CN104177110A - 波纹构型陶瓷基复合材料平板的制备方法 - Google Patents

波纹构型陶瓷基复合材料平板的制备方法 Download PDF

Info

Publication number
CN104177110A
CN104177110A CN201410431788.1A CN201410431788A CN104177110A CN 104177110 A CN104177110 A CN 104177110A CN 201410431788 A CN201410431788 A CN 201410431788A CN 104177110 A CN104177110 A CN 104177110A
Authority
CN
China
Prior art keywords
preparation
temperature
corrugated configuration
corrugated
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410431788.1A
Other languages
English (en)
Other versions
CN104177110B (zh
Inventor
曾涛
成夙
景绍东
方岱宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201410431788.1A priority Critical patent/CN104177110B/zh
Publication of CN104177110A publication Critical patent/CN104177110A/zh
Application granted granted Critical
Publication of CN104177110B publication Critical patent/CN104177110B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

波纹构型陶瓷基复合材料平板的制备方法,本发明涉及复合材料平板的制备方法。本发明为了解决陶瓷基波纹夹芯结构板的制备存在在现有技术中难以成型的问题。方法:一、混合,制备浸渍液;二、将碳纤维布制备成上面板、下面板和芯子面板;三、装入到波纹板制备模具;四、制备初期成型体;五、制备波纹构型SiC复合材料初产品;六、制备波纹构型SiC复合材料中间体;七、重复步骤六制备成品。本发明制备的波纹构型陶瓷基复合材料平板既具有波纹材料的结构的优良性,又具有SiC陶瓷的耐高温、耐腐蚀、抗氧化、耐摩擦的特性。本发明用于制备波纹构型陶瓷基复合材料平板。

