CN104159871B - 近净成型切削刀具刀片 - Google Patents

近净成型切削刀具刀片 Download PDF

Info

Publication number
CN104159871B
CN104159871B CN201280065559.1A CN201280065559A CN104159871B CN 104159871 B CN104159871 B CN 104159871B CN 201280065559 A CN201280065559 A CN 201280065559A CN 104159871 B CN104159871 B CN 104159871B
Authority
CN
China
Prior art keywords
green body
hard
diamond
silicon
hard green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280065559.1A
Other languages
English (en)
Other versions
CN104159871A (zh
Inventor
史蒂文·W·韦伯
格罗尔德·温尔
马林·莫滕松
托马斯·C·伊斯黎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Innovations Inc
Original Assignee
Diamond Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Innovations Inc filed Critical Diamond Innovations Inc
Publication of CN104159871A publication Critical patent/CN104159871A/zh
Application granted granted Critical
Publication of CN104159871B publication Critical patent/CN104159871B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/063Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • C04B2235/9638Tolerance; Dimensional accuracy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/003Cubic boron nitrides only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/005Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/007Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种制造近净成型超硬材料本体的方法,包括:由超硬粉末、粘结剂和流体的混合物制备微粒;压实所述微粒以形成复杂形状的软生坯本体;在炉中加热所述软生坯本体,以形成没有残余粘结剂的硬生坯本体;将所述硬生坯本体中的一个或多个嵌入容纳粉末或容纳装置中并形成压力单元;在高压和高温下烧结所述单元;以及将所述容纳粉末从所述单元移除或将嵌入体从所述容纳装置移除以显露一个或更多个近净成型本体。

