (ja) * 2011-05-12 2015-11-10 セイコーインスツル株式会社 ボルテージレギュレータ
JP2013098599A (ja) * 2011-10-28 2013-05-20 Advantest Corp ドライバ回路および試験装置

Also Published As

Publication number Publication date
US9207694B2 (en) 2015-12-08
JP2015005268A (ja) 2015-01-08
JP6250418B2 (ja) 2017-12-20
TW201512802A (zh) 2015-04-01
US20140347022A1 (en) 2014-11-27
TWI592783B (zh) 2017-07-21
KR20140138050A (ko) 2014-12-03
CN104181966A (zh) 2014-12-03
KR102182027B1 (ko) 2020-11-23

Similar Documents

Publication Publication Date Title
CN101567628B (zh) 稳压器
TWI489239B (zh) 電壓調節器
CN104914913B (zh) 过热保护电路及稳压器
CN103309387B (zh) 电压调节器
CN105807839B (zh) 稳压器
CN104181966B (zh) 稳压器
TWI529512B (zh) Voltage regulator
CN103324240B (zh) 半导体装置
TWI631807B (zh) 電壓調節器
KR20060043676A (ko) 전류 검출 기능이 부가된 반도체 집적 회로, 및 이를이용한 전원 장치
US9829900B2 (en) Voltage regulator
CN101660928A (zh) 2端子型半导体传感器装置
CN102622033A (zh) 电压调节器
JP2008181451A (ja) 定電流回路
CN104980136A (zh) 开关器件
JP6688648B2 (ja) 電流検出回路
JP5319982B2 (ja) 半導体装置
TWI722128B (zh) 磁感測器及磁感測器裝置
CN105043571B (zh) 过热检测电路及半导体装置
JP2015046543A (ja) 半導体集積回路装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160310

Address after: Chiba County, Japan

Applicant after: DynaFine Semiconductor Co.,Ltd.

Address before: Chiba, Chiba, Japan

Applicant before: Seiko Instruments Inc.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: YAHAGI AKIHITO

Inventor after: Imura Takashi

Inventor after: Takao Nakashimo

Inventor before: YAHAGI AKIHITO

Inventor before: Imura Takashi

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Chiba County, Japan

Patentee after: ABLIC Inc.

Address before: Chiba County, Japan

Patentee before: DynaFine Semiconductor Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171219