Description

波纹构型陶瓷基复合材料平板的制备方法
技术领域
本发明涉及复合材料平板的制备方法。
背景技术
波纹夹芯结构构件大部分是金属结构,采用机械设备连接碾压或者冲击成型。且大部分用于低温或者常温条件下。其承载能力与耐高温性能相对较低。
陶瓷基波纹夹芯复合材料作为潜在的热防护材料,具有较高的承载能力,有质轻,耐高温性能好等特点。碳纤维复合材料具有比强度高、比刚度大、耐腐蚀性好及在很宽温度范围内的尺寸稳定性好等优点,具有许多金属材料无法比拟的优点,目前已大量应用于宇航、航空等工业领域。雷达电子工业也广泛采用碳纤维复合材料制造天线、波导、馈源等高精度功能结构件和天线框架、机柜、显控台、支架等结构件,在有效减轻重量的同时,提高了雷达的技战术指标,尤其为机载雷达、星载雷达的研制生产提供了强力保障。波纹板构件是某雷达天线框架的重要组成部分,主要用于组件的精确定位。但是现有技术中陶瓷基波纹夹芯结构构件存在在加工制作中难以成型的问题。
发明内容
本发明要解决现有技术中陶瓷基波纹夹芯结构构件存在在加工制作中难以成型的问题,进而提供波纹构型陶瓷基复合材料平板的制备方法。
波纹构型陶瓷基复合材料平板的制备方法,具体是按照以下步骤进行的:
一、将聚碳硅烷、二乙烯苯和四氢呋喃混合均匀,得到浸渍液;其中,二乙烯苯与聚碳硅烷的质量比为(0.3~0.5)∶1,四氢呋喃与聚碳硅烷的质量比为(1~3)∶1;
二、将碳纤维布放入步骤一得到的浸渍液中,在压强小于0.1MPa的真空条件下,浸渍1h,再将浸渍后的碳纤维布裁剪成上下面板层和芯子面板层,然后将上下面板叠层铺设3~5层、芯子面板叠层铺设5~7层,放入烘箱中,控制温度为80℃~100℃,烘干2h~3h,由上下面板层得到上面板和下面板,由芯子面板层得到芯子面板;
三、将步骤二得到的上面板、下面板和芯子面板装入到波纹板制备模具中;
四、将步骤三的模具放入真空罐中,施加0.1MPa的压力,控制升温速率为10℃/min,升温至温度为110℃~160℃,固化2h~8h,得到初期成型体;
五、将步骤四得到的初期成型体放入高温烧结炉中,抽真空至真空度小于0.1Pa,再通入氮气至真空度为0.025MPa,然后控制升温速率为10℃/min~20℃/min,升温至温度为1100℃~1300℃,保持30min,得到波纹构型SiC复合材料初产品;
六、将步骤五得到的波纹构型SiC复合材料初产品放入步骤一得到的浸渍液中,在压强小于0.1MPa的真空条件下,浸渍1h,再在温度为120℃条件下,固化3h,升温至温度为150℃条件下,固化3h,然后放入高温烧结炉中,抽真空至真空度小于0.1Pa,再通入氮气至真空度为0.025MPa,以10℃/min~20℃/min的升温速率,升温至温度为1100℃~1300℃,保持10min~60min,得到波纹构型SiC复合材料中间体;
七、重复步骤六的处理过程,至波纹构型SiC复合材料中间体的重量较当次处理前的增重小于1%,即得到了波纹构型陶瓷基复合材料平板。
步骤二中上面板和下面板是相同的面板。
本发明步骤三中所述的波纹板制备模具包括垫板、压板、两个滑轨板、四个圆柱连接件、N+1个梯形定滑块和N个梯形动滑块,滑轨板为长方形滑轨板,每个滑轨板底部沿水平方向均布加工有N+1个正立的等腰梯形通孔,靠近每个正立的等腰梯形通孔沿水平方向均布加工有N个倒立的等腰梯形通孔,且N+1个正立的等腰梯形通孔和N个倒立的等腰梯形通孔均相对交错设置,2≤N≤10,且N为整数,每个倒立的等腰梯形通孔的上方竖直加工有一个长方形通孔,每个倒立的等腰梯形通孔均与上方的长方形通孔连通,梯形定滑块的横截面等腰梯形,梯形动滑块的横截面为等腰梯形,两个滑轨板相对设置,且两个滑轨板的两端分别通过两个圆柱连接件固定连接,每个梯形定滑块的两端分别设置在两个相对设置滑轨板上正立的等腰梯形通孔内,每个梯形动滑块的两端分别倒立设置在两个相对设置滑轨板上倒立的等腰梯形通孔内,垫板设置在N+1个梯形定滑块的下方,压板设置在N个梯形动滑块的上方;
该波纹板制备模具的工作原理如下:
将浸渍过的碳纤维布裁剪成三块略小于垫板底面面积的上、下面板和芯子面板。将下面板平铺在垫板上,使其设置在N+1个梯形定滑块和垫板之间。将芯子面板设置在N+1个梯形定滑块上,将N个梯形动滑块分别放置在倒立的等腰梯形通孔内,将N个梯形动滑块向下压并将芯子面板压成波纹状。然后将上面板铺在动滑块上,将压板压在上面板上。将磨具放入到真空罐中固化,进而得到初期的试件,然后经过高温裂解即可得到成品构件。