Description

近净成型切削刀具刀片
相关申请的交叉引用
本申请要求2011年12月30日提交的美国临时申请No.61/581664的权益。
技术领域和工业应用性
本公开涉及一种近净成型(near-net)切削刀具刀片,以及一种在高压高温(HPHT)工艺中制造近净成型切削刀具刀片的方法。
背景技术
聚晶立方氮化硼(PCBN)、金刚石和金刚石复合材料通常用于提供切削刀具(比如在采矿、金属切削和钻孔操作中使用的切削刀具)的超硬、超耐磨切削表面。
包括立方氮化硼、金刚石和金刚石复合材料的刀具在本领域是众所周知的。通常,cBN晶粒嵌入可以例如为TiN、TiC或TiCN的粘结剂基体中。铝也可以被加入,或者以金属形式或者作为Al化合物,诸如Ti3Al、TiAl3、TiAl、CoAl或者NiAl。
在一种类型的金刚石复合材料中,金刚石晶粒嵌入粘结剂基体中,该粘结剂基体可以例如为碳化硅、碳化钛或碳化物的混合物。碳化物可以在HPHT期间部分地或完全地形成。产生这种固体的传统方式可以是利用期望的组合物粉末装载空腔,任选地用以提供金属外部供应,用于渗透到粉末中并使单元(cell)暴露于高温和高压(HPHT)。
需要一种制造超耐磨本体的方法,其不需要昂贵的加工,从而有效地且经济地实现期望的尺寸和形状。
发明内容
在一个示例性实施例中,一种制造近净成型超硬材料本体的方法可包括以下步骤:由超硬粉末、陶瓷粉末和/或金属粉末、临时的有机粘结剂和混合液体的混合物制备微粒;压实所述微粒,以形成具有限定和复杂形状的软生坯本体;在炉中脱粘并预烧结所述软生坯本体,以形成硬生坯本体;将所述硬生坯本体中的一个或更多个嵌入容纳粉末中并压实所述容纳粉末,以形成容纳装置;在高压和高温下烧结所述容纳单元;以及将经HPHT烧结的近净成型本体从所述容纳单元移除。
在另一示例性实施例中,一种制造近净成型超硬材料本体的方法可包括以下步骤:在乙醇-水混合物中将立方氮化硼和铝的粉末与聚乙二醇的临时的有机粘结剂混合,以形成浆料;喷射干燥所述浆料,以形成微粒;将所述微粒压实至最大生坯密度,以形成软生坯本体;在炉中脱粘并预烧结所述软生坯本体,以形成硬生坯本体;将所述硬生坯本体嵌入石墨粉末中并压实所述石墨粉末,以形成单元;在高压和高温下烧结所述单元;以及将经HPHT烧结的近净成型本体从所述容纳单元移除,以显露近净成型本体。
在另一示例性实施例中,一种制造近净成型超硬材料本体的方法可包括以下步骤:在水混合物中将金刚石、硅和氮化硅的粉末与聚乙二醇的临时的有机粘结剂混合,以形成浆料;将所述浆料喷射到液体氮中,以形成微粒;冻结干燥所述微粒;将所述微粒压实至最大生坯密度,以形成软生坯本体;在炉中脱粘并预烧结所述软生坯本体,以形成硬生坯本体;将所述硬生坯本体连同硅片一起嵌入石墨粉末中并压实所述石墨粉末,以形成单元;在高压和高温下烧结所述单元;以及将经HPHT烧结的近净成型本体从所述容纳单元移除,以显露近净成型本体。
在一个示例性实施例中,与经标准处理的和切割的本体相比,所得到的经烧结的近净成型本体可以基本上没有内部缺陷(在计算机断层摄影(CT)下,小于约50微米)。经标准处理的和切割的本体示出内部缺陷(小于约50微米)。
在两个示例性实施例中,近净成型本体的性能与经标准处理的、切割且研磨的材料相比是相同的或得到改进的。
附图说明
图1示出了根据示例性实施例的具有在预烧结到约900℃的实例1中描述的组合物的硬生坯的衍射图样;
图2a示出了在高压高温(HPHT)之前实例1中描述的硬生坯的装载的示意性俯视图;
图2b示出了在高压高温(HPHT)之前实例1中描述的硬生坯的装载的横截面图;
图3示出了根据示例性实施例的在HPHT之后已经被喷砂以去除石墨残余物的表1中描述的刀片的透视图;
图4示出了在实例1中描述的HPHT之后最终烧结的刀片的衍射图样;
图5示出了通过计算机断层摄影(CT)调查以检测内部缺陷的实例1中描述的经烧结的完全致密的本体。2D图像表明本体是均质的且没有>50微米的缺陷;
图6示出了在实例2和4中的被压入石墨粉末中、由石墨箔包围并在HPHT之前装载到MgO-杯中的硬生坯;
图7示出了在已经被喷砂之后如实例2中描述的HPHT之后的两个近净成型SNMA刀片,其中顶部和底部部分被研磨;
图8示出了如实例2中描述的制造的没有>50微米的缺陷的完全致密的烧结均质本体的2D CT投影;
图9示出了根据实例3(现有技术)描述的制造的完全致密的烧结本体的2D CT投影;
图10示出了根据示例性实施例的与在延性铁中标准制造的刀片STD相比近净成型刀片NN A和NN B的耐磨性数据;
图11示出了通过冻结微粒、单轴压制、在氢气中脱聚乙二醇至450℃和在真空炉中预烧结到1300℃形成的硬生坯。截齿的直径是16mm且喷嘴本体的直径是24mm;
图12示出了利用压制的石墨容纳装置产生六个近净成型形状本体的HPHT单元的图片。单元的一侧被暴露,以示出嵌入在石墨容纳装置中的近净成型形状本体;
图13示出了由利用容纳装置进行HPHT烧结的硬生坯本体形成的近净成型金刚石复合本体。在HPHT烧结之后没有在本体上执行研磨或其它加工操作;
图14示出了由利用容纳装置进行HPHT烧结的硬生坯本体形成的近净成型金刚石复合材料本体。在预烧结之前,在软生坯本体中形成了孔,且为了HPHT烧结,孔被填充有用于产生容纳装置的相同的石墨材料。在HPHT烧结之后,没有在本体上执行研磨或其它加工操作;
图15示出了预烧结到1200℃、1300℃和1400℃的HPHT烧结本体的组合物之间的对比。较高的预烧结温度增加烧结产品中的SiC量;
图16示出了预烧结温度对利用压制的石墨容纳装置产生的HPHT烧结的金刚石复合材料的抗挠强度的影响;
图17示出了预烧结温度对利用压制的石墨容纳装置产生的HPHT烧结的金刚石复合材料的SiC含量的影响;
图18示出了温度对在1200℃、1300℃、1350℃和1400℃下烧结的硬生坯中存在的相的影响;
图19示出了在测试之前压制的采矿截齿的CT扫描;
图20示出了在测试之前研磨的采矿截齿的CT扫描;
图21示出了用于在花岗岩切削中测试截齿性能的机械切削条件;
图22示出了在测试之后压制的采矿截齿的照片;
图23示出了在测试之后压制的采矿截齿的CT扫描;
图24示出了在测试之后研磨的采矿截齿的照片;
图25示出了在测试之后研磨的采矿截齿的CT扫描;
图26示出了具有在分别预烧结到约900℃和约1100℃的实例中描述的组合物的两个硬生坯的衍射图样;以及
图27示出了在HPHT之后实例4中描述的本体的衍射图样。
具体实施方式
在描述本方法、系统和材料之前,应理解,本公开内容不限于描述的特定方法、系统和材料,这是因为这些可以改变。还应理解,在说明书中使用的术语仅用于描述实施例的特定版本的目的且不是要限制范围。例如,如本文使用的,单数形式“一”、“一个”和“该”包括复数参考,除非上下文另外清楚地规定。此外,在本文中使用的单词“包括”旨在指“包括但不限于”。除非另外定义,否则本文使用的所有技术和科学术语具有本领域技术人员通常理解的相同意思。
除非另外指明,否则表达在本说明书和权利要求书中使用的成分、诸如尺寸、重量、反应条件等的性质等等的量的所有数量被理解为在所有情形中由术语“约”修饰。因此,除非相反地指明,否则在以下说明书和所附权利要求书中阐述的数值参数是可以根据本发明设法获得的期望性质而改变的近似值。无论如何,且不作为限制权利要求书范围的等同物的教条的应用的尝试,每一个数值参数应至少鉴于报告的有效数字的数量并通过应用普通的四舍五入技术来构造。
如本文使用的,术语“约”指的是其被使用的数字的数值加或减10%。因此,约50%指在45%-55%的范围。如本文使用的,术语“粘结剂”指可以被添加到浆料(用于喷射干燥或冷冻喷射干燥)以形成微粒并可以在压制之后将软生坯保持在一起的蜡或聚合物。如本文使用的,术语“最大可能的生坯密度”指的可以被压制的最高密度软生坯。可以看到,软生坯的较高密度可以导致在最终产品中较小的HPHT变形和最佳的形状控制。