本发明制备的制备方法主要针对于PIP浸渍裂解法制备陶瓷基波纹夹芯结构复合材料,PIP法制备复合材料的致密化过程,主要包括浸渍、交联固化和裂解转化三个过程。制作过程完全不同于波纹构型其他材质的材料。同时制作也需要特定制作的模具制作。
本发明的有益效果是:本发明制备的波纹构型陶瓷基复合材料平板既具有波纹材料的结构的优良性,又具有SiC陶瓷的耐高温、耐腐蚀、抗氧化、耐摩擦的特性,同时,波纹结构提供了有利的空间,方便了多功能的设计和实现,如布线、散热、吸能、隔热,吸声、吸收电磁波、储油和配置电池等,使波纹构型SiC复合材料平板有了更广泛的应用。
本发明用于制备波纹构型陶瓷基复合材料平板。
附图说明
图1为实施例一制备的波纹构型陶瓷基复合材料平板的示意图;
图2为具体实施方式一步骤三所述的波纹板制备模具的主视图,图3为俯视图,图4为侧视图。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式波纹构型陶瓷基复合材料平板的制备方法,具体是按照以下步骤进行的:
一、将聚碳硅烷、二乙烯苯和四氢呋喃混合均匀,得到浸渍液;其中,二乙烯苯与聚碳硅烷的质量比为(0.3~0.5)∶1,四氢呋喃与聚碳硅烷的质量比为(1~3)∶1;
二、将碳纤维布放入步骤一得到的浸渍液中,在压强小于0.1MPa的真空条件下,浸渍1h,再将浸渍后的碳纤维布裁剪成上下面板层和芯子面板层,然后将上下面板叠层铺设3~5层、芯子面板叠层铺设5~7层,放入烘箱中,控制温度为80℃~100℃,烘干2h~3h,由上下面板层得到上面板A和下面板B,由芯子面板层得到芯子面板C;
三、将步骤二得到的上面板A、下面板B和芯子面板C装入到波纹板制备模具中;
四、将步骤三的模具放入真空罐中,施加0.1MPa的压力,控制升温速率为10℃/min,升温至温度为110℃~160℃,固化2h~8h,得到初期成型体;
五、将步骤四得到的初期成型体放入高温烧结炉中,抽真空至真空度小于0.1Pa,再通入氮气至真空度为0.025MPa,然后控制升温速率为10℃/min~20℃/min,升温至温度为1100℃~1300℃,保持30min,得到波纹构型SiC复合材料初产品;
六、将步骤五得到的波纹构型SiC复合材料初产品放入步骤一得到的浸渍液中,在压强小于0.1MPa的真空条件下,浸渍1h,再在温度为120℃条件下,固化3h,升温至温度为150℃条件下,固化3h,然后放入高温烧结炉中,抽真空至真空度小于0.1Pa,再通入氮气至真空度为0.025MPa,以10℃/min~20℃/min的升温速率,升温至温度为1100℃~1300℃,保持10min~60min,得到波纹构型SiC复合材料中间体;
七、重复步骤六的处理过程,至波纹构型SiC复合材料中间体的重量较当次处理前的增重小于1%,即得到了波纹构型陶瓷基复合材料平板。
本实施方式步骤三所述的波纹板制备模具包括垫板1、压板7、两个滑轨板2、四个圆柱连接件3、N+1个梯形定滑块5和N个梯形动滑块6,滑轨板2为长方形滑轨板,每个滑轨板2底部沿水平方向均布加工有N+1个正立的等腰梯形通孔8,靠近每个正立的等腰梯形通孔8沿水平方向均布加工有N个倒立的等腰梯形通孔9,且N+1个正立的等腰梯形通孔8和N个倒立的等腰梯形通孔9均相对交错设置,2≤N≤10,且N为整数,每个倒立的等腰梯形通孔9的上方竖直加工有一个长方形通孔10,每个倒立的等腰梯形通孔9均与上方的长方形通孔10连通,梯形定滑块5的横截面等腰梯形,梯形动滑块6的横截面为等腰梯形,两个滑轨板2相对设置,且两个滑轨板2的两端分别通过两个圆柱连接件3固定连接,每个梯形定滑块5的两端分别设置在两个相对设置滑轨板2上正立的等腰梯形通孔8内,每个梯形动滑块6的两端分别倒立设置在两个相对设置滑轨板2上倒立的等腰梯形通孔9内,垫板1设置在N+1个梯形定滑块5的下方,压板7设置在N个梯形动滑块6的上方;
垫板1是由低碳钢材料制成的垫板1,滑轨板2是由低碳钢材料制成的滑轨板2,圆柱连接件3是由低碳钢材料制成的圆柱连接件3,梯形定滑块5是由低碳钢材料制成的梯形定滑块5,梯形动滑块6是由低碳钢材料制成的梯形动滑块6,压板7是由低碳钢材料制成的压板7;
所述制备模具还包括四个螺母4,每个圆柱连接件3的两端分别加工有外螺纹,圆柱连接件3两端的外螺纹分别穿过两个滑轨板2,两个圆柱连接件3的每端分别设有一个螺母4;
N的的取值范围为4≤N≤6;
垫板1和压板7均为长方体;
梯形定滑块5的长度为d,梯形动滑块6的长度为h,h大于d;
梯形定滑块5的横截面的腰与水平面说成的角度为a,梯形动滑块6的横截面的腰与水平面说成的角度为r,a的数值与r的数值相等,且a的数值为10°~75°。
将浸渍过的碳纤维布裁剪成三块略小于垫板底面面积的上、下面板和芯子面板。将下面板平铺在垫板上,使其设置在N+1个梯形定滑块和垫板之间。将芯子面板设置在N+1个梯形定滑块上,将N个梯形动滑块分别放置在倒立的等腰梯形通孔内,将N个梯形动滑块向下压并将芯子面板压成波纹状。然后将上面板铺在动滑块上,将压板压在上面板上。将磨具放入到真空罐中固化,进而得到初期的试件,然后经过高温裂解即可得到成品构件。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中二乙烯苯与聚碳硅烷的质量比为0.4∶1,四氢呋喃与聚碳硅烷的质量比为2∶1。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一不同的是:步骤一中采用恒温磁力搅拌器混合均匀。其它与具体实施方式一相同。
具体实施方式四:本实施方式与具体实施方式一不同的是:步骤二中上面板A和下面板B的尺寸均为130mm×80mm、芯子面板C的尺寸为180mm×80mm。其它与具体实施方式一相同。
具体实施方式五:本实施方式与具体实施方式一不同的是:步骤二中控制温度为90℃,烘干2.5h。其它与具体实施方式一相同。
具体实施方式六:本实施方式与具体实施方式一不同的是:步骤五中控制升温速率为15℃/min,升温至温度为1200℃。其它与具体实施方式一相同。
具体实施方式七:本实施方式与具体实施方式一不同的是:步骤六中以15℃/min的升温速率,升温至温度为1200℃,保持30min。其它与具体实施方式一相同。
采用以下实施例验证本发明的有益效果:
实施例一:
本实施例波纹构型陶瓷基复合材料平板的制备方法,具体是按照以下步骤进行的:
一、将聚碳硅烷、二乙烯苯和四氢呋喃混合均匀,得到浸渍液;其中,二乙烯苯与聚碳硅烷的质量比为0.4∶1,四氢呋喃与聚碳硅烷的质量比为2∶1;
二、将碳纤维布放入步骤一得到的浸渍液中,在压强小于0.1MPa的真空条件下,浸渍1h,再将浸渍后的碳纤维布裁剪成上下面板层和芯子面板层,然后将上下面板叠层铺设4层、芯子面板叠层铺设6层,放入烘箱中,控制温度为90℃,烘干2.5h,由上下面板层得到上面板A和下面板B,由芯子面板层得到芯子面板C;
三、将步骤二得到的上面板A、下面板B和芯子面板C装入到波纹板制备模具中;
四、将步骤三的模具放入真空罐中,施加0.1MPa的压力,控制升温速率为10℃/min,升温至温度为120℃,固化3h,再升温至温度为150℃,固化3h,得到初期成型体;
五、将步骤四得到的初期成型体放入高温烧结炉中,抽真空至真空度小于0.1Pa,再通入氮气至真空度为0.025MPa,然后控制升温速率为15℃/min,升温至温度为1200℃,保持30min,得到波纹构型SiC复合材料初产品;
六、将步骤五得到的波纹构型SiC复合材料初产品放入步骤一得到的浸渍液中,在压强小于0.1MPa的真空条件下,浸渍1h,再在温度为120℃条件下,固化3h,升温至温度为150℃条件下,固化3h,然后放入高温烧结炉中,抽真空至真空度小于0.1Pa,再通入氮气至真空度为0.025MPa,以15℃/min的升温速率,升温至温度为1200℃,保持30min,得到波纹构型SiC复合材料中间体;
七、重复步骤六的处理过程,至波纹构型SiC复合材料中间体的重量较当次处理前的增重小于1%,即得到了波纹构型陶瓷基复合材料平板;
其中步骤二中上面板A和下面板B的尺寸均为130mm×80mm、芯子面板C的尺寸为180mm×80mm。
本实施例制备的波纹构型陶瓷基复合材料平板的示意图如图1所示。
本实施例制备的波纹构型陶瓷基复合材料平板既具有波纹材料的结构的优良性,又具有SiC陶瓷的耐高温、耐腐蚀、抗氧化、耐摩擦的特性,同时,波纹结构提供了有利的空间,方便了多功能的设计和实现,如布线、散热、吸能、隔热,吸声、吸收电磁波、储油和配置电池等,使波纹构型SiC复合材料平板有了更广泛的应用。