示例性实施例提供具有期望形状的本体,其具有维持形状并在HPHT步骤期间实现全密度的能力。示例性实施例可以在HPHT之后通过仔细监测原材料、研磨/共混和粒化步骤以及在预烧结期间的反应来调整组合物。更具体地,示例性实施例可以通过在压实和预烧结之后优化生坯密度和强度来最小化在HPHT期间的扭曲。
在示例性实施例中,公开了一种用于制造近净成型超耐磨,比如金刚石或立方氮化硼复合材料本体。方法包括由浆料制备微粒,浆料包括金刚石和/或立方氮化硼粉末和聚合物粘结剂(比如聚乙二醇(PEG))和任选地金属粉末、半金属粉末、氧化物粉末、碳化物粉末、氮化物粉末、碳氮化物粉末、碳氧氮化物粉末和硼化物粉末。当形成CBN或金刚石本体时,初始超硬粉末可以具有约1μm至约150μm的晶粒尺寸,且所述任选的金属、半金属、氧化物、碳化物、氮化物、碳氮化物、碳氧氮化物和硼化物粉末可以具有约0.1至约25μm的晶粒尺寸。
为了形成浆料,混合液体可能被需要。混合液体可以是水、酒精或有机溶剂、或者水和酒精混合物。浆料的干燥可以根据已知技术实现,特别是喷射干燥(SD)或喷射冻结干燥(SFD)。在SD中,包含与液体和有机粘结剂混合的粉末材料的浆料在干燥塔中通过合适的喷嘴雾化,在干燥塔中,小的液滴通过热气体的蒸汽瞬间干燥,例如,以氮气蒸汽的形式,从而形成凝聚的微粒。
在SFD中,浆料被雾化成液体氮化物且微粒立即冻结且此后可以进行冻结干燥。在SFD中使用的最常见的液体是水。微粒的形成特别是对于得到均匀分布的原材料是必需的,但是也容易使供给粉末进入在随后阶段使用的压实工具。如果需要,分散剂,比如,丙烯酸酯共聚物、聚电解质、丙烯酸聚合物盐和/或增稠剂(比如纤维素基试剂)也可以被添加到浆料。分散剂被添加以用于控制颗粒的分离以及浆料性质且因此控制所得到的粒化粉末的性质。
浆料可以是基于水的或基于乙醇的。利用粒化过程比如喷射干燥或喷射冻结干燥来粒化浆料。在本发明的示例性实施例中,可以通过在烧结步骤之前压实来形成本体。压制剂和这些材料的添加可以根据所使用的压实方法来优化。粒化粉末通过包括单轴压制、多轴压制或等静压制的压制方法而被压实成限定形状。当制造旨在用于单轴压制的粉末时,压制剂可以在干燥之前被添加到浆料。压制剂合适地可以是烷烃、聚乙二醇(PEG)、聚乙烯醇(PVA)、长链脂肪酸,例如。压制剂的量合适地在基于总的干燥粉末体积的约15和约25体积%之间。有机粘结剂的量不包括在总的干燥粉末重量中。
压实步骤是关键的,这是因为其在生坯中产生密度梯度,这可导致在最终HPHT步骤之后烧结本体的扭曲。为了最小化这些扭曲,生坯密度和压实方法两者必须针对每一种粉末混合料和生坯本体形状进行优化。该密度可以作为与没有聚合物粘结剂的粉末混合物的理论密度相比的相对密度进行测量。相对密度的典型范围是约50%至约75%。利用较高的相对密度,约60%至约75%,导致在HPHT烧结期间最均匀的近净成型形状本体。较高的生坯密度给出较高的生坯强度,较高的生坯强度给出在HPHT期间较低的收缩和扭曲。取决于待预成型的本体的形状,压实可以按本领域已知的单轴或多轴压制操作或通过使用冷等静压制、粉末注射模制(PIM)或挤压来完成。
生坯本体可以按任何数量的有用尺寸、形状和几何结构产生。一种有用的形状可以是弹道式采矿刀具的形状,其以圆柱形刀柄和具有球形尖端的圆锥形切削表面为特征。另一种有用的几何结构可以是以外圆柱形表面和内圆柱形表面为特征的喷嘴本体的形状。另一种有用的几何结构可以是切削刀具刀片的形状。
取决于粘结剂系统,有机粘结剂可以在烧结之前被移除并且这可以在空气、氮气、氢气、氩气或其混合物的流体气体中、在约200℃至约600℃之间的温度下进行。所得到的本体可以至少具有保持在一起的足够的生坯强度,且通过监测脱粘条件,碳的残余量和因此本体的强度可以得到控制。
预烧结步骤可以是单独的过程步骤或作为下一步骤在脱粘之后的单个炉循环中执行。在一种实施例中,经脱粘的生坯本体可以被直接地放入HPHT-单元中且可以烧结到全密度,但是本体的扭曲程度明显比如果生坯被预烧结且生坯强度明显增加时的扭曲程度高。
取决于材料和期望的反应产物,可以在反应性或非反应性气氛中,比如在真空下、在氩气、氮气或氢气或包含气体的碳中进行预烧结。在预烧结期间,金属或半金属,比如硅,可以部分地反应,以形成与脱粘生坯的强度相比明显增加生坯强度的氮化物和/或碳化物。使用的预烧结温度在约500℃至约1500℃的范围,对于包括材料的cBN,在约700℃至约1300℃的范围,对于包括复合材料的金刚石,在约1200℃至约1500℃之间。温度维持约1分钟至约90分钟或约15分钟至约30分钟,直到在烧结炉中,本体的整个装料已经达到期望温度且完成了期望的相变为止。
高压高温(HP/HT)在约1200℃至约1600℃和约20至约75kbar下进行,且对于金刚石材料可以是约3GPa,而对于cBN材料可以是约5.0GPa。外部金属源,比如片形式的硅,可以靠近硬生坯设置,用于在烧结过程期间渗透到硬生坯内。
在近净成型过程的另一实施例中,金刚石粉末可以与硅粉末和氮化硅粉末共混。该混合物通常称为金刚石给料。金刚石粉末通常可以包括具有不同平均尺寸的金刚石粉末的共混物,比如约25微米和约5微米。然而,仅一个尺寸或三个或更多不同尺寸的共混物可以被使用。通常通过在约3GPa和约1500至约1650℃的条件下HPHT烧结金刚石给料而制成金刚石复合材料。在烧结反应期间,Si熔化且与金刚石反应以形成SiC,其形成在固体复合材料中将金刚石结合在一起的连续基体。为了帮助烧结反应,另外的硅可以邻近金刚石给料设置,使得其可以在烧结期间渗透金刚石给料。金刚石复合材料本体,比如磨损部件、线模、压制工具和采矿刀具通常以各种形状和尺寸从烧结金刚石复合材料坯料切割。然而,这种过程导致金刚石的明显浪费且造成相当大的制造成本。
在一个示例性实施例中,金刚石给料连同诸如聚乙二醇(PEG)的聚合物粘结剂材料一起结合成基于水的浆料。该浆料可以通过球磨、磨碎机研磨、机械混合、超声波处理或其组合来制备。浆料可以用于通过冻结粒化过程来产生大体球形的微粒。喷射冻结干燥涉及通过形成小的液体液滴的喷嘴首先喷射浆料。液滴的尺寸范围约5微米至约700微米,例如。液滴可以被引导到液体氮的容器中,使液滴瞬时冻结成包含均匀分散的金刚石给料、PEG粘结剂和冰的固体球。冻结的微粒可以被收集并维持在约-20℃以下以保持其形状。随后,可以利用冻结干燥过程从冻结的微粒析出冰,从而产生由均匀分散的金刚石给料和聚合物粘结剂组成的固体微粒。微粒尺寸的上限可以通过喷嘴直径确定且可以大体约700微米。微粒尺寸的下限是约5微米且可以通过包括浆料粘度、喷射速度(毫升/分钟)和供应到喷嘴以将浆料喷雾破碎成液滴的气体压力的多种因素来确定微粒的颗粒材料分布。
喷射冻结干燥的微粒可以在约150至约200MPa的压力下进行模具压实以形成软生坯本体。软生坯本体可以通常具有与期望的HPHT烧结产品相同的几何形式,但是由于由HPHT烧结过程引起的变形而具有不同的尺寸或纵横比。复杂几何特征比如孔、角度、弯曲表面、倒角、压痕、半径、突脊或粉末压实技术可实现的其它特征可以被产生。软生坯的较高密度可以减小在HPHT烧结过程期间发生的变形并改进最终产品的最终尺寸和形状控制。
软生坯本体被加热到约450℃的温度,以使聚合物粘结剂汽化。该脱粘操作可以在真空条件下或者在流动的氢气、氮气、空气、氧气或氩气下进行,例如。软生坯随后可以在诸如真空、Ar或N2的惰性气氛中被进一步热处理直到约1300℃,以便在Si和金刚石之间引起反应以形成增加生坯本体的强度的少量SiC,从而形成硬生坯本体。
硬生坯本体中的一个或多个可以随后被包封在容纳装置(containment means)中,比如压实的石墨粉末。包封硬生坯本体的一种方法可以是将硬生坯放置到压机的冲头上、在生坯周围浇注松散的石墨粉末,且施加约175MPa的压力以将石墨粉末压缩在生坯周围。该方法可导致具有约90%的相对密度的固体的石墨容纳装置。