Claims (7)

1.波纹构型陶瓷基复合材料平板的制备方法,其特征在于具体是按照以下步骤进行的:
一、将聚碳硅烷、二乙烯苯和四氢呋喃混合均匀,得到浸渍液;其中,二乙烯苯与聚碳硅烷的质量比为(0.3~0.5)∶1,四氢呋喃与聚碳硅烷的质量比为(1~3)∶1;
二、将碳纤维布放入步骤一得到的浸渍液中,在压强小于0.1MPa的真空条件下,浸渍1h,再将浸渍后的碳纤维布裁剪成上下面板层和芯子面板层,然后将上下面板叠层铺设3~5层、芯子面板叠层铺设5~7层,放入烘箱中,控制温度为80℃~100℃,烘干2h~3h,由上下面板层得到上面板(A)和下面板(B),由芯子面板层得到芯子面板(C);
三、将步骤二得到的上面板(A)、下面板(B)和芯子面板(C)装入到波纹板制备模具中;
四、将步骤三的模具放入真空罐中,施加0.1MPa的压力,控制升温速率为10℃/min,升温至温度为110℃~160℃,固化2h~8h,得到初期成型体;
五、将步骤四得到的初期成型体放入高温烧结炉中,抽真空至真空度小于0.1Pa,再通入氮气至真空度为0.025MPa,然后控制升温速率为10℃/min~20℃/min,升温至温度为1100℃~1300℃,保持30min,得到波纹构型SiC复合材料初产品;
六、将步骤五得到的波纹构型SiC复合材料初产品放入步骤一得到的浸渍液中,在压强小于0.1MPa的真空条件下,浸渍1h,再在温度为120℃条件下,固化3h,升温至温度为150℃条件下,固化3h,然后放入高温烧结炉中,抽真空至真空度小于0.1Pa,再通入氮气至真空度为0.025MPa,以10℃/min~20℃/min的升温速率,升温至温度为1100℃~1300℃,保持10min~60min,得到波纹构型SiC复合材料中间体;
七、重复步骤六的处理过程,至波纹构型SiC复合材料中间体的重量较当次处理前的增重小于1%,即得到了波纹构型陶瓷基复合材料平板。
2.根据权利要求1所述的波纹构型陶瓷基复合材料平板的制备方法,其特征在于步骤一中二乙烯苯与聚碳硅烷的质量比为0.4∶1,四氢呋喃与聚碳硅烷的质量比为2∶1。
3.根据权利要求1所述的波纹构型陶瓷基复合材料平板的制备方法,其特征在于步骤一中采用恒温磁力搅拌器混合均匀。
4.根据权利要求1所述的波纹构型陶瓷基复合材料平板的制备方法,其特征在于步骤二中上面板(A)和下面板(B)的尺寸均为130mm×80mm、芯子面板(C)的尺寸为180mm×80mm。
5.根据权利要求1所述的波纹构型陶瓷基复合材料平板的制备方法,其特征在于步骤二中控制温度为90℃,烘干2.5h。
6.根据权利要求1所述的波纹构型陶瓷基复合材料平板的制备方法,其特征在于步骤五中控制升温速率为15℃/min,升温至温度为1200℃。
7.根据权利要求1所述的波纹构型陶瓷基复合材料平板的制备方法,其特征在于步骤六中以15℃/min的升温速率,升温至温度为1200℃,保持30min。
CN201410431788.1A 2014-08-28 2014-08-28 波纹构型陶瓷基复合材料平板的制备方法 Expired - Fee Related CN104177110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410431788.1A CN104177110B (zh) 2014-08-28 2014-08-28 波纹构型陶瓷基复合材料平板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410431788.1A CN104177110B (zh) 2014-08-28 2014-08-28 波纹构型陶瓷基复合材料平板的制备方法

Publications (2)

Publication Number Publication Date
CN104177110A true CN104177110A (zh) 2014-12-03
CN104177110B CN104177110B (zh) 2016-01-20

Family

ID=51958495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410431788.1A Expired - Fee Related CN104177110B (zh) 2014-08-28 2014-08-28 波纹构型陶瓷基复合材料平板的制备方法

Country Status (1)