包封硬生坯本体的另一种方法是将松散的石墨浇注到压机腔内并施加约175MPa的压力以将粉末压缩成密实的本体。随后,可以在密实的石墨本体中加工与硬生坯的尺寸和形状匹配的空腔。该方法导致具有约90%的相对密度的固体的石墨容纳装置。
包封硬生坯本体的又一种方法是提供一组压机冲头,所述冲头包含与硬生坯的尺寸和形状匹配的杆,将松散的石墨浇注到压机腔内,并施加约175MPa的压力以将粉末压缩成密实的本体。在从冲头移除压缩的本体之后,密实的石墨本体具有硬生坯被烧结成的预成型的空腔。该方法导致具有高达约100%的相对密度的固体的石墨容纳装置。为容纳装置选择的粉末可以是与被烧结的金刚石材料不反应的。对于金刚石、硅和任选的氮化硅粉末的情形,石墨可以是非反应性容纳装置。可以用于形成容纳装置的其它粉末材料包括六角形氮化硼、氧化铝和滑石粉末。
液体合金可以在高温下渗透到金刚石复合材料本体内。在根据本发明的制造金刚石复合材料的方法中,渗透步骤是任选的。在本发明的一种实施例中,可以包括局部渗透步骤。在本发明的另一实施例中,没有渗透可发生。如果在烧结期间使用外部硅渗透金刚石给料,硅可以邻近硬生坯设置并连同硬生坯一起结合到容纳装置。
一旦硬生坯被组装在容纳装置中,则容纳装置结合成高压单元且在约3GPa和约1500℃至约1650℃的HPHT条件下烧结约15至约30分钟。在烧结完成之后,石墨容纳装置可以利用锤子或其它合适工具破开且烧结本体从石墨材料分离。通过使用诸如SiC或氧化铝的合适磨料的喷砂处理来完成烧结本体的最终清洁。
实例1
cBN材料的近净成型本体通过在研磨液体中混合和研磨72wt%cBN、8wt%Al、3.2wt%Al2O3、6.4wt%TiC和10.4wt%亚化学计量的TiN来制造。粉末混合物被盘式干燥并随后与82wt%乙醇、18wt%水溶液共混,且有机粘结剂PEG300、PEG1500和PEG4000被添加到对应于干燥粉末的20vol%的量。浆料粘度在喷射干燥步骤之前被仔细地控制。粒化粉末具有良好流动性且可以在50吨Dorset压机中执行的单轴压制步骤期间容易地填充模具,且压制压力为约30kN。生坯在一个步骤过程中被脱粘且预烧结,且在达500℃的流动的氢气下缓慢跃升期间执行脱粘步骤,且随后接下来是在达900℃的真空下预烧结15分钟的保持时间。
在预烧结步骤期间,Al熔化并分布,且硬生坯具有对应于按相对密度计的72%+/-1%的约2.61g/cm3+/-0.03g/cm3的密度。在硬生坯中观察到的相在图1的X射线衍射图中示出。图1示出了对于具有在实例1中描述的被预烧结到900℃的组合物的硬生坯的衍射图样。衍射图在室温下使用利用CuKa-辐射的XPERT-PRO衍射仪获得。数据以0.008度的步长在10度和70度的2θ之间收集,但是在附图中仅示出了2θ的在25至69度之间的范围。背景和CuKa2-峰值利用DIFFRAC PlusEvaluation软件而被减去。衍射图还利用cBN(PDF No.00-035-1365)的111-峰值作为内部标准来针对采样偏移(sample displacement)进行校正。衍射图中的反射被索引且附图中数字对应于下面的相:1=cBN,立方氮化硼,PDF No.00-035-1365;2=Al,铝,PDF No.00-004-0787;3=α-Al2O3,刚玉,PDF No.00-046-1212;4=TiN0.96,陨氮钛石,PDFNo.01-087-0627;5=TiC,Khamrabaeuite,PDF No.00-032-1383。
生坯示出在预烧结之后的相当大的强度且七个硬生坯被放置在模具中。石墨粉末被浇注在它们周围,且石墨随后被压实,以与埋入其内的硬生坯形成一个大的圆柱体。石墨圆柱体被放置在MgO杯中且随后在1500-1600℃下、在5GPa压力下烧结30分钟。
在HPHT之前,在图2a和2b中示出了在HPHT之前硬生坯在石墨中的加载图样的描述。图2a所示被埋入压制的石墨粉末(B)中的七个硬生坯(A)的位置被示出。在图2b中,示意图从侧面示出了被埋入压制的石墨粉末(B)中的相同生坯(A),且高密度石墨被放置在压实体的顶部和底部。压实体被放置MgO杯中,其中在底部中具有硬石墨,且石墨箔覆盖MgO杯的内径。这一单元的不同部分的尺寸(英寸)在右侧图中表示。
在HPHT期间,最终密实化发生。刀片被喷砂并且测量尺寸,如表1所示,且在图3中示出了烧结刀片之一。
下面的表1示出了硬生坯的尺寸以及五个HPHT烧结的近净成型制品。
表1.在HPHT之前和之后以mm表示的尺寸
表1中的数据示出了在HPHT烧结过程期间的密实化和轻微扭曲。平均地,HPHT烧结本体的高度从生坯状态收缩外径的约两倍那么多,且圆度上的扭曲增加到其原始值的约四倍。在HPHT之后,烧结密度是对应于理论密度100%的3.617g/cm3且由XRD检测到的相是cBN、TiB2、Al2O3、AlN、TiC和TiN0.96,如图4所示。图4示出了在实例1描述的HPHT之后最终烧结的刀片的衍射图样。该衍射图在室温下使用利用CuKa-辐射的XPERT-PRO衍射仪获得。数据以0.008度的步长在20度和70度的2θ之间收集,但是在附图中仅示出了在25至69度的2θ之间的范围。背景利用DIFFRAC Plus Evaluation软件而被减去。衍射图还利用cBN(PDF No.00-035-1365)的111-峰值作为内部标准来针对采样偏移进行校正。衍射图中的反射被索引且附图中数字对应于下面的相:
1=cBN,立方氮化硼,PDF No.00-035-1365
2=TiB2、PDF No.01-075-0967
3=α-Al2O3,刚玉,PDF No.00-046-1212
4=AlN,PDF No.00-025-1133
5=TiC,Khamrabaevite,PDF No.00-032-1383
6=TiN0.96,陨氮钛石,PDF No.01-087-0627。然而,反射的位置被朝着表示略微较大单位的单元尺寸的较低2θ略微偏移。
这些完全密实的烧结近净成型本体中的一个在CT中调查。在2D图像(图5)中,刀片被示出,本体是均质的且没有>50mu的缺陷。用于这些扫描的CT系统是来自GE感测和检测技术公司的v|tome|x s240,采用以下设置:
在CT扫描完成之后,利用来自GE感测和检查技术公司的datos|x2.0重新构建投影,且然后利用Volume Graphics StudioMax2.1分析。
实例2
由与实例1中描述的相同粉末,本体在切削刀具几何结构SNMN中被压制到大约60%的相对密度,厚度=8.016mm且内接圆(IC)=15.712mm,并且随后以与实例1中描述的相同方式预烧结。在预烧结之后,本体被压制到石墨粉末中并放置在下面和上方具有高密度石墨片且在顶部具有MgO盖的MgO-容器中,如图6中示出的那样。
在使用与实例1中相同的条件进行HPHT之后,刀片可被处理成图7中示出的形状,烧结后的密度为3.592g/cm3,其对应于理论密度的99.5%。
硬度是3044+/-18HV3且在XRD中相同的相被检测到,如实例2中描述的那样。
图7示出了在实例2中描述的HPHT之后在已经喷砂之后的两个近净成型SNMA刀片,其中顶部和底部部分被研磨。
这些完全致密的烧结近净成型本体中的一个在CT中调查。在2D图像(图8)中,示出刀片,本体是均质的且没有>50mu的缺陷。CT扫描被收集、重新构建且分析,如实例1中描述的那样。
实例3(现有技术-BZN7100)
由cBN材料组成的粉末混合物通过在有机研磨液体中混合和研磨72wt%cBN、8wt%Al、3.2wt%Al2O3、6.4wt%TiC和10.4wt%亚化学计量的TiN而制成。浆料被盘式干燥,且粉末随后被填充在石墨容器中且在1500-1600℃、5GPa和30分钟下进行HPHT处理,从而形成固体的烧结PCBN盘。