Country Link
CN (1) CN104177110B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104723578A (zh) * 2015-03-26 2015-06-24 哈尔滨理工大学 陶瓷基波纹机翼进气道前缘板的制备模具及方法
CN104723579A (zh) * 2015-04-13 2015-06-24 哈尔滨工业大学 一种全复合材料波纹夹层圆柱壳的组合模具
CN105083528A (zh) * 2015-09-07 2015-11-25 哈尔滨工业大学 一种热防护装置
CN105291310A (zh) * 2015-11-26 2016-02-03 哈尔滨理工大学 弧形点阵结构制备模具
CN106142594A (zh) * 2015-05-11 2016-11-23 湾流航空航天公司 用于生产增强结构的设备和方法
TWI602794B (zh) * 2016-03-14 2017-10-21 National Chung-Shan Institute Of Science And Tech Ceramic composite materials production methods
CN108404998A (zh) * 2017-12-06 2018-08-17 启源(西安)大荣环保科技有限公司 一种适于波纹式脱硝催化剂使用的基材及其成型制备方法
CN110128158A (zh) * 2019-04-22 2019-08-16 湖南远辉复合材料有限公司 防热/隔热/承载一体化陶瓷基轻质夹芯结构及其制备方法
CN110183239A (zh) * 2019-04-22 2019-08-30 湖南远辉复合材料有限公司 一种陶瓷基复合材料点阵结构的组合式制备方法
CN110204319A (zh) * 2019-04-22 2019-09-06 湖南远辉复合材料有限公司 一种陶瓷基复合材料点阵结构的整体式制备方法
CN110253722A (zh) * 2019-04-22 2019-09-20 湖南远辉复合材料有限公司 一种复合材料点阵结构纤维预制体整体成型模具
CN110526727A (zh) * 2019-08-29 2019-12-03 航天材料及工艺研究所 一种陶瓷基复合材料结构及其制备方法
US10843416B2 (en) 2015-05-11 2020-11-24 Gulfstream Aerospace Corporation Composite reinforcement structures and aircraft assemblies comprising composite reinforcement structures
CN113681999A (zh) * 2021-08-04 2021-11-23 湖南大学 一种基于耦合变形失效机理的波纹夹芯夹层复合材料结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090232A (en) * 1996-03-29 2000-07-18 Wilhelm Karmann Gmbh Component made from a metallic foam material
CN102515870A (zh) * 2011-12-10 2012-06-27 西北工业大学 一种C/SiC-ZrB2-ZrC超高温陶瓷基复合材料的制备方法
CN102964125A (zh) * 2012-11-28 2013-03-13 北京大学 一种超高温氧化环境下的电致热陶瓷发热体的制备方法
CN103253940A (zh) * 2012-11-23 2013-08-21 哈尔滨理工大学 一种碳化锆-碳化硅-氮化硅超高温陶瓷复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090232A (en) * 1996-03-29 2000-07-18 Wilhelm Karmann Gmbh Component made from a metallic foam material
CN102515870A (zh) * 2011-12-10 2012-06-27 西北工业大学 一种C/SiC-ZrB2-ZrC超高温陶瓷基复合材料的制备方法
CN103253940A (zh) * 2012-11-23 2013-08-21 哈尔滨理工大学 一种碳化锆-碳化硅-氮化硅超高温陶瓷复合材料及其制备方法
CN102964125A (zh) * 2012-11-28 2013-03-13 北京大学 一种超高温氧化环境下的电致热陶瓷发热体的制备方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104723578B (zh) * 2015-03-26 2017-01-11 哈尔滨理工大学 陶瓷基波纹机翼进气道前缘板的制备模具及方法
CN104723578A (zh) * 2015-03-26 2015-06-24 哈尔滨理工大学 陶瓷基波纹机翼进气道前缘板的制备模具及方法
CN104723579A (zh) * 2015-04-13 2015-06-24 哈尔滨工业大学 一种全复合材料波纹夹层圆柱壳的组合模具
CN104723579B (zh) * 2015-04-13 2017-03-22 哈尔滨工业大学 一种全复合材料波纹夹层圆柱壳的组合模具
US10843416B2 (en) 2015-05-11 2020-11-24 Gulfstream Aerospace Corporation Composite reinforcement structures and aircraft assemblies comprising composite reinforcement structures
CN106142594A (zh) * 2015-05-11 2016-11-23 湾流航空航天公司 用于生产增强结构的设备和方法
US10315366B2 (en) 2015-05-11 2019-06-11 Gulfstream Aerospace Corporation Apparatuses and methods for making reinforcement structures
CN105083528A (zh) * 2015-09-07 2015-11-25 哈尔滨工业大学 一种热防护装置
CN105291310A (zh) * 2015-11-26 2016-02-03 哈尔滨理工大学 弧形点阵结构制备模具
TWI602794B (zh) * 2016-03-14 2017-10-21 National Chung-Shan Institute Of Science And Tech Ceramic composite materials production methods
CN108404998A (zh) * 2017-12-06 2018-08-17 启源(西安)大荣环保科技有限公司 一种适于波纹式脱硝催化剂使用的基材及其成型制备方法
CN110253722A (zh) * 2019-04-22 2019-09-20 湖南远辉复合材料有限公司 一种复合材料点阵结构纤维预制体整体成型模具
CN110204319A (zh) * 2019-04-22 2019-09-06 湖南远辉复合材料有限公司 一种陶瓷基复合材料点阵结构的整体式制备方法
CN110183239A (zh) * 2019-04-22 2019-08-30 湖南远辉复合材料有限公司 一种陶瓷基复合材料点阵结构的组合式制备方法
CN110128158A (zh) * 2019-04-22 2019-08-16 湖南远辉复合材料有限公司 防热/隔热/承载一体化陶瓷基轻质夹芯结构及其制备方法
CN110253722B (zh) * 2019-04-22 2021-08-20 湖南远辉复合材料有限公司 一种复合材料点阵结构纤维预制体整体成型模具
CN110128158B (zh) * 2019-04-22 2021-11-02 湖南远辉复合材料有限公司 防热/隔热/承载一体化陶瓷基轻质夹芯结构及其制备方法
CN110204319B (zh) * 2019-04-22 2021-11-12 湖南远辉复合材料有限公司 一种陶瓷基复合材料点阵结构的整体式制备方法
CN110526727A (zh) * 2019-08-29 2019-12-03 航天材料及工艺研究所 一种陶瓷基复合材料结构及其制备方法
CN110526727B (zh) * 2019-08-29 2022-01-04 航天材料及工艺研究所 一种陶瓷基复合材料结构及其制备方法
CN113681999A (zh) * 2021-08-04 2021-11-23 湖南大学 一种基于耦合变形失效机理的波纹夹芯夹层复合材料结构

Also Published As

Publication number Publication date
CN104177110B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN104177110B (zh) 波纹构型陶瓷基复合材料平板的制备方法
CN109333768B (zh) 一种异形云母零件的制造方法
CN103496997A (zh) 一种碳/碳复合材料保温硬毡的制备方法
CN105946246A (zh) 一种碳纤维蜂窝芯材的制备方法
CN103213287A (zh) 复合材料弹翼的制备方法
CN104289717B (zh) 一种多级孔金属纤维烧结板的制作方法
CN104874604A (zh) 宽幅钛合金厚板轧制方法
CN109130336A (zh) 一种高精度高稳定复合材料天线反射面及其制备方法
CN105269833A (zh) 一种热塑性复合材料二次模压成型技术
CN109251340A (zh) 一种防隔热一体化复合材料及其制备方法
CN104690275A (zh) 一种泡沫铝三明治结构的制备工艺
CN104441685A (zh) 碳纤维复合材料s喇叭制造方法
CN105021434A (zh) 一种高温复合材料试样制备方法
CN103568447B (zh) 层压成型装置及其制备热固性高分子基复合材料的方法
CN103831979A (zh) 一种陶瓷基波纹夹芯结构复合材料的制备模具
CN101579742B (zh) 一种直立结构多孔金属纤维夹芯板的制备方法
CN204566539U (zh) 一种瓷砖饰面聚氨酯保温一体板的发泡模具
CN104033607A (zh) 一种鳞片石墨复合密封板及制造方法
CN102555221A (zh) 一种蜂窝制造方法
CN102431183B (zh) 一种成型模具及使用该模具制造成型制件的方法
CN106553329A (zh) 一种复合材料带筋板零件热压柔性成形设备
CN107326307A (zh) 超声振动制备层状交叉碳纤维增强金属基复合材料的方法
CN105109069B (zh) 一种制备三维纤维增强复合材料的干燥固化一体化装置
CN104310969B (zh) 一种用于制备模砖的粉料、玻璃热弯用模砖及其制备方法
CN204451001U (zh) 一种石材饰面聚氨酯保温一体板的发泡模具

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20180828

CF01 Termination of patent right due to non-payment of annual fee