从PCBN盘,在RNMN几何结构中的部件被EDM切割出来,并被研磨到期望几何结构,留下PCBN骨架,其不被使用或容易回收。
该部件经历与实例1和2中的部件相同的在CT中的调查且结果在图9中示出,并且现有技术制造的刀片具有>50微米的清楚可见的较重的夹杂物(白斑)缺陷。CT扫描被收集、重新构建且分析,如实例1中描述的那样。
图9示出了根据实例3(现有技术)描述而制造的完全致密的烧结本体的2D CT投影。CT图像表明,本体是不均质的且包含>50微米的较大的较重夹杂物(白斑)。
实例4
cBN材料的近净成型本体通过在研磨液体中混合和研磨89wt%cBN、11wt%Al来制成。粉末混合物被盘式干燥且随后与82wt%的乙醇共混,且有机粘结剂PEG300、PEG1500和PEG4000被添加到对应于干燥的粉末的22vol%的量。浆料粘度在喷射干燥步骤之前被仔细地控制。粒化粉末具有良好的流动性且可以在30吨Dorset压机中执行的单轴压制步骤期间容易地填充模具。生坯以最大容许力进行压制,以形成SNMN几何结构。生坯在一个步骤过程中被脱粘且预烧结,且在达500℃的流动的氢气下缓慢跃升期间执行脱粘步骤,且随后接下来是在达900℃的真空下预烧结15分钟的保持时间。在冷却时,硬生坯方形体是硬的且坚固的,没有裂纹和扭曲,具有为约14.60mm IC和约7.70mm厚的尺寸,且密度是2.1至2.3g/cm3,其对应于65%+/-1%的相对密度。在预烧结之后,硬生坯包括cBN、Al和少量AlN,如图26中的下侧衍射图(900°)示出的那样。
通过将硬生坯嵌入300目尺寸的石墨粉末中来容纳硬生坯。在一个实施例中,多个硬生坯被置于模具腔中,至少间隔开约3mm,且埋入具有约22μm颗粒尺寸的石墨粉末中。石墨以均匀的密度在生坯之间和周围顺应硬生坯嵌入体,以便使硬生坯的压力均匀。嵌入石墨粉末中的硬生坯在约300MPa下压实,以形成具有嵌入的嵌入体的刚性圆柱形石墨单元。在压实之后的石墨密度约为2.1g/cm3。该设置的照片在图3中示出。
接下来,将石墨单元加工,以符合包括通常的陶瓷绝热体和加热器的可用的高压高温(HPHT)压力单元。一旦在HPHT单元中,具有嵌入的硬生坯嵌入体的石墨单元根据标准PCBN烧结循环在单轴单作用带式压机(冲头和模具)中、在约5.5GPa和约1600℃下烧结约25分钟。在HPHT烧结完成之后,石墨单元被破开,以显露出非常硬且完全致密的近净成型PCBN刀片。由上述过程生产的示例性近净成型PCBN刀片在图7中示出。
所描述的刀片示出一些扭曲,这是因为其稍微偏离方形(即,不是所有的角度刚好是90度)且在周界上存在微小(小于0.2mm)凹陷。然而,在刀片上看不见任何裂纹或碎片。抛光和在光学显微镜上的调查没有示出>50微米的任何缺陷。
通过Archimedes方法测量的密度是3.352g/cm3,其几乎是理论密度的100%,且硬度是3160+/-25HV3。
X射线衍射数据表明,最终产品主要由cBN和AlN组成,如图27中示出的那样。附图示出了在如实例1描述的HPHT之后最终烧结刀片的衍射图样。衍射图在室温下使用利用CuKa-辐射的XPERT-PRO衍射仪获得。以0.008度的步长在20度和70度的2θ之间收集数据。背景利用DIFFRAC Plus Evaluation软件而被减去。衍射图还利用cBN(PDF No.00-035-1365)的111-峰值作为内部标准来针对采样偏移进行校正。衍射图中的反射被索引且附图中数字对应于下面的相:
1=cBN,立方氮化硼,PDF No.00-035-1365
2=AlN,PDF No.00-025-1133
对比实例5
由cBN材料组成的粉末混合物通过在有机研磨液体中混合和研磨97wt%cBN和3wt%Al而制成。浆料被盘式干燥。粉末随后被填充在下面具有Al盘的石墨容器中,且Al被扫过并在1600℃、5.5GPa下执行25分钟的HPHT过程期间反应成AlN。在该过程中,取决于在HPHT和渗透之前粉末床的粉末密度和均匀度,最终材料的Al含量在粉末批次与粉末批次之间变化。从该盘,呈SNMN几何结构的部件被激光切割出来并进行研磨。
实例6性能数据
根据实例4中描述的过程制造的SNMN1204刀片(近净成型A和B刀片)和实例5(标准,STD刀片)被进行所有面研磨以产生具有约12.70mm IC和4.75mm厚的尺寸的倒角切削刀具。所得到的刀具通过以V=314米/分钟、进给=0.03毫米/转和切割深度=0.05毫米加工铸铁来测试。图10对比了两个示例性近净成型刀片的性能与由HPHT烧结坯料材料的常规激光切割产生的相同刀片的性能。结果表明,由近净成型过程产生的材料与通过常规过程产生的材料具有相同特性,但是与标准制成的材料STD中约7-8wt%Al相比,在近净成型A和B刀片中AlN含量较高,11wt%Al。
实例7:金刚石复合材料采矿截齿
金刚石、硅和氮化硅粉末被共混在一起,以利用具有异丙醇作为研磨流体的湿式研磨过程形成均匀混合物。混合物的重量百分比是90%金刚石、9.5%硅和0.5%氮化硅。金刚石是80%20至30微米金刚石和20%4至8微米金刚石的混合物。硅是节状的、APS1-5微米、99.999%(金属基础)的Alfa Aesar硅粉末。氮化硅是α相、99.5%(金属基础)、<1微米的Alfa Aesar硅(IV)氮化物。浆料利用该混合物24vol%PEG作为粘结剂(水作为流体)来制备。浆料被喷射冻结粒化,以产生微粒,以便进行压制。
使用微粒在单轴压机中以通常用在采矿操作中的刀具尖端形状压制软生坯。软生坯在氢气存在时加热到450℃以去除PEG且随后在真空中进一步加热到1300和1350℃之间的温度以预烧结生坯,引起硅与金刚石的部分反应而产生碳化硅。图11示出了硬生坯的图片,其测得16mm直径和22mm的高度。
硬生坯被封装在石墨容纳装置中。因为期望供应另外的硅以在HPHT烧结期间渗透到复合材料中,所以测得16mm直径x0.75mm厚度的两个硅片被堆叠地放置在压机的底部冲头的中心中,且硬生坯被放置在硅片之上。硬生坯周围的模具腔被填充松散的石墨片,以约175MPa的压力压制,以使石墨在硬生坯周围巩固。石墨的重量和容纳装置的体积被选择,用以提供具有等于完全致密的石墨密度的91%的密度的容纳装置。产生了两个这样的容纳装置。
两个容纳装置被布置在HPHT单元中且在3GPa和1600℃的条件下烧结。HPHT单元被破开且利用锤子从容纳装置移除烧结制品。利用具有SiC磨料的喷丸设备执行最终清洁。SiC磨料从烧结本体去除石墨但是没有磨蚀烧结本体,这表明烧结本体被很好地烧结且具有非常高的硬度和耐磨蚀性。图13示出了经清洁的烧结制品。HPHT烧结制品的密度利用Archimedes方法测量且是3.407and3.409g/cm3。该密度等同于没有使用本发明过程产生的类似材料的密度。
实例8:金刚石复合材料喷嘴本体
金刚石浆料和微粒利用与实例3中描述的方法相同的方法产生。使用微粒压制测得24mm直径和12mm高度的圆柱体。使用钻压机钻出测得4.8mm直径的中心孔。圆柱体随后利用与实例7中描述的方法相同的方法进行预烧结。图11示出了硬生坯的图片。
除没有本体被放置在底部冲头上,且产生固体的石墨圆柱体外,利用与实例3中描述的方法相同的方法产生石墨容纳装置。在两个石墨容纳装置中的每一个中加工圆柱形空腔,使得圆柱体加两个24mm直径x0.75mm厚的硅片将装配在所加工的空腔的中心内。硅片放置在一个容纳装置中的一个空腔的底部中,且硬生坯圆柱体被放置在硅片的顶部上。松散的粉末石墨被放置在中心孔中且被手动地压缩,以填充孔。第二容纳装置被放置在硬生坯上,且组件被加载到HPHT压力单元中。
单元被烧结并利用与实例7中描述的方法相同的方法从单元收回。经清洁的烧结本体在图14中示出。中心孔保持完好无损,圆柱度的扭曲很小。在烧结本体中没有裂纹。烧结喷嘴的密度是3.403g/cm3
实例9:金刚石复合材料采矿截齿
除所使用的硅粉为<10微米的Elkem Silgrain HQ0.05Fe外,利用实例7中描述的相同方法生产采矿截齿。软生坯截齿的相对密度是64%。在HPHT烧结之后,采矿截齿具有3.419g/cm3的密度。截齿的圆柱形本体在无心磨床中研磨到14.0mm,截齿的基部使用线EDM切割长度,且使用金刚石研磨轮在截齿的底部上研磨45度倒角。没有研磨或其它精加工操作被使用以形成截齿的圆锥形切割表面。在测试之前截齿的CT扫描在图19中示出。用于这些扫描的CT系统是来自GE感测和检查技术公司的v|tome|x s240,使用以下设置:
在CT扫描完成之后,利用GE感测和检查技术公司的datos|x2.0重新构建投影,且然后利用Volume Graphics StudioMax2.1进行分析。
借助通过收缩装配到钢制刀具本体内而被安装以便进行测试。与压制的截齿相比,由相同的金刚石复合材料制成但不使用近净成型预压实和容纳方法的一个其它的截齿被制备以进行测试。对比截齿通过线EDM切割出35mm直径x38mm高的期望形状并且通过利用金刚石研磨轮研磨外径和切割表面来生产。利用图19给出的相同设置的“研磨”截齿的CT扫描在图20中示出。
通过花岗岩块的单点机械切割测试截齿作为采矿刀具的合适性。该花岗岩块的机械性能是:132MPa的无限制抗压强度(UCS)、11.2MPa的无限制抗拉强度(UTS)和4.1的岩石磨蚀性指数(CAI)。刀具的点冲角为55度。利用逐渐更侵蚀性的切削条件制造总共12个切削平面。进行测试的切削条件在图21中在下面给出。最高质量商用碳化钨(WC)采矿截齿不能够在被破坏之前在这些条件下完成甚至单个切削平面。
测试之后的压制采矿截齿的照片在图22中示出。利用图19给出的相同设置的压制采矿截齿在测试后的CT扫描在图23中示出。存在非常少的磨损且没有由切削造成的内部损坏。在测试后研磨的采矿截齿的照片在图24中示出。利用图19中给出的相同设置的研磨的采矿截齿在测试之后的CT扫描在图25中示出。存在非常少的磨损且没有由切削造成的内部损坏。这些结果表明压制的采矿截齿具有与相同材料但是具有金刚石研磨切削表面的截齿相同的性能。
实例10
除当制造粉末2时,添加0.52wt%TEA(三乙醇胺)作为分散剂也被添加到浆料外,两种粒化粉末如实例1(PCBN)中描述地被制造。粉末被冷压以使圆柱体具有55和59%的相对密度,不包括有机粘结剂和分散剂。圆柱形丸剂被单侧压制且利用来自KZK的粉末测试中心模型PTC-03DT装备测量轴向强度。压制-模具尺寸是OD=12.700mm且高度=10.033mm。压制密度从55%至59%的增加导致轴向软生坯强度从2.9MPa到5.4MPa的增加。
随后,59%相对密度的圆柱体被脱粘且预烧结,如实例1中描述的那样,且硬生坯的轴向强度被测量并发现明显大于软生坯,分别地对于粉末1来说从5.4MPa到49.2MPa,且对于粉末2来说从4.7至56.1MPa。
表2
实例11
如实例4中描述的制造的粒化粉末(PCBN)被冷压以使圆柱体具有59%的相对密度,不包括有机粘结剂。圆柱形丸剂被单侧压制且利用来自KZK的粉末测试中心模型PTC-03DT装备测量轴向强度,且压制-模具尺寸是OD=12.700mm且高度=10.020mm。圆柱体随后被脱粘且预烧结,如实例1中描述的那样,且硬生坯的轴向强度被测量并发现明显大于软生坯,与13.6MPa相比,硬生坯的轴向强度是80.6MPa。
表3
实例12
具有与实例7中描述的相同组合物且制造的粒化粉末被压制成具有60%相对密度的圆柱形丸剂,不包括有机粘结剂。圆柱形丸剂被单侧压制且在如实例7中描述的预烧结到1200、1300、1350和1400℃之前和之后测量轴向强度。压制和强度测量利用来自KZK的粉末测试中心模型PTC-03DT装备执行。压制-模具尺寸是OD=12.700mm且高度=10.033mm。
表4
表4
在表4中,清楚地示出了,通过增加预烧结温度且因此增加在预烧结反应中形成的SiC的量,生坯强度明显增加,这也在图18中示出。增加温度使SiC含量增加,这通过在图中标为3的SiC反射的强度来示出。利用使用CuKa-辐射的XPERT-PRO衍射仪在室温下获得了衍射图。背景利用DIFFRAC Plus Evaluation软件而被减去。衍射图还利用金刚石(PDF No.00-006-0675)的111-峰值作为内部标准来针对采样偏移进行校正。在衍射图中的反射根据以下数字索引:
1.C,金刚石PDF No.00-006-0675
2.Si,硅,PDF No.00-027-1402
3.SiC,Moissanite-3C,PDF No.00-029-1129
4.α-Si3N4,α-氮化硅,PDF No.00-041-0360
实例13
通过改变预烧结温度,在HPHT之前的组合物和生坯强度可能针对每一种组合物被改变并优化。下面是用于实例4(PCBN7000)中描述的被预烧结到900℃和1100℃的生坯的预烧结反应的实例。图26示出了具有在实例中描述的分别被预烧结到900℃和1100℃的组合物的两个硬生坯的衍射图样。利用使用CuKa-辐射的XPERT-PRO衍射仪在室温下获得了衍射图。数据以0.008度的步长在10度和95度的2θ之间收集,但是在附图中仅示出了在30至80度的2θ之间的范围。背景和CuKa2-峰值利用DIFFRAC Plus Evaluation软件而被减去。衍射图还利用cBN(PDF No.00-035-1365)的111-峰值作为内部标准来针对采样偏移进行校正。衍射图中的反射被索引且附图中数字对应于下面的相:
1=cBN,立方氮化硼,PDF No.00-035-1365
2=Al,铝,PDF No.00-004-0787
3=AlN,PDF No.00-025-1133
如在图26中的衍射图中看到的,在900℃下,Al已经熔化并分布在硬生坯中,但是仅非常小部分的AlN已经如所示的形成在底侧的X射线衍射图中。在1100℃,大量的AlN已经被形成(上侧的X射线衍射图),且仅少量Al保持在最终HPHT步骤期间反应。
实例14
除了不是在每一个容纳装置中封装一个硬生坯本体而是在每一个容纳装置中封装三个硬生坯本体以外,利用与实例7中描述的相同方法制造六个金刚石复合材料采矿截齿。容纳装置被组装到高压单元中且使用实例7中描述的相同条件进行处理。图12示出了在烧结之后HPHT单元的照片,其中单元的一侧被暴露,以示出嵌入在石墨容纳装置中的近净成型形状本体。
实例15
除在HPHT烧结之前没有在硬生坯本体中钻孔外,且除预烧结被执行到在1200℃和1550℃之间的范围中的各种最大温度外,利用与实例8中描述的相同方法制造十四个硬生坯本体。用于测量横向断裂强度的测试棒和用于XRD定性扫描和定量相分析的盘被利用线EDM机从烧结本体切割出来。利用Jade XRD分析软件的“Easy QuantitativeAnalysis”程序进行XRD定量相分析。图15示出了在1200℃、1300℃和1430℃下预烧结的HPHT烧结本体的组合物之间的对比。图16示出了预烧结温度对HPHT烧结本体的抗挠强度(横向断裂强度)的影响。图17示出了预烧结温度对HPHT烧结本体的SiC含量的影响。图18示出了预烧结温度对在烧结到1200℃、1300℃、1350℃和1400℃的硬生坯本体中存在的相的影响。相1是金刚石,相2是硅,相3是碳化硅,且相4是氮化硅。增加预烧结温度使SiC含量增加。硬生坯本体的组合物的变化改变了HPHT烧结本体的最终组合物和强度。图17示出了,在约1400℃的预烧结温度之上,HPHT烧结本体中SiC含量明显较高。图16示出了该组合物变化对材料强度的影响,其示出了在约1400℃的预烧结温度之上的明显减少。

Claims (16)

1.一种制造近净成型超硬材料本体的方法,包括:
由包括金刚石、硅、粘结剂和流体的材料的混合物制备浆料;
干燥所述浆料,以移除流体并且形成微粒;
压实所述微粒以形成具有限定形状的软生坯本体;
在炉中加热所述软生坯本体,以便从所述软生坯本体中移除至少一部分粘结剂并且在一部分金刚石和硅中引起反应,由此,形成硬生坯本体;
将所述硬生坯本体中的一个或多个嵌入容纳粉末中并压实所述容纳粉末以形成容纳装置;
在高压和高温的过程中烧结处于所述容纳装置中的所述硬生坯本体,并且提供另外的硅渗透所述硬生坯本体,其中,金刚石与已添加到浆料中的所述硬生坯本体的硅反应,并且渗透所述硬生坯本体的所述另外的硅在高压和高温的过程中用于形成如下碳化硅,该碳化硅在由所述硬生坯本体形成的一个或多个近净成型本体中粘结金刚石。
2.根据权利要求1所述的方法,其中所述微粒包括金刚石和硅和临时的有机粘结剂的混合物。
3.根据权利要求2所述的方法,其中所述微粒还包括陶瓷材料。
4.根据权利要求1所述的方法,其中所述粘结剂包括聚乙二醇。
5.根据权利要求1所述的方法,其中所述容纳粉末包围所述硬生坯本体,以能够在高压高温的烧结过程期间实现均匀的压力分布。
6.根据权利要求1所述的方法,其中所述容纳粉末是粉末化石墨、六角形氮化硼、氧化铝或滑石中的至少一种。
7.根据权利要求1所述的方法,其中所述容纳装置具有与在高压高温的烧结过程之前的所述硬生坯本体相同或比其高的相对密度。
8.根据权利要求1所述的方法,其中包含所述硬生坯本体的所述容纳装置在至少1.5GPa的压力和至少1200℃的温度下被烧结。
9.一种制造近净成型超硬材料本体的方法,包括:
在乙醇-水混合物中将金刚石和硅的粉末与聚乙二醇的粘结剂混合,以形成浆料;
喷射干燥所述浆料,以形成微粒;
压实所述微粒,以形成软生坯本体;
在炉中脱粘并预烧结所述软生坯本体,以便从所述软生坯本体中移除至少一部分粘结剂并且在一部分金刚石和硅中引起反应,由此,形成硬生坯本体;
将所述硬生坯本体嵌入石墨粉末中并压实所述石墨粉末,以形成容纳装置;
在高压和高温的过程中烧结处于所述容纳装置中的所述硬生坯本体,并且提供另外的硅渗透所述硬生坯本体,其中,金刚石与已添加到浆料中的所述硬生坯本体的硅反应,并且渗透所述硬生坯本体的所述另外的硅在高压和高温的过程中用于形成如下碳化硅,该碳化硅在由所述硬生坯本体形成的一个或多个近净成型本体中粘结金刚石。
10.一种制造近净成型超硬材料本体的方法,包括:
由包括金刚石、硅、粘结剂和流体的混合物制备浆料;
干燥所述浆料,以移除流体并且形成微粒;
压实所述微粒,以形成具有限定形状的软生坯本体;
在炉中加热所述软生坯本体,以便从所述软生坯本体中移除至少一部分粘结剂并且在一部分金刚石和硅中引起反应,由此,形成硬生坯本体;
将所述硬生坯本体中的一个或多个插入用于容纳所述硬生坯本体的容纳装置中,所述容纳装置包括选自石墨、烧结金属陶瓷及其组合构成的组中的固体材料;
在高压和高温的过程中烧结处于所述容纳装置中的所述硬生坯本体,并且提供另外的硅渗透所述硬生坯本体,其中,金刚石与已添加到浆料中的所述硬生坯本体的硅反应,并且渗透所述硬生坯本体的所述另外的硅在高压和高温的过程中用于形成如下碳化硅,该碳化硅在由所述硬生坯本体形成的一个或多个近净成型本体中粘结金刚石。
11.根据权利要求10所述的方法,其中所述粘结剂包含聚乙二醇。
12.根据权利要求10所述的方法,其中所述容纳装置通过选自云母、云母箔、hBN或TiN的惰性层而与所述硬生坯本体分开。
13.根据权利要求10所述的方法,其中处于所述容纳装置中的所述硬生坯本体在至少1.5GPa的压力和至少1200℃的温度下被烧结。
14.根据权利要求10所述的方法,其中所述硬生坯本体包括选自压痕、孔、压印、突脊、半径、倒角、螺旋形状、螺纹及其组合构成的组中的特征。
15.一种刀片,通过权利要求10所述的方法制造所述刀片。
16.根据权利要求15所述的刀片,其中所述刀片包含材料梯度。
CN201280065559.1A 2011-12-30 2012-12-31 近净成型切削刀具刀片 Active CN104159871B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161581664P 2011-12-30 2011-12-30
US61/581,664 2011-12-30
PCT/US2012/072257 WO2013102184A1 (en) 2011-12-30 2012-12-31 Near-net cutting tool insert

Publications (2)

Publication Number Publication Date
CN104159871A CN104159871A (zh) 2014-11-19
CN104159871B true CN104159871B (zh) 2016-09-14

Family

ID=47666479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280065559.1A Active CN104159871B (zh) 2011-12-30 2012-12-31 近净成型切削刀具刀片

Country Status (9)

Country Link
US (1) US9327385B2 (zh)
EP (2) EP2797851B1 (zh)
JP (1) JP6281875B2 (zh)
KR (1) KR101946097B1 (zh)
CN (1) CN104159871B (zh)
IN (1) IN2014KN01373A (zh)
RU (1) RU2014131412A (zh)
WO (1) WO2013102184A1 (zh)
ZA (1) ZA201404801B (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273869B2 (ja) * 2014-01-31 2018-02-07 セイコーエプソン株式会社 成形体の製造方法および構造体の製造方法
GB201412809D0 (en) * 2014-07-18 2014-09-03 Element Six Abrasives Sa Method of making super-hard articles
EP3250538B1 (en) * 2015-01-28 2020-06-24 Diamond Innovations, Inc. Friable ceramic-bonded diamond composite particles and methods to produce the same
CN107438498A (zh) * 2015-05-28 2017-12-05 哈里伯顿能源服务公司 制造聚晶金刚石工具的诱导材料偏析方法
CN105063455B (zh) * 2015-08-24 2017-10-31 珠海市钜鑫科技开发有限公司 一种含有立方氮化硼、陶瓷、金属的切削刀具材料及其制备方法
KR102626464B1 (ko) * 2015-08-26 2024-01-17 산드빅 인터렉츄얼 프로퍼티 에이비 리소그래피-기반 제조에 의한 다이아몬드 복합체들
WO2017032841A1 (en) 2015-08-26 2017-03-02 Sandvik Intellectual Property Ab A method of producing a component of a composite of diamond and a binder
DE102016219930A1 (de) * 2015-10-13 2017-04-13 Ceram Tec Gmbh Herstellung von Keramiken ohne piezoelektrische Eigenschaften in wässriger Umgebung
CN106282625A (zh) * 2016-08-02 2017-01-04 江苏省海洋资源开发研究院(连云港) 一种超细晶硬质合金的近净成形方法
GB201704133D0 (en) 2017-03-15 2017-04-26 Element Six (Uk) Ltd Sintered polycrystalline cubic boron nitride material
US11590691B2 (en) 2017-11-02 2023-02-28 General Electric Company Plate-based additive manufacturing apparatus and method
US11254052B2 (en) 2017-11-02 2022-02-22 General Electric Company Vatless additive manufacturing apparatus and method
CN107759225B (zh) * 2017-11-30 2020-11-10 福州大学 一种高热导率氮化铝陶瓷的制备方法
US10821668B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by- layer
US10821669B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by-layer
DE102018203882A1 (de) * 2018-03-14 2019-09-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Hartstoffpartikeln aus SiC-gebundenem Diamant, mit dem Verfahren hergestellte Hartstoffpartikel, mit den Hartstoffpartikeln hergestellte poröse Bauteile sowie deren Verwendung
JP7040991B2 (ja) * 2018-04-26 2022-03-23 トーメイダイヤ株式会社 硬さの向上したダイヤモンド/炭化ケイ素複合体の製造方法及びかかる複合体
ES2966467T3 (es) 2018-05-08 2024-04-22 Seco Tools Ab Un método para fabricar un cuerpo sinterizado
US11794412B2 (en) 2019-02-20 2023-10-24 General Electric Company Method and apparatus for layer thickness control in additive manufacturing
US11498283B2 (en) 2019-02-20 2022-11-15 General Electric Company Method and apparatus for build thickness control in additive manufacturing
US11179891B2 (en) 2019-03-15 2021-11-23 General Electric Company Method and apparatus for additive manufacturing with shared components
GB202105771D0 (en) * 2021-04-22 2021-06-09 Element Six Uk Ltd Method of making a shaped tool component
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
EP4385643A1 (en) 2022-12-13 2024-06-19 AB Sandvik Coromant Cutting tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909991A (en) * 1970-09-22 1975-10-07 Norton Co Process for making sintered abrasive grains
CN1269273A (zh) * 1999-04-07 2000-10-11 桑德维克公司 用于后续生产切削工具的基于多孔立方晶系氮化硼的材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647546A (en) * 1984-10-30 1987-03-03 Megadiamond Industries, Inc. Polycrystalline cubic boron nitride compact
US4797241A (en) * 1985-05-20 1989-01-10 Sii Megadiamond Method for producing multiple polycrystalline bodies
US5010043A (en) * 1987-03-23 1991-04-23 The Australian National University Production of diamond compacts consisting essentially of diamond crystals bonded by silicon carbide
JP2708245B2 (ja) * 1989-11-07 1998-02-04 株式会社神戸製鋼所 熱間静水圧プレス方法
JP3787602B2 (ja) * 1995-05-08 2006-06-21 住友電工ハードメタル株式会社 焼結ダイヤモンド粒子、被覆粒子及び圧密体並びにそれらの製造方法
JP3095707B2 (ja) * 1996-05-01 2000-10-10 大阪ダイヤモンド工業株式会社 ワイヤーソー用ビーズの製造方法
AUPP040297A0 (en) * 1997-11-14 1997-12-11 Australian National University, The A cell for forming a composite hard material and method of forming composite hard materials
SE519860C2 (sv) * 1999-04-07 2003-04-15 Sandvik Ab Sätt att tillverka ett skär bestående av en PcBN-kropp och en hårdmetall- eller cermet-substrat
US7959841B2 (en) * 2003-05-30 2011-06-14 Los Alamos National Security, Llc Diamond-silicon carbide composite and method
US7772517B2 (en) * 2004-01-06 2010-08-10 John David Glynn Method of making a plurality of tool inserts
CA2569733C (en) * 2005-04-14 2010-08-03 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body and cutting tool
US8052765B2 (en) * 2007-04-03 2011-11-08 Cho H Sam Contoured PCD and PCBN for twist drill tips and end mills and methods of forming the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909991A (en) * 1970-09-22 1975-10-07 Norton Co Process for making sintered abrasive grains
CN1269273A (zh) * 1999-04-07 2000-10-11 桑德维克公司 用于后续生产切削工具的基于多孔立方晶系氮化硼的材料及其制备方法

Also Published As

Publication number Publication date
ZA201404801B (en) 2017-09-27
KR20140116174A (ko) 2014-10-01
EP2797851A1 (en) 2014-11-05
EP2797851B1 (en) 2019-02-06
US20130167447A1 (en) 2013-07-04
JP2015510546A (ja) 2015-04-09
IN2014KN01373A (zh) 2015-10-16
JP6281875B2 (ja) 2018-02-21
CN104159871A (zh) 2014-11-19
WO2013102184A1 (en) 2013-07-04
US9327385B2 (en) 2016-05-03
KR101946097B1 (ko) 2019-04-17
EP3406582A1 (en) 2018-11-28
RU2014131412A (ru) 2016-02-20
WO2013102184A9 (en) 2014-09-12
EP3406582B1 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
CN104159871B (zh) 近净成型切削刀具刀片
US11498873B2 (en) Superhard constructions and methods of making same
CN110494579A (zh) 烧结的聚晶立方氮化硼材料
CN107949551B (zh) 基于平版印刷制造的金刚石复合材料
CN107922273B (zh) 制造金刚石与粘合剂的复合材料的部件的方法
US20170304995A1 (en) Method of making polycrystalline diamond material
CN103813872A (zh) 多晶金刚石结构及其制备方法
GB2507571A (en) A polycrystalline superhard body with polycrystalline diamond (PCD)
US20190330118A1 (en) Super hard constructions &amp; methods of making same
GB2519671A (en) Superhard constructions &amp; methods of making same
IL127507A (en) Whisker-reinforced ceramics
CN101450862B (zh) 陶瓷切削刀片
CN106068361A (zh) 多晶超硬构件及其制造方法
US20150033637A1 (en) Polycrystalline superhard material and method of forming
GB2507566A (en) Tool with a PCD body
EP4385644A1 (en) Composite material
US20230037181A1 (en) Polycrystalline cubic boron nitride material
EP4385643A1 (en) Cutting tool
WO2024126484A1 (en) Composite material
WO2024126492A1 (en) Cutting tool
WO2016107925A1 (en) Superhard constructions &amp; methods of making same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant