CN104136612A - 特异性结合cgrp的核酸 - Google Patents

特异性结合cgrp的核酸 Download PDF

Info

Publication number
CN104136612A
CN104136612A CN201380009019.6A CN201380009019A CN104136612A CN 104136612 A CN104136612 A CN 104136612A CN 201380009019 A CN201380009019 A CN 201380009019A CN 104136612 A CN104136612 A CN 104136612A
Authority
CN
China
Prior art keywords
nucleic acid
acid molecule
seq
cgrp
nucleotide sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380009019.6A
Other languages
English (en)
Inventor
S·舒尔兹臣
W·普尔施克
F·雅洛世
K·霍利戈
C·马什
S·克鲁斯曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TME Pharma AG
Original Assignee
Noxxon Pharma AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2012/000089 external-priority patent/WO2012095303A1/en
Application filed by Noxxon Pharma AG filed Critical Noxxon Pharma AG
Publication of CN104136612A publication Critical patent/CN104136612A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/344Position-specific modifications, e.g. on every purine, at the 3'-end
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Pain & Pain Management (AREA)
  • Plant Pathology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及能够结合CGRP的核酸分子,其中核酸分子包含中央核苷酸区段,其中所述中央核苷酸区段包含核苷酸序列5’HWn1n2YGGAn3An4UMn5n6Yn7n8n9n10n11Kn12Rn13ADn14n15ARn16Un17Cn18n19Un20n213’[SEQ ID NO:99],其中H、W、Y、G、A、U、M、B、K、R、D、C为核糖核苷酸并且n1为R或dG,n2为U或dT,n3为K或dG,n4为C或dC,n5为M或dC,n6为B或dU,n7为N或dG,n8为Y或dT,n9为N或dC,n10为R或dG,n11为V或dA,n12为K或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为R或dG,n17为Y或dC,n18为C或dC,n19为B或dC,n20为C或dC,n21为C或dC,并且dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。

Description

特异性结合CGRP的核酸
本发明涉及能够结合降钙素基因相关肽(缩写CGRP)的核酸分子、其用于分别制造药剂、诊断剂和检测剂的用途、包含所述核酸分子的组合物、包含所述核酸分子的复合物、用于使用所述核酸分子筛选由CGRP介导的活性的拮抗剂的方法以及用于检测所述核酸分子的方法。
α-CGRP是通过降钙素基因转录物的选择性剪接产生的37个氨基酸的神经肽(Amara,Jonas等人1982)。CGRP主要在周围和中枢神经系统中表达(van Rossum,Hanisch等人1997)。尽管已描述了CGRP的各种功能,但其最为人知的体内作用是硬膜血管扩张和伤害感觉的传递(Edvinsson和Ho2010)。人CGRP的结构部分地通过1H-NMR测定。肽包含确定的氨基末端二硫键合的环(残基2-7),从而导致定义明确的α-螺旋(残基8和18)。肽的C末端部分没有明确确定的结构(Breeze,Harvey等人1991)。
β-CGRP是与α-CGRP具有高度同源性(人α和βCGRP仅相异于37个氨基酸中的3个氨基酸,即95%相同的氨基酸)的肽,然而其通过不连续基因转录。两种肽在不同的解剖学位置表达,但显示相似的生物作用(Edvinsson和Ho2010)。与人α-CGRP显示序列同源性的其它肽是人淀粉不溶素(37个氨基酸中的15个(=41%)与人α-CGRP的氨基酸相同)、降钙素(37个氨基酸中的7个(=19%)相同)、肾上腺髓素(37个氨基酸中的7个(=19%)相同)和垂体中间叶激素(37个氨基酸中的7个(=19%)相同)(参见图8A)。
CGRP的细胞受体是G蛋白偶联受体降钙素样受体(缩写CLR)与称为受体活性修饰蛋白1(缩写RAMP1)的小跨膜蛋白的异二聚体。已克隆了可与CLR形成异二聚体并决定针对肽的降钙素家族的其它成员的选择性的两种其它RAMP即RAMP2和RAMP3。例如,CLR和RAMP2形成肾上腺髓素的选择性受体(McLatchie,Fraser等人1998)。结构数据确认CLR和RAMP1一起形成了针对CGRP的结合口袋,并且临床上有效的CGRP受体拮抗剂阻断该结合裂口(Raddant和Russo2011)。CGRP对其受体的结合导致升高的细胞内cAMP水平。
虽然已描述了CGRP的各种功能,但其最为人知的体内作用是硬膜血管扩张和伤害感受的传递(Edvinsson和Ho2010)。事实上,CGRP被广泛用作感受伤害的神经纤维的标志物。
在西方国家,接近10%的成人群体受偏头痛(在女性中发病率更高)影响。偏头痛是使人虚弱的疾病,其特征在于与恶心或呕吐或畏光或高声恐怖相关的密集复发的头痛。在约15%的患者中,头痛之前有神经学症状,通常地视觉症状。该类型的偏头痛被定义为先兆偏头痛(Goadsby2003)。
目前的治疗选择包括标准镇痛药(主要地非类固醇抗炎药(缩写NSAID)例如乙酰水杨酸、扑热息痛、布洛芬和COX-2抑制剂)和两类偏头痛特异性镇痛药:血管收缩麦角类生物碱衍生物(例如二氢麦角胺)和色胺类,5-HT1B/1D受体激动剂(例如舒马普坦)。虽然这些药物对于许多患者是高效的,但并非所有偏头痛患者可利用目前可得的药物来充分治疗,这强调了对新型治疗选择的需要(Monteith和Goadsby2011)。
一些证据表明CRGP在偏头痛病理学中的中心作用。脑血管的血管扩张被认为是偏头痛中头痛发生的关键机制。已知CGRP为有效的血管扩张剂,并且已显示三叉神经节的刺激导致CGRP从三叉神经末梢的释放和随后通过驻留在血管平滑肌上的CGRP受体介导的血管扩张(Limmroth,Katsarava等人2001)。此外,患者中血浆CGRP水平在偏头痛发作过程中升高(Goadsby,Edvinsson等人1990;Gallai,Sarchielli等人1995;Juhasz,Zsombok等人2003),尽管其它研究未能确认该现象(Tvedskov,Lipka等人2005)。在儿科偏头痛中,已显示CGRP的头外来源(extracephalical source)(Tfelt-Hansen和Ashina2010)。值得注意地,CGRP的输注在偏头痛患者中但非健康个体中诱发偏头痛样头痛,这表明增强的对CGRP偏头痛患者的敏感性(Lassen,Haderslev等人2002)。此外,有证据表明CGRP牵涉与偏头痛不同的头痛例如丛集性头痛、阵发性偏头痛、颈椎性头痛和透析头痛(Frese,Schilgen等人2005;Alessandri,Massanti等人2006;Tfelt-Hansen和Le2009;Summ,Andreou等人2010)。例如,在镇痛治疗后正常化的血浆CGRP水平在丛集性头痛发作过程中升高(Goadsby和Edvinsson1994;Tfelt-Hansen和Le2009)。
不断增加的证据表明CGRP牵涉除血管扩张外的促成偏头痛病理生理学的其它机制。神经源性炎症是无菌类型的炎症,所述炎症因感觉神经激活导致并且特征在于血管扩张、血浆蛋白外渗和促炎介质从驻留肥大细胞的释放。CGRP从三叉神经末梢的血管周释放可通过刺激硬脑膜驻留肥大细胞和卫星胶质细胞来触发这样的炎症事件(Ottosson和Edvinsson1997;Raddant和Russo2011)。此外,CGRP可直接影响伤害感受的突触传递,从而导致增加的对感觉输入的敏感性,如在偏头痛相关的畏光和高声恐怖过程中观察到的(Ho,Edvinsson等人2010)。
抗偏头痛药物例如二氢麦角胺或舒马普坦的施用能够降低CGRP水平的观察支持了CGRP在偏头痛中的重要性(Limmroth,Katsarava等人2001;Stepien,Jagustyn等人2003)。肽片段CGRP(8-37)通过阻断其受体拮抗CGRP的功能。CGRP(8-37)被成功地用于多种偏头痛和疼痛模型,但其用途因不良的生物稳定性而受到限制。已开发了数种非肽小分子CGRP受体拮抗剂。静脉内配制的CGRP受体拮抗剂奥塞吉泮(BIBN4096BS)在治疗偏头痛的急性发作中是有效的(Olesen,Diener等人2004)。尽管存在这些有前景的结果,但其开发可能因缺乏口服可用性而终止。奥塞吉泮的口服可用第二代化合物BI-44370TA最近在II期试验中显示对急性偏头痛的剂量依赖性功效(Diener,Barbanti等人2011)。替卡吉泮(MK-0974)是被开发用于偏头痛的潜在治疗的口服可用的CGRP受体拮抗剂。其在III期临床试验中显示对急性偏头痛的功效(Ho,Ferrari等人2008;Connor,Shapiro等人2009),但最近其开发推测因来自预防临床试验的肝毒性的体征(Raddant和Russo2011)而中断。BMS-927711目前被开发来在II期临床试验中用于偏头痛的潜在口服胶囊治疗。抗-CGRP单克隆抗体有效地抑制神经源性血管扩张(Tan,Brown等人1995;Zeller,Poulsen等人2008)。目前开发了两种靶向CGRP的单克隆抗体。两种抗体目前在I期临床试验中用于偏头痛的潜在治疗。然而,由于它们潜在的免疫原性,这些和其它抗体可能不是偏头痛的长期治疗的可行选择。
基本上,通过降低CGRP水平/活性进行治疗性干预的尝试已产生许多支持CGRP拮抗作为偏头痛的潜在治疗的概念的结果,但未曾导致具有足够效力或充分安全特征的化合物。
我们先前已描述了Spiegelmer结合大鼠CGRP并且更低的亲和性地结合人CGRP(Vater,Jarosch等人2003)。在动物模型中,这些Spiegelmer有效地抑制CGRP诱发的血管扩张(Edvinsson,Nilsson等人2007;Juhl,Edvinsson等人2007),阻止电刺激后脑膜动脉血流的增加(Denekas,Troltzsch等人2006)和消除对热毒的应变相关超敏反应(strain-related hypersensitivity)(Mogil,Miermeister等人2005)。
淀粉不溶素或胰岛淀粉样多肽(缩写IAPP)是37个氨基酸的肽激素,其显示与人的α-CGRP具有41%的相同氨基酸残基。淀粉不溶素与胰岛素一起从郎格罕氏胰岛的β-细胞分泌。其通过减慢胃排空、抑制消化液分泌和导致的食物摄入减少来帮助控制血糖水平。此外,其明显地通过与中枢神经系统的相互作用引起饱胀和口渴的感觉(Field,Chaudhri等人2010)。与其相应地,淀粉不溶素的注射导致大鼠中减少的食物摄入(Lutz,Del Prete等人1994;Morley,Flood等人1994)。由于该厌食作用,淀粉不溶素的抑制可导致增加的食物摄入和肥胖(Lutz2006)。因此,CGRP-结合性Spiegelmer与淀粉不溶素的交叉反应性是偏头痛的潜在治疗的主要障碍。
本发明要解决的问题是提供与人CGRP,优选人α-CGRP特异性结合而不与淀粉不溶素,优选人淀粉不溶素相互作用,并且拮抗通过CGRP,优选人α-CGRP介导的活性的工具,其中所述工具适合用于预防和/或治疗疾病和病况例如偏头痛、急性和慢性疼痛或对基于吗啡的镇痛的耐受性。
本发明的这些和其它问题通过所附独立的权利要求的主题得以解决。优选实施方案可采自从属权利要求。
本发明的问题在第一方面、也是第一方面的第一实施方案中通过能够结合CGRP的核酸分子得以解决,其中所述核酸分子包含中央核苷酸区段,其中中央核苷酸区段包含如下核苷酸序列:
5’HWn1n2YGGAn3An4UMn5n6Yn7n8n9n10n11Kn12Rn13ADn14n15ARn16Un17Cn18n19Un20n213’[SEQ ID NO:99],
其中H、W、Y、G、A、U、M、B、K、R、D、C为核糖核苷酸、并且
n1为R或dG,n2为U或dT,n3为K或dG,n4为C或dC,n5为M或dC,n6为B或dU,n7为N或dG,n8为Y或dT,n9为N或dC,n10为R或dG,n11为V或dA,n12为K或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为R或dG,n17为Y或dC,n18为C或dC,n19为B或dC,n20为C或dC,n21为C或dC,并且
dG,dT,dC,dA和dU为2’-脱氧核糖核苷酸。
在第一方面的第2实施方案、也是第一方面的第1实施方案的实施方案中,中央核苷酸区段包含如下核苷酸序列:
5’CUn1n2YGGAn3An4UMn5n6Bn7n8n9n10n11Kn12An13ADn14n15AGn16Un17Cn18n19Un20n213’[SEQ ID NO:100]
其中C、U、Y、G、A、M,B、Y、H、K、D,R和V为核糖核苷酸,并且
n1为G或dG,n2为U或dT,n3为G或dG,n4为C或dC,n5为M或dC,n6为B或dU,n7为D或dG,n8为Y或dT,n9为H或dC,n10为R或dG,n11为V或dA,n12为K或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为G或dG,n17为Y或dC,n18为C或dC,n19为C或dC,n20为C或dC,n21为C或dC,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。
在第一方面的第3实施方案、也是第一方面的第1和第2实施方案的实施方案中,中央核苷酸区段包含核苷酸序列:
5’CUn1n2CGGAn3An4UAn5n6Cn7n8n9n10n11Gn12An13AAn14n15AGn16Un17Cn18n19Un20n213’[SEQ ID NO:101]
其中C、U、Y、G、A、H和R为核糖核苷酸,并且
n1为G或dG,n2为U或dT,n3为G或dG,n4为C或dC,n5为C或dC,n6为U或dU,n7为R或dG,n8为Y或dT,n9为H或dC,n10为G或dG,n11为R或dA,n12为U或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为G或dG,n17为C或dC,n18为C或dC,n19为C或dC,n20为C或dC,n21为C或dC,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。
在第一方面的第4实施方案、也是第一方面的第1、第2和第3实施方案的实施方案中,中央核苷酸区段包含如下核苷酸序列:
5’CUn1n2CGGAn3An4UAn5n6Cn7n8n9n10n11Gn12An13AAn14n15AGn16Un17Cn18n19Un20n213’[SEQ ID NO:102]
其中C、U、G、A为核糖核苷酸,并且
n1为G或dG,n2为U或dT,n3为G或dG,n4为C或dC,n5为C或dC,n6为U或dU,n7为G或dG,n8为U或dT,n9为C或dC,n10为G或dG,n11为A或dA,n12为U或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为G或dG,n17为C或dC,n18为C或dC,n19为C或dC,n20为C或dC,n21为C或dC,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。
在第一方面的第5实施方案、也是第一方面的第1、第2、第3和第4实施方案的实施方案中,中央核苷酸区段包含选自如下序列的核苷酸序列:
(1)5’CUdGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:103],
(2)5’CUGdTCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ IDNO:104],
(3)5’CUGUCGGAdGACUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ IDNO:105],
(4)5’CUGUCGGAGAdCUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:106],
(5)5’CUGUCGGAGACUAdCUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ IDNO:107],
(6)5’CUGUCGGAGACUACUCdGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:108],;
(7)5’CUGUCGGAGACUACUCGdTCGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:109],
(8)5’CUGUCGGAGACUACUCGUdCGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:110],
(9)5’CUGUCGGAGACUACUCGUCdGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:111],
(10)5’CUGUCGGAGACUACUCGUCGdAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:112],
(11)5’CUGUCGGAGACUACUCGUCGAGdTAGAAAUAGGUCCCCUCC 3’[SEQID NO:113],
(12)5’CUGUCGGAGACUACUCGUCGAGUAdGAAAUAGGUCCCCUCC 3’[SEQID NO:114]
(13)5’CUGUCGGAGACUACUCGUCGAGUAGAAdAUAGGUCCCCUCC 3’[SEQID NO:115]
(14)5’CUGUCGGAGACUACUCGUCGAGUAGAAAdTAGGUCCCCUCC 3’[SEQID NO:116],
(15)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGdGUCCCCUCC 3’[SEQID NO:117],
(16)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUdCCCCUCC 3’[SEQID NO:118],
(17)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUCC 3’[SEQID NO:119],
(18)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCdCUCC 3’[SEQID NO:120],
(19)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUdCC3’[SEQ IDNO:121],
(20)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUCdC 3’[SEQ IDNO:122],
(21)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUdCC 3’[SEQID NO:123],
(22)5’CUGUCGGAGACUACdUCGUCGAGUAGAAAUAGGUCCdCCUCC 3’[SEQID NO:130],
(23)5’CUGUCGGAGACUACUCGUCGAGdUAGAAAUAGGUCCdCCUCC 3’[SEQID NO:131],
(24)5’CUGUCGGAGACUACdUCGUCGAGdUAGAAAUAGGUCCdCCUCC 3’[SEQID NO:132],
(25)5’CUGUCGGAGACUACdUCGUCGAGUAGAAAUAGGUCCdCCUdCC 3’[SEQID NO:133],
(26)5’CUGUCGGAGACUACUCGUCGAGdUAGAAAUAGGUCCdCCUdCC 3’[SEQID NO:134],
(27)5’CUGUCGGAGACUACdUCGUCGAGdUAGAAAUAGGUCCdCCUdCC 3’[SEQ ID NO:90],
其中C、U、G、A为核糖核苷酸,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。
在第一方面的第6实施方案,也是第一方面的第1、第2、第3、第4和第5实施方案的实施方案中,中央核苷酸区段包含核苷酸序列:
5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUCC 3’[SEQ ID NO:119]或5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUdCC 3’[SEQ IDNO:123)或5’CUGUCGGAGACUACUCGUCGAGdUAGAAAUAGGUCCdCCUCC 3’[SEQ ID NO:131]。
在第一方面的第7实施方案,也是第一方面的第1、第2、第3和第4实施方案的实施方案中,中央核苷酸区段由核糖核苷酸和2’-脱氧核糖核苷酸组成。
在第一方面的第8实施方案,也是第一方面的第1、第2、第3和第4实施方案的实施方案中,中央核苷酸区段由2’-核糖核苷酸组成。
在第一方面的第9实施方案、也是第一方面的第1、2、3、4、5、6、7和8实施方案的实施方案中,核酸分子以5’->3’方向包含第一末端核苷酸区段、中央核苷酸区段和第二末端核苷酸区段,其中
第一末端核苷酸区段包含4至7个核苷酸,和
第二末端核苷酸区段包含4至7个核苷酸,
优选地
第一末端核苷酸区段包含5至7个核苷酸,和
第二末端核苷酸区段包含5至7个核苷酸。
在第一方面的第10实施方案、也是第一方面的第9实施方案的实施方案中,
第一末端核苷酸区段包含5个核苷酸,和
第二末端核苷酸区段包含5个核苷酸。
在第一方面的第11实施方案、也是第一方面的第9和第10实施方案的实施方案中,第一末端核苷酸区段包含核苷酸序列5’Z1Z2Z3SZ4WZ53’并且第二末端核苷酸区段包含核苷酸序列5’Z6Z7Z8Z9Z10Z11Z123’,
其中S、W、V、B和K为核糖核苷酸,并且
Z1为S或不存在,Z2为V或不存在,Z3为B或不存在,Z4为V或dG,Z5为G或dG,Z6为Y或dC,Z7为W或dA,Z8为B或dC,Z9为S或dG,Z10为S或dG或不存在,Z11为B或不存在,Z12为K或不存在,并且
dG、dC和dA为2’-脱氧核糖核苷酸。
在第一方面的第12实施方案、也是第一方面的第11实施方案的实施方案中,
a)Z1为S,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12为K;
b)Z1不存在,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12为K;
c)Z1为S,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12不存在;
d)Z1不存在,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12不存在;
e)Z1不存在,Z2不存在,Z3为B,Z10为S或dG,Z11为B,Z12不存在;
f)Z1不存在,Z2为V,Z3为B,Z10为S或dG,Z11不存在,Z12不存在;
g)Z1不存在,Z2不存在,Z3为B,Z10为S或dG,Z11不存在,Z12不存在;
h)Z1不存在,Z2不存在,Z3不存在,Z10为S或dG,Z11不存在,Z12不存在;
i)Z1不存在,Z2不存在,Z3为B,Z10不存在,Z11不存在,Z12不存在;或
j)Z1不存在,Z2不存在,Z3不存在,Z10不存在,Z11不存在,Z12不存在。
在第一方面的第13实施方案、也是第一方面的第9、11和12实施方案的实施方案中,
所述第一末端核苷酸区段包含核苷酸序列5’CACCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGGUG 3’;或
所述第一末端核苷酸区段包含核苷酸序列5’GGCCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGGCU 3’;或
所述第一末端核苷酸区段包含核苷酸序列5’GUCAUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGGC 3’;或
所述第一末端核苷酸区段包含核苷酸序列5’GCCAUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CAUGGC 3’或
所述第一末端核苷酸区段包含核苷酸序列5’GCCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGGC 3’,或
所述第一末端核苷酸区段包含核苷酸序列5’CCCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGGG 3’。
在第一方面的第14实施方案、也是第一方面的第9、10、11和12实施方案的实施方案中,
所述第一末端核苷酸区段包含核苷酸序列5’CCZ4UZ53’并且所述第二末端核苷酸区段包含核苷酸序列5’Z6Z7Z8Z9Z103’,或
其中C,G,A和U为核糖核苷酸,并且
Z4为G或dG,Z5为G或dG,Z6为C或dC,Z7为A或dA,Z8为C或dC,Z9为G或dG,Z10为G或dG,
dC,dG和dA为2’-脱氧核糖核苷酸。
在第一方面的第15实施方案、也是第一方面的第9、10、11、12和14实施方案的实施方案中,
a)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGG 3’;或
b)所述第一末端核苷酸区段包含核苷酸序列5’CCdGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGG 3’;或
c)所述第一末端核苷酸区段包含核苷酸序列5’CCGUdG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGG 3’;或
d)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’dCACGG 3’;或
e)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CdACGG 3’;或
f)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CAdCGG 3’;或
g)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACdGG 3’,或
h)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGdG 3’;其中
优选地所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGG 3’。
在第一方面的第16实施方案、也是第一方面的第9、10、11、12和14实施方案的实施方案中,
a)所述第一末端核苷酸区段包含核苷酸序列5’GCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGC 3’;或
b)所述第一末端核苷酸区段包含核苷酸序列5’GGGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACCC 3’;或
c)所述第一末端核苷酸区段包含核苷酸序列5’GCCUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CAGGC 3’;或
在第一方面的第17实施方案、也是第一方面的第9、11和12实施方案的实施方案中,
所述第一末端核苷酸区段包含核苷酸序列5’CGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACG 3’;或
所述第一末端核苷酸区段包含核苷酸序列5’CGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’UACG 3’;或
所述第一末端核苷酸区段包含核苷酸序列5’GCAG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CUGC 3’。
在第一方面的第18实施方案、也是第一方面的第1、2、3、4、8、9、10、11、12、13、14、15、16和17实施方案的实施方案中,核酸分子包含选自SEQ ID NO:2,SEQ ID NO:7,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:18,SEQ ID NO:19,SEQ ID NO:21,SEQ ID NO:22,SEQ ID NO:24,SEQ ID NO:25,SEQ ID NO:26和SEQ ID NO:88的核苷酸序列,或包含与包含选自SEQ ID NO:2,SEQ ID NO:7,SEQ IDNO:15,SEQ ID NO:16,SEQ ID NO:18,SEQ ID NO:19,SEQ ID NO:21,SEQ ID NO:22,SEQ ID NO:24,SEQ ID NO:25,SEQ ID NO:26和SEQ ID NO:88的核苷酸序列的核酸分子具有至少85%的同一性的核酸分子,或包含与包含选自SEQ ID NO:2,SEQ ID NO:7,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:18,SEQ ID NO:19,SEQ ID NO:21,SEQ ID NO:22,SEQ ID NO:24,SEQ ID NO:25,SEQ ID NO:26和SEQ ID NO:88的核苷酸序列的核酸分子同源的核酸分子,其中所述同源性为至少85%。
在第一方面的第19实施方案、也是第一方面的第1、2、3、4、5、6、7、9、10、11、12、13、14、15、16和17实施方案的实施方案中,核酸分子包含选自SEQ ID NO:33,SEQ ID NO:45,SEQ ID NO:47,SEQ ID NO:54,SEQ ID NO:124和SEQ ID NO:078的核苷酸序列,或包含与包含选自SEQ ID NO:33,SEQ ID NO:45,SEQ ID NO:47,SEQID NO:54,SEQ ID NO:124和SEQ ID NO:078的核苷酸序列的核酸分子具有至少85%的同一性的核酸分子,或包含与包含选自SEQ ID NO:33,SEQ ID NO:45,SEQ ID NO:47,SEQ ID NO:54,SEQ ID NO:124和SEQ ID NO:078的核苷酸序列的核酸分子同源的核酸分子,其中所述同源性为至少85%。
在第一方面的第20实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19和20实施方案的实施方案中,核酸分子的核苷酸或形成所述核酸分子的核苷酸为L-核苷酸。
在第一方面的第21实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18和19实施方案的实施方案中,核酸分子为L-核酸分子。
在第一方面的第22实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20和21实施方案的实施方案中,核酸分子包含至少一个能够结合CGRP的结合部分,其中这样的结合部分由L-核苷酸组成。
在第一方面的第23实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21和22实施方案的实施方案中,核酸分子为由CGRP介导的活性的拮抗剂。
在第一方面的第24实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22和23实施方案的实施方案中,核酸分子包含修饰基团,其中包含修饰基团的核酸分子从生物体排出的排泄率相较于不包含修饰基团的核酸分子减小。
在第一方面的第25实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22和23实施方案的实施方案中,核酸分子包含修饰基团,其中包含修饰基团的核酸分子相较于不包含修饰基团的核酸分子在生物体中具有增加的停留时间。
在第一方面的第26实施方案、也是第一方面的第24和25实施方案的实施方案中,修饰基团选自生物可降解的和非生物可降解的修饰,优选修饰基团选自聚乙二醇、线性聚乙二醇、分枝聚乙二醇、羟乙基淀粉、肽、蛋白质、多糖、固醇、聚氧丙烯、聚氧酰胺和聚(2-羟乙基)-L-谷氨酰胺。
在第一方面的第27实施方案、也是第一方面的第26实施方案的实施方案中,修饰基团为聚乙二醇,优选由线性聚乙二醇或分枝聚乙二醇组成,其中聚乙二醇的分子量优选为约20,000至约120,000Da,更优选约30,000至约80,000Da和最优选约40,000Da。
在第一方面的第28实施方案、也是第一方面的第26实施方案的实施方案中,修饰基团为羟乙基淀粉,其中优选地羟乙基淀粉的分子量为约50至约1000kDa,更优选约100至约700kDa和最优选200至500kDa。
在第一方面的第29实施方案、也是第一方面的第24、25、26、27和28实施方案的实施方案中,修饰基团通过接头偶联于核酸分子,其中优选地接头是生物可降解接头。
在第一方面的第30实施方案、也是第一方面的第24、25、26、27和28实施方案的实施方案中,修饰基团偶联于核酸分子的5’-末端核苷酸和/或核酸分子的3’-末端核苷酸和/或偶联于所述核酸分子的5’-末端核苷酸与所述核酸分子的3’-末端核苷酸之间的核酸分子的核苷酸。
在第一方面的第31实施方案、也是第一方面的第24、25、26、27、28、29和30实施方案的实施方案中,生物体是动物体或人体,优选人体。
本发明要解决的问题在第二方面、也是第二方面的第一实施方案中通过用于治疗和/或预防疾病的方法的核酸分子得以解决,所述核酸分子是根据第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子。
在第二方面的第2实施方案、也是第二方面的第1实施方案的实施方案中,疾病选自偏头痛,不同形式的头痛,急性疼痛、慢性疼痛、对基于吗啡的镇痛的耐受、骨关节炎、血管生成、自身免疫疾病、肿瘤生长和炎性疾病,其中优选地急性疼痛和慢性疼痛具有炎症性和/或神经性来源。
本发明要解决的问题在第3方面、也是第三方面的第1实施方案中通过包含核酸分子和任选地其它成分的药物组合物得以解决,所述核酸分子是根据第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子,其中所述其它成分选自药学上可接受的赋形剂、药学上可接受的载体和药物活性剂。
在第三方面的第2实施方案、也是第三方面的第1实施方案的实施方案中,药物组合物包含核酸分子和药学上可接受的载体,所述核酸分子是根据第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子。
本发明要解决的问题在第四方面、也是第四方面的第1实施方案中通过核酸分子用于制造药剂的用途得以解决,所述核酸分子是根据第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子。
在第四方面的第2实施方案、也是第四方面的第1实施方案的实施方案中,药剂在人类医学或兽医医学中使用。
在第四方面的第3实施方案、也是第四方面的第1和第2实施方案的实施方案中,药剂用于治疗和/或预防偏头痛,不同形式的头痛,急性疼痛、慢性疼痛、对基于吗啡的镇痛的耐受、骨关节炎、血管生成、自身免疫疾病、肿瘤生长和炎性疾病,其中优选地急性疼痛和慢性疼痛具有炎症性和/或神经性来源。
本发明要解决的问题在第五方面、也是第五方面的第1实施方案中通过核酸分子用于制造诊断工具的用途得以解决,所述核酸分子是根据第一方面第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子。
本发明要解决的问题在第六方面、也是第六方面的第1实施方案中通过包含核酸分子和CGRP的复合物得以解决,所述核酸分子是根据第一方面第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子,其中优选地所述复合物是结晶复合物。
本发明要解决的问题在第七方面、也是第七方面的第1实施方案中通过核酸分子用于检测CGRP的用途得以解决,所述核酸分子是根据第一方面第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子。
本发明要解决的问题在第八方面、也是第八方面的第1实施方案中通过用于筛选由CGRP介导的活性的拮抗剂的方法得以解决,其包括下列步骤:
-提供由CGRP介导的活性的候选拮抗剂,
-提供第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子,
-提供在由CGRP介导的活性的拮抗剂存在的情况下提供信号的测试系统,和
-确定由CGRP介导的活性的候选拮抗剂是否是由CGRP介导的活性的拮抗剂。
本发明要解决的问题在第九方面、也是第九方面的第1实施方案中通过试剂盒得以解决,所述试剂盒用于检测CGRP,其包含根据第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子和至少说明书或反应容器。
本发明要解决的问题在第十方面、也是第十方面的第1实施方案中通过用于检测样品中的核酸分子的方法得以解决,所述核酸分子是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子,其中所述方法包括步骤:
a)提供捕获探针,其中所述捕获探针与第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子的第一部分至少部分互补,和检测探针,其中检测探针与第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子的第二部分至少部分互补;或者,可选择地,捕获探针与第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子的第二部分至少部分互补,以及检测探针与第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子的第一部分至少部分互补;
b)将捕获探针和检测探针分别地或组合地添加至样品,所述样品包含第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子或假定包含所核酸分子;
c)使捕获探针和检测探针同时或以任意顺序依次与核酸分子或其部分反应,所述核酸分子是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子;
d)任选地检测步骤a)中提供的捕获探针是否与核酸分子杂交,所述核酸分子是如第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子;和
e)检测步骤c)中形成的由核酸分子与捕获探针和检测探针组成的复合物,所述核酸分子是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的核酸分子。
在第十方面的第2实施方案、也是第十方面的第1实施方案的实施方案中,检测探针包括检测工具,和/或其中捕获探针被固定于支持物上,优选固体支持物。
在第十方面的第3实施方案、也是第十方面的第1和2实施方案的实施方案中,从反应中除去不为步骤c)中形成的复合物的部分的任何检测探针以便在步骤e)中仅检测为所述复合物的部分的检测探针。
在第十方面的第4实施方案、也是第十方面的第1、2和3实施方案的实施方案中,步骤e)包括步骤:比较当捕获探针与检测探针在权利要求1至32的任一项中定义的核酸分子或其部分存在的情况下,和在所述核酸分子或其部分不存在的情况下杂交时,通过检测工具产生的信号。
在第一方面的第32实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30和31实施方案的实施方案,以及也是第二方面的第2实施方案(也是第二方面的第1实施方案的实施方案)中,CGRP为人CGRP、小鼠CGRP、大鼠CGRP或来自恒河猴(maca mulatta)的CGRP,优选CGRP为人CGRP。
在第一方面的第33实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31和32实施方案的实施方案,以及也是第二方面的第3实施方案(也是第二方面的第1和第2实施方案的实施方案)中,CGRP为α-CGRP或β-CGRP,优选人α-CGRP,人α-CGRP或大鼠α-CGRP。
在第一方面的第34实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32和33实施方案的实施方案,以及也是第二方面的第4实施方案(也是第二方面的第1、2和3实施方案的实施方案)中,核酸分子具有表达为KD的10nM或更少,优选1nM或更少,更优选100pM或更少的针对人α-CGRP的结合亲和力。
在第一方面的第35实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33和34实施方案的实施方案,以及也是第二方面的第5实施方案(也是第二方面的第1、2、3和4实施方案的实施方案)中,核酸分子具有表达为IC50的10nM或更少,优选1nM或更少,更优选100pM或更少的针对人α-CGRP的结合亲和力。
在第一方面的第36实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34和35实施方案的实施方案,以及也是第二方面的第6实施方案(也是第二方面的第1、2、3、4和5实施方案的实施方案)中,核酸分子具有表达为KD的100nM或更多,优选500nM或更多,更优选1000nM或更多的针对人淀粉不溶素的结合亲和力。
在第一方面的第37实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35和36实施方案的实施方案,以及也是第二方面的第7实施方案(也是第二方面的第1、2、3、4、5和6实施方案的实施方案)中,核酸分子具有表达为IC50的100nM或更多,优选500nM或更多,更优选1000nM或更多的针对人淀粉不溶素的结合亲和力。
在第一方面的第38实施方案、也是第一方面的第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36和37实施方案的实施方案,以及也是第二方面的第8实施方案(也是第二方面的第1、2、3、4、5、6和7实施方案的实施方案)中,核酸分子具有表达为KD的10nM或更少,优选1nM或更少,更优选100pM或更少的针对人α-CGRP的结合亲和力,其中核酸分子具有表达为KD的100nM或更多,优选500nM或更多,更优选1000nM或更多的针对人淀粉不溶素的结合亲和力,
和/或
所述核酸分子具有表达为IC50的10nM或更少,优选1nM或更少,和更优选100pM或更少的针对人α-CGRP的结合亲和力,其中所述核酸分子具有表达为IC50的100nM或更多,优选500nM或更多,和更优选1000nM或更多的针对人淀粉不溶素的结合亲和力。
然而不希望受任何理论束缚,本发明人已令人惊讶地发现根据本发明的核酸分子以高亲和力特异性结合CGRP,从而抑制CGRP对其CGRP受体的结合而不与淀粉不溶素交叉反应。因此,根据本发明的核酸分子具有用于治疗CGRP相关障碍和疾病例如疼痛相关障碍(包括偏头痛和其它疾病)的潜能。此外,本发明人已发现根据本发明的核酸分子适合阻断CGRP与CGRP受体的相互作用。在这个范围内,根据本发明的核酸分子为CGRP的拮抗剂和/或CGRP-CGRP受体系统的拮抗剂。
CGRP的拮抗剂是结合CGRP的分子-例如根据本发明的核酸分子-并且是在如实施例5中描述的体外测定中拮抗由CGRP介导的对CGRP受体的活性的分子。由根据本发明的CGRP介导的一个活性是诱导人神经母细胞瘤细胞的cAMP产生,如实施例5中描述的。
对于可通过使用根据本发明的核酸分子或组合物,优选包含根据本发明的核酸分子的药物组合物治疗或预防的各种疾病、病况和障碍,必须认识到这样的疾病、病况和障碍是本文中描述的那些疾病、病况和障碍,包括,特别是本申请的引文部分描述和所示的那些疾病、病况和障碍。在这个范围内,说明书的各个段落和说明书的引文部分形成了本公开内容的完整部分,该部分教导本发明的核酸分子分别用于所述疾病、病况和障碍的预防和治疗的适合性。
如本文中所用,术语CGRP是指任何CGRP,包括但不限于哺乳动物CGRP。优选地,哺乳动物CGRP选自人CGRP、猴CGRP、大鼠CGRP、小鼠CGRP、猪CGRP、绵羊CGRP、狗CGRP。更优选地,CGRP为人CGRP。如本文中所用,术语CGRP是指αCGRP和β-CGRP。优选地α-CGRP选自人α-CGRP、猴α-CGRP、大鼠α-CGRP、小鼠α-CGRP、猪α-CGRP、绵羊α-CGRP、狗α-CGRP。更优选α-CGRP为人α-CGRP。
序列比对(参见图8B)显示了人α-CGRP与来自如下动物的α-CGRP具有如下百分比的相同氨基酸:
如本文中所用,术语CGRP受体是指通过诱导信号转导事件将CGRP信号传递入细胞的任何细胞表面蛋白。CGRP受体包括但不限于哺乳动物CGRP受体。优选地,哺乳动物CGRP受体选自人CGRP受体、猴CGRP受体、大鼠CGRP受体、小鼠CGRP受体、猪CGRP受体、绵羊CGRP受体、狗CGRP受体。更优选地,CGRP受体为人CGRP受体。
此外,根据本发明的核酸分子是优选的,如果CGRP-CGRP受体轴的生理作用与更高的CGRP血浆水平相关的话。
由于CGRP与淀粉不溶素之间的高序列同源性(参见图9中的比对),先前鉴定的CGRP-结合Spiegelmer(参见WO2003/04372)显示与淀粉不溶素的交叉反应性(实施例7,图10)。因此,本发明基于令人惊讶的发现:可以产生以高亲和力结合人CGRP,从而抑制和拮抗CGRP的作用,特别地CGRP对其受体的作用并且在对人CGRP的结合方面具有高度特异性(然而不显示对于人淀粉不溶素的交叉反应性)的核酸分子。
在本发明的范围内,根据本发明的核酸是核酸分子。在这个范围内,术语核酸和核酸分子在本文中以同义的方式使用,如果无相反说明的话。此外,这样的核酸优选在本文中也被称为根据本发明的核酸分子,根据本发明的核酸,本发明核酸或本发明核酸分子。
如本文中描述的根据本发明的核酸的特性可在其中单独地或以任意组合地使用所述核酸的本发明的任何方面中实现。
如本文中更详细概述的,本发明人已鉴定了许多不同的特异性结合CGRP的CGRP结合性核酸分子,其中可以用核苷酸区段的方式(在本文中也被称为公开的)表征所述核酸分子(参见实施例1)。
本发明的CGRP结合性核酸分子包括3个不同的核苷酸的区段:第一末端核苷酸区段、中央核苷酸区段和第二末端核苷酸区段。一般而言,本发明的CGRP结合性核酸分子在其5’-末端和3’-末端包含末端核苷酸区段的各一个,即第一末端核苷酸区段和第二末端核苷酸区段(也称为5’-末端核苷酸区段和3’-末端核苷酸区段)。第一末端核苷酸区段和第二末端核苷酸区段可原则上因其碱基互补性而彼此杂交,从而在杂交后,形成双链结构。然而,这样的杂交在生理和/或非生理条件下在分子中不一定实现。本发明的CGRP结合性核酸分子的3个核苷酸区段-第一末端核苷酸区段、中央核苷酸区段和第二末端核苷酸区段-彼此以5’→3’-方向排列:第一末端核苷酸区段–中央核苷酸区段–第二末端核苷酸区段。或者,第二末端核苷酸区段、中央核苷酸区段和第一末端核苷酸区段以彼此以5’→3’-方向排列。
根据本发明的核酸的中央核苷酸区段的长度优选为40。
根据本发明的核酸的第一末端核苷酸区段的长度为4至7个核苷酸,优选5至7个核苷酸,更优选5个核苷酸。
根据本发明的核酸的第二末端核苷酸区段的长度为4至7个核苷酸,优选5至7个核苷酸,更优选5个核苷酸。
本发明的不同的CGRP结合性核酸分子之间的确定的盒或区段的序列的差异影响对CGRP的结合亲和力。基于本发明的不同CGRP结合性核酸分子的结合分析,中央区段和形成中央区段的核苷酸单个地、更优选地在其整体上对于CGRP结合性核酸分子对CGRP的结合是必需的。
术语‘区段’和‘核苷酸区段’在本文中以同义的方式使用,如果没有相反指明的话。
在优选实施方案中,根据本发明的核酸是单个核酸分子。在其它实施方案中,单个核酸分子以许多单个核酸分子或以许多单个核酸分子种类的形式存在。
本领域技术人员将认识到根据本发明的核酸分子优选由彼此共价(优选通过磷酸二酯连接或键)连接的核苷酸组成。
在本发明的范围内,根据本发明的核酸包含两个或更多个区段或其部分,所述区段原则上可彼此杂交。在这样的杂交后,形成双链结构。本领域技术人员将认识到,这样的杂交可以存在或可以不存在,特别地在体外和/或体内条件下。同样的,在这样的杂交的情况下,杂交不一定在两个区段的整个长度上发生,其中,至少基于碱基配对法则,这样的杂交和从而双链结构的形成在原则上可以发生。如本文中优选使用的,双链结构是核酸分子的部分或通过两个或更多个单独的链或核酸分子的单链的两个空间上分开的区段形成的结构,其中至少一个,优选2个或更多个优选按照沃尔森-克里克碱基配对法则进行碱基配对的碱基对存在。本领域技术人员还将认识到,其它碱基配对例如Hoogsten碱基配对可存在于这样的双链结构中或形成这样的双链结构。还将认识到,两个区段杂交的特性优选地显示这样的杂交因两个区段的碱基互补性而假定发生,无论这样的杂交在体内和/或体外实际上是否发生。关于本发明,这样的区段是在一个实施方案中可如上文中定义的杂交的第一末端核苷酸区段和第二末端核苷酸区段。
在优选实施方案中,如本文中所用,术语排列意指本文中描述的与本文中公开的本发明的核酸相关的结构或功能特性或元件的顺序或序列。
本领域技术人员将认识到,根据本发明的核酸能够结合CGRP。不希望受任何理论束缚,本发明人假定CGRP结合由本发明的核酸分子的三维结构特性或元件的组合导致,所述三维结构特性或元件是由形成这样的特性或元件的核苷酸的一级序列的取向和折叠模式导致的,其中优选地这样的特性或元件是CGRP结合性核酸分子的第一末端核苷酸区段、中央核苷酸区段和第二末端核苷酸区段。显然,单个特性或元件可通过各种不同的单个序列形成,其变化的程度可根据这样的元件或特性必须形成以介导本发明的核酸分子对CGRP的结合的三维结构而不同。本发明的所述核酸的总体结合特征分别地由各种元件和特性的相互作用而引起,这最终导致本发明的核酸分子与其靶即CGRP的相互作用。再次不希望受任何理论束缚,作为CGRP结合性核酸的特征的中央核苷酸区段对于介导所述核酸分子与CGRP的结合是非常重要的。因此,根据本发明的核酸适合用于与CGRP的相互作用。同样地,本领域技术人员将认识到,根据本发明的核酸是CGRP的拮抗剂。由此,根据本发明的核酸子适合用于分别地治疗和预防与CGRP相关或由其引发的任何疾病或病况。这样的疾病和病况可来自于确定CGRP分别地参与所述疾病和病况或与其相关的现有技术,并将所述技术通过引用并入本文,从而提供根据本发明的核酸的治疗性用途的科学原理。
根据本发明的核酸分子还将包括与本文中公开的特定核苷酸序列基本上同源的核酸分子。术语基本上同源的应当被理解为例如同源性为至少75%,优选至少85%,更优选至少90%,最优选高于至少95%、96%、97%、98%或99%。
根据本发明的核酸分子中存在的同源核苷酸的实际百分比将取决于存在于核酸中的核苷酸的总数。百分比变化可基于存在于核酸分子中的核苷酸的总数来计算。
可如本领域技术人员已知的测定两个核酸分子之间的同源性。更具体地,序列比较算法可用于基于指定的程序参数计算测试序列相对于参照序列的百分比序列同源性。测试序列优选是被认为针对不同核酸分子是同源的或待测试其是否是同源的,并且如果是,达到什么程度的序列或核酸分子,其中这样的不同核酸分子也称为参照序列。在一个实施方案中,参照序列是如本文中描述的核酸分子,优选具有根据SEQ ID NO:2、SEQ ID NO:7、SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:18,SEQID NO:19,SEQ ID NO:21,SEQ ID NO:22,SEQ ID NO:24,SEQ IDNO:25,SEQ ID NO:26,SEQ ID NO:88,SEQ ID NO:33,SEQ ID NO:45,SEQ ID NO:47,SEQ ID NO:54,SEQ ID NO:124和SEQ ID NO:078的任一个的序列的核酸分子。用于比较的序列的最佳比对可以例如通过Smith&Waterman的局部同源性算法(Smith&Waterman,1981),通过Needleman&Wunsch的同源性比对算法(Needleman&Wunsch,1970),通过Pearson&Lipman的相似性搜索法(Pearson&Lipman,1988),通过这些算法的计算机化工具(Wisconsin Genetics软件包,GeneticsComputer Group,575Science Dr.,Madison,Wis.中的GAP、BESTFIT、FASTA和TFASTA),或通过目测观察来进行。
适合用于测定百分比序列同一性的算法的一个实例是用于基本局部比对搜索工具(在下文中称为"BLAST")中的算法,参见,例如,Altschul等人(Altschul等人1990和Altschul等人,1997)。用于进行BLAST分析的软件是可通过国家生物技术信息中心(在下文中称为"NCBI")公共获得的。用于使用可从NCBI获得的软件例如BLASTN(用于核苷酸序列)和BLASTP(用于氨基酸序列)测定序列同一性的缺省参数描述于McGinnis等人(McGinnis等人,2004)中。
根据本发明的核酸分子还将包括相对于本文中公开的和通过其核苷酸序列定义的本发明的核酸分子具有一定程度的同一性的核酸分子。更优选地,本发明还包括相对于通过其核苷酸序列定义的本发明的核酸分子或其部分具有至少75%,优选至少85%,更优选至少90%,最优选高于至少95%、96%、97%、98%或99%的同一性的那些核酸分子。
术语本发明的核酸或根据本发明的核酸分子还将包括包含本文中公开的核酸序列或其部分的核酸分子,例如,根据本发明的核酸的代谢物或衍生物,优选达到所述核酸分子或所述部分参与结合CGRP或能够结合CGRP的程度。这样的核酸分子可通过例如截短从本文中公开的核酸分子产生。截短可涉及本文中公开的本发明的核酸分子的一个或两个末端。同样地,截短还可涉及核苷酸的内部序列,即其可分别地涉及5’末端核苷酸与3’末端核苷酸之间的一个或数个核苷酸。此外,截短可包括小至单个核苷酸从本文中公开的本发明的核酸分子的序列的缺失。截短还可涉及本发明的核酸分子的多于一个的核苷酸区段,其中核苷酸区段可小至1个核苷酸长。可由本领域技术人员使用常规实验或通过使用或采用本文中描述的方法,优选在本文中实施例部分描述的方法来测定根据本发明的核酸分子的结合。
根据本发明的核酸分子可以是D-核酸分子或L-核酸分子。优选地,根据本发明的核酸分子为L-核酸分子,更优选,根据本发明的核酸分子是Spiegelmer。
还在本发明范围内的是,在一个实施方案中,本文中描述的核酸分子的每一个和任一个根据其核酸序列在其整体上限定于特定指定的核苷酸序列。换句话说,术语“包含”或“含有”在这样的实施方案中应当以包括或由……组成的含义来解释。
也在本发明范围内的是,根据本发明的核酸是更长的核酸的部分,其中该更长的核酸包含几个部分,其中至少一个这样的部分为本发明的核酸或其部分。这些更长的核酸的其它部分可以是一个或数个D-核酸或L-核酸。可将任意组合与本发明结合使用。这更长核酸的其它部分可显示与结合、优选与对CGRP的结合不同的功能。一个可能的功能是允许与其它分子相互作用,其中这样的其它分子优选与CGRP不同,例如用于固定、交联、检测或扩增。在本发明的其它实施方案中,根据本发明的核酸(作为单个部分或组合部分)包括几个本发明的核酸。这样的包含几个本发明的核酸的核酸也包括在术语更长的核酸内。
如本文中所用,L-核酸为由L-核苷酸组成,优选完全由L-核苷酸组成的核酸或核酸分子。
如本文中所用,D-核酸为由D-核苷酸组成,优选完全由D-核苷酸组成的核酸或核酸分子。
术语核酸和核酸分子在本文中以可互换的方式使用,如果未明确地指出相反的话。
同样的,如果无相反说明的话,任何核苷酸序列在本文中以5’→3’方向显示。
如本文中优选使用的,核苷酸的任何位置是相对于包含这样的核苷酸的序列、区段或子区段的5’末端测定的或提及的。因此,第二核苷酸为分别从序列、区段和子区段的5’末端计数的第二核苷酸。同样地,与其一致地,倒数第二核苷酸为分别从序列、区段和子区段的3’末端计数的第二核苷酸。
不论本发明的核酸分子由D-核苷酸、L-核苷酸组成还是由两者的组合组成(所述组合为由至少一个L-核苷酸和至少一个D-核酸组成的区段的随机组合或确定的序列),核酸都可由脱氧核糖核苷酸、核糖核苷酸或其组合组成。
也在本发明范围内的是,核酸分子由核糖核苷酸和2’脱氧核糖核苷酸组成。2′脱氧核糖核苷酸和核糖核苷酸示于图11A-B和12中。为了区分根据本发明的核酸分子的序列中的核糖核苷酸与2’脱氧核糖核苷酸,在本文中使用下列参考码。
根据本发明的核酸分子主要由2’脱氧核糖核苷酸组成,其中
dG为2’脱氧-鸟苷-5’-单磷酸,
dC为2’脱氧-胞苷-5’-单磷酸,
dA为2’脱氧-腺苷-5’-单磷酸,
dT为2’脱氧-胸苷-5’-单磷酸,并且
dU为2’脱氧-尿苷-5’-单磷酸。
根据本发明的核酸分子主要由核糖核苷酸组成,其中
G为鸟苷-5’-单磷酸,
C为胞苷5’-单磷酸,
A为腺苷-5’-单磷酸,并且
U为尿苷-5’单磷酸。
将本发明的核酸分子设计为L-核酸分子因若干原因是有利的。L-核酸分子是天然存在的核酸的对映体。然而,D-核酸分子在水溶液中,特别地在生物系统或生物样品中因核酸酶的广泛存在而不是特别稳定。天然存在的核酸酶,特别地来自动物细胞的核酸酶不能降解L-核酸。因此,L-核酸分子的生物半衰期在这样的系统包括动物体和人体中显著增加。由于缺乏L-核酸分子的降解能力,在这样的系统包括动物体和人体中,无核酸酶降解产物产生,从而未观察到从其产生的副作用。这个方面使L-核酸分子区别于实际上所有其它用于治疗牵涉CGRP的存在或由CGRP介导的疾病和/或障碍的化合物。通过与沃森-克里克碱基配对不同的机制特异性结合靶分子的L-核酸分子,或部分地或完全地由L-核苷酸组成的适体,特别地该适体的那些部分参与适体对靶分子的结合,也称为spiegelmer。这样的适体和spiegelmer对于本领域技术人员来说也是已知的,并且除其它以外描述于‘The Aptamer Handbook’(eds.Klussmann,2006)中。
也在本发明范围内的是,本发明的核酸分子,不论其以D-核酸、L-核酸还是D,L-核酸存在,或不论其为DNA还是RNA,都可以以单链或双链核酸的形式存在。通常地,本发明的核酸分子是单链核酸分子,其因一级序列而显示确定的二级结构,从而也可形成三级结构。然而,本发明的核酸分子还可以是双链的,意即彼此互补或部分互补的两条链彼此杂交。
可修饰本发明的核酸分子。这样的修饰可涉及核酸分子的单个核苷酸,并在本领域是公知的。这样的修饰的实例除其它以外由Venkatesan等人(Venkatesan,Kim等人2003)和Kusser(Kusser2000)进行了描述。这样的修饰可以是所有组成核酸分子的单个核苷酸的一个、数个的2’位置上的H原子、F原子或O-CH3基团和或NH2-基团。根据本发明的核酸分子还可包含至少一个LNA核苷酸。在一个实施方案中,根据本发明的核酸分子由LNA核苷酸组成。
在实施方案中,根据本发明的核酸分子可以是多部分核酸分子。如本文中所用,多部分核酸分子是由至少两个单独的核酸链组成的核酸分子。这至少两个核酸链形成功能单位,其中在本发明的CGRP的情况下,功能单位为靶分子的配体和,优选地,靶分子的拮抗剂。至少两个核酸链可通过切割本发明的核酸分子以产生至少两条链来从本发明的任意核酸分子产生,或通过合成一个对应于本发明的全长核酸分子的第一部分的核酸分子和另一个对应于本发明的全长核酸分子的另一部分的核酸分子来产生。取决于形成全长核酸分子的部分的数目,将合成对应数目的具有期望核苷酸序列的部分。应认识到切割法和合成法都可被用于产生其中存在超过两个上文例举的链的多部分核酸分子。换句话说,至少两条单独的核酸链通常与彼此互补和杂交的两条链不同,尽管所述至少两个单独的核酸链之间可存在一定程度的互补性以及由这样的互补性可导致所述单独的链的杂交。
最后,也在本发明范围内的是,实现了根据本发明的核酸分子的完全闭合的,即环状的结构,即根据本发明的核酸分子在实施方案中是闭合的,优选地通过共价连接闭合,其中更优选这样的共价连接在本文中公开的核酸序列或其任何衍生物的5’末端与3’末端之间产生。
测定根据本发明的核酸分子的结合常数的可能方法是使用本文中的实施例4中描述的方法,这确认了根据本发明的核酸显示有利的KD值范围的上述发现。为了表达单个核酸分子与靶(在本发明发明中为CGRP)之间的结合强度的适当量度是所谓的KD值,该值本身以及用于其测定的方法对于本领域技术人员来说是已知的。
优选地,根据本发明的核酸显示的KD值低于1μM。约1μM的KD值被认为是核酸对靶的非特异性结合的特征。如将由本领域技术人员认识到的,一组化合物例如根据本发明的核酸分子的不同实施方案的KD值在一定范围之内。约1μM的上述KD是KD值的优选上限。靶结合核酸例如本发明的核酸分子之一的KD的下限可小至约10皮摩或可更高。在本发明的范围内,单个本发明的核酸分子结合CGRP的KD值优选在该范围内。KD值的优选范围可通过选择该范围内的任意第一数值和该范围内的任意第二数值来界定。优选较高的KD值为250nM和100nM,优选较低的KD值为50nM、10nM、1nM、100pM和10pM。更优选较高的KD值为10nM,更优选较低的KD值为100pM。
优选地,CGRP是人α-CGRP,其中核酸分子具有表达为KD的10nM或更少,优选1nM或更少,更优选100pM或更少的对于人α-CGRP的结合亲和力。
如实施例7中所示,对于根据本发明的核酸分子,通过表面等离子体共振测量未能检测到对人淀粉不溶素的结合。优选地,根据本发明的核酸分子具有表达为KD的100nM或更多,优选500nM或更多,更优选1000nM或更多的对人淀粉不溶素的结合亲和力。
除了根据本发明的核酸分子的结合性质以外,根据本发明的核酸分子还抑制各自靶分子(在本发明中为CGRP)的功能。CGRP的功能-例如先前描述的各自受体的刺激-的抑制通过根据本发明的核酸分子对CGRP的结合并形成根据本发明的核酸分子和CGRP的复合物来实现。这样的核酸分子与CGRP的复合物不能刺激通常被CGRP刺激(即不以与本发明的核酸分子形成复合物的形式存在的CGRP)的受体。因此,根据本发明的核酸分子对受体功能的抑制不依赖可被CGRP刺激的各自受体,而是因根据本发明的核酸分子阻止CGRP对受体的刺激而引起。
测定根据本发明的核酸分子的抑制常数的可能方法是使用实施例5中描述的方法,这确认了上文所述的发现:根据本发明的核酸分子显示有利的抑制常数,其允许在治疗性治疗方案中使用所述核酸分子。为了表达单个核酸分子对靶(其在本发明发明中为CGRP)与各自受体的相互作用的抑制作用的强度的适当量度为所谓的半最大抑制浓度(缩写IC50),所述半最大抑制浓度本身以及用于其测定的方法对于本领域技术人员来说是已知的。
优选地,根据本发明的核酸分子显示的IC50值低于1μM。约1μM的IC50值被认为是靶功能的非特异性抑制,优选地通过本发明的核酸分子产生的对靶导致的靶受体的激活的抑制的特征。如将由本领域技术人员认识到的,一组化合物例如根据本发明的核酸分子的不同实施方案的IC50值在一定范围之内。约1μM的上述IC50是IC50值的优选上限。靶结合核酸分子的IC50的下限可小至约10皮摩或可更高。在本发明的范围内,结合CGRP的单个核酸的IC50值优选在该范围内。优选范围可通过选择该范围内的任意第一数值和该范围内的任意第二数值来界定。优选较高的IC50值为250nM和100nM,优选较低的IC50值为50nM、10nM、1nM、100pM和10pM。更优选较高的IC50值为5nM,更优选较低的IC50值为100pM。
在优选实施方案中,CGRP是人α-CGRP,其中核酸分子具有表达为IC50的10nM或更少,优选1nM或更少,更优选100pM或更少的对于人α-CGRP的结合亲和力。
如实施例7中所显示的,对于根据本发明的核酸分子,测得大于1000nM的对于人淀粉不溶素的IC50和大于100nM的对于大鼠淀粉不溶素的IC50。在优选实施方案中,根据本发明的核酸具有表达为IC50的100nM或更多,优选500nM或更多,更优选1000nM或更多的对于人淀粉不溶素的结合亲和力。
优选地核酸分子具有表达为KD的10nM或更少,优选1nM或更少,更优选100pM或更少的对于人α-CGRP的结合亲和力,其中核酸分子具有表达为KD的100nM或更多,优选500nM或更多,更优选1000nM或更多的对于人淀粉不溶素的结合亲和力,和/或核酸分子具有表达为IC50的10nM或更少,优选1nM或更少,更优选100pM或更少的对于人α-CGRP的结合亲和力,其中核酸分子具有表达为IC50的100nM或更多,优选500nM或更多,更优选1000nM或更多的对于人淀粉不溶素的结合亲和力。
根据本发明的核酸分子可具有任意长度,只要它们仍然能够结合靶分子(其在本发明中为CGRP)。在本领域应认识到,存在根据本发明的核酸的优选长度。通常地,长度为15至120个核苷酸。本领域技术人员将认识到,15与120之间的任意整数为根据本发明的核酸的可能长度。根据本发明的核酸的长度的更优选范围为约20至100个核苷酸,约20至80个核苷酸,约20至60个核苷酸,约20至52个核苷酸以及约48至54个核苷酸的长度。
在本发明的范围内,核酸分子包含这样的部分,其优选为高分子量部分和/或其优选允许除其它以外,在动物体优选人体中的停留时间方面修饰核酸的特征。这样的修饰的特别优选实施方案为根据本发明的核酸分子的PEG化和HES化。如本文中所用,PEG代表聚(乙二醇),HES代表羟乙基淀粉。如本文中优选地使用的,PEG化为根据本发明的核酸的修饰,其中这样的修饰由连接于根据本发明的核酸的PEG部分组成。如本文中优选地使用的,HES化为根据本发明的核酸的修饰,其中这样的修饰由连接于根据本发明的核酸的HES部分组成。这些修饰以及使用这样的修饰来修饰核酸的方法描述于欧洲专利申请EP1 306 382中,在此将其公开内容通过引用整体并入本文。
在PEG为这样的高分子量部分的情况下,分子量优选为约20,000至约120,000Da,更优选约30,000至约80,000Da,最优选约40,000Da。在HES为这样的高分子量部分的情况下,分子量优选为约50至约1000kDa,更优选约100至约700kDa和最优选200至500kDa。HES显示0.1至1.5,更优选地1至1.5的摩尔取代度,并且显示表达为C2/C6比率的约0.1至15,优选约3至10的置换等级。HES修饰的方法例如描述于德国专利申请DE1 2004 006 249.8中,在此将其公开内容通过引用整体并入本文。
原则上可在其任意位置上对本发明的核酸分子进行修饰。优选地对核酸分子的5’–末端核苷酸、3’-末端核苷酸和/或5’核苷酸与3’核苷酸之间的任意核苷酸进行这样的修饰。
可直接或间接地,优选通过接头间接地将修饰、优选PEG和/或HES部分连接于本发明的核酸分子。也在本发明范围内的是,根据本发明的核酸分子包含一个或多个修饰,优选一个或多个PEG和/或HES部分。在实施方案中,单个接头分子将超过一个PEG部分或HES部分连接于根据本发明的核酸分子。本发明中使用的接头可本身为线性的或分枝的。该类型的接头对于本领域技术人员来说是已知的,并进一步描述于专利申请WO2005/074993和WO2003/035665中。
在优选实施方案中,接头为生物可降解接头。生物可降解接头允许除其它以外在动物体,优选人体中的停留时间方面修饰(因修饰从根据本发明的核酸的释放)根据本发明的核酸的特征。生物可降解接头的使用可允许更好地控制根据本发明的核酸的停留时间。这样的生物可降解接头的优选实施方案为但不限于在国际专利申请WO2006/052790、WO2008/034122、WO2004/092191和WO2005/099768中所描述的生物可降解接头。
在本发明的范围内,修饰或修饰基团为生物可降解修饰,其中可直接或间接地,优选通过接头将生物可降解修饰连接于本发明的核酸分子。生物可降解修饰允许除其它以外在动物体,优选人体中的停留时间方面修饰(因修饰从根据本发明的核酸的释放或降解)根据本发明的核酸的特征。生物可降解修饰的使用可允许更好地控制根据本发明的核酸的停留时间。这样的生物可降解修饰的优选实施方案为但不限于在国际专利申请WO2002/065963、WO2003/070823、WO2004/113394和WO2000/41647中,优选地在WO2000/41647,第18页,第4至24行中所描述的生物可降解修饰。
除了上述修饰外,可将其它修饰用于修饰根据本发明的核酸的特征,其中这样的其它修饰可选自蛋白质、脂质例如胆固醇和糖链例如淀粉酶、葡聚糖等。
不希望受任何理论束缚,通过用高分子量部分例如聚合物,更具体地一个或数个本文中公开的聚合物修饰根据本发明的核酸分子(优选所述聚合物是生理上可接受的),改变了本发明的这样修饰的核酸分子从对其施用本发明的修饰核酸分子的动物或人体排出的的排泄动力学。更具体地,由于本发明的这样修饰的核酸分子的增加的分子量以及由于本发明的核酸分子未经历代谢(特别地当以L型存在时,即为L-核酸分子时),从动物身体,优选从哺乳动物身体,更优选从人体的排泄减少。由于排泄通常通过肾发生,因此本发明人假定这样修饰的核酸分子的肾小球滤过率相较于不具有该类型的高分子量修饰的核酸分子显著减小,这导致修饰的核酸分子在动物体内的停留时间增加。对于此,特别值得注意的是,尽管存在这样的高分子量修饰,但根据本发明的核酸分子的特异性不以有害方式受到影响。在这个范围内,根据本发明的核酸分子具有除其它以外令人惊讶的特征-所述特征通常不能从药学活性化合物预期-即提供持续释放的药物制剂不是提供根据本发明的核酸分子的持续释放所必需的。相反地,包含高分子量部分的以其修饰形式存在的根据本发明的核酸分子因其修饰而本身已可用作持续释放制剂,如其已表现为如同从持续释放制剂释放一样。在这个范围内,本文中公开的根据本发明的核酸分子的修饰和这样修饰的根据本发明的核酸分子以及包含所述修饰核酸分子的任何组合物可提供其独特的,优选受控的药代动力学及生物分布。这还包括在动物和人体的循环中的停留时间,以及在这样的动物和人中至组织的分布。这样的修饰进一步描述于专利申请WO2003/035665中。
然而,也在本发明范围内的是,根据本发明的核酸不包含任何修饰,特别地无高分子量修饰例如PEG化或HES化。当根据本发明的核酸显示至身体的任何靶器官或组织的优先分配时或当期望在给身体施用后从身体快速清除根据本发明的核酸时,这样的实施方案是特别优选地。具有至身体的任何靶器官或靶组织的优先分布特征的本文中公开的根据本发明的核酸分子会允许在靶组织中建立有效的局部浓度,同时使核酸分子的全身性浓度保持低水平。这会允许低剂量的使用,这不仅从经济的观点来看是有有益的,而且还减少其它组织对核酸试剂的不必要暴露,从而减小副作用的潜在风险。除其它以外在使用根据本发明的核酸分子或包含所述核酸分子的药剂的体内成像或特定的治疗剂量要求的情况下可能期望根据本发明的核酸分子在施用后从身体的快速清除。
根据本发明的核酸分子和/或根据本发明的拮抗剂可用于产生或制造药剂或药物组合物。根据本发明的这样的药剂或药物组合物包含任选地与至少一种其它药物活性化合物一起的本发明的核酸分子,其中本发明的核酸分子优选本身用作药物活性化合物。这样的药剂在优选实施方案中包含至少药学上可接受的载体。这样的载体可以是例如水、缓冲液、PBS、葡萄糖溶液,优选地5%的葡萄糖,盐平衡溶液、柠檬酸盐、淀粉、糖、明胶或任何其它可接受的载体物质。这样的载体对于本领域技术人员来说通常是已知的。本领域技术人员将认识到,本发明的药剂的或与其相关的任何实施方案、用途和方面也适用于本发明的药物组合物并且反之亦然。
利用本发明的或根据本发明制备的核酸分子、药物组合物和药剂治疗和/或预防的适应症、疾病和障碍因CGRP直接或间接牵涉于各自的发病机制而引起。
基于CGRP牵涉于与偏头痛和其它头痛表现相关或牵涉所述疾病的途径,很明显本发明的核酸分子、包含其一种或数种的本发明的药物组合物以及包含其一种或数种的本发明的药剂可用于治疗和/或预防所述疾病、障碍和病态。
本发明的核酸分子、包含其一种或数种的本发明的药物组合物以及包含其一种或数种的本发明的药剂的用途不限于如上所述的偏头痛和其它头痛表现的潜在治疗性干预。除此之外,它们适用于针对其已描述了CGRP的病理生理性牵涉的疾病和/或障碍和/或病态。因此,这样的疾病和/或障碍和/或病态包括但不限于偏头痛、不同形式的头痛、急性疼痛、慢性疼痛、对基于吗啡的镇痛的耐受、骨关节炎、血管生成、肿瘤生长、自身免疫疾病和/或炎性疾病,其中优选地急性疼痛和慢性疼痛具有炎症性和/或神经性来源。
当然,因为根据本发明的CGRP结合性核酸分子与CGRP相互作用或与其结合,因此本领域技术人员会通常理解,根据本发明的CGRP结合性核酸分子可容易地用于治疗、预防和/或诊断本文中描述的人和动物的任何疾病。对于此,应认识到,在实施方案中,根据本发明的核酸分子可用于治疗和预防本文中描述的任何疾病、障碍或病况,不论这样的疾病、障碍和病况具有什么样的作用模式。
为了避免任何不必要的重复,应当认识到由于CGRP–CGRP受体轴的参与(如与其相关地概述的),所述轴可通过根据本发明的核酸分子来寻址,以便实现所要求保护的治疗、预防和诊断作用。还应当认识到,可将患者的疾病、障碍和病况的特性和结合其描述的治疗方案的任何细节经历本申请的优选实施方案。
急性和慢性疼痛。CGRP由伤害感受神经纤维高度表达。不断积累的证据表明CGRP牵涉急性和慢性疼痛的发展和持久性。炎症可以是急性和慢性疼痛感觉的有效的触发剂。在慢性胰腺炎中,疼痛是最具挑战性的症状。其通过胰腺中NGF的增加的表达促进,这继而诱导背根神经节中CGRP的上调(Winston,He等人2005;Wick,Hoge等人2006;Liu,Shenoy等人2011)。CGRP(8-37)的鞘内施用可拮抗该机制和减少痛觉过敏(Liu,Shenoy等人2011)。在关节炎的动物模型中,鞘内CGRP(8-37)和奥塞吉泮显著抑制神经元活动和增加后肢撤回反射的阈值(McDougall2006;Adwanikar,Ji等人2007)。CGRP缺陷型小鼠在关节炎症的实验性诱导后不能显示痛觉过敏(Zhang和McDougall2006)。此外,已发现以高水平存在于关节炎颞下颌关节的滑液中的CGRP与自发性疼痛相关(Kopp2001)。在深层组织炎症的模型中,静脉内CGRP(8-37)阻断血浆外渗并且消除头和后肢机械异常性疼痛(Ambalavanar,Moritani等人2006)。
在神经性疼痛的模型中观察到升高的CGRP表达(Zheng,Wang等人2008;Nitzan-Luques,Devor等人2011)。CGRP(8-37)在消除由脊椎半切或脊神经横切引发的机械和热异常性疼痛中是有效的(Bennett,Chastain等人2000;Lee和Kim2007)。类似地,CGRP(8-37)和奥塞吉泮在局部坐骨神经结扎后有效地减弱热痛觉过敏(Ma and Quirion2006)。在糖尿病神经性疼痛的模型中,静脉内CGRP(8-37)显著减弱具有STZ-诱发的糖尿病的小鼠的痛觉过敏的活动(Gabra和Sirois2004)。CGRP还可参与被认为是由带状疱疹引起的神经损害导致的疱疹后神经痛(Hou,Barr等人2011)。
已知腰痛源于骶髂关节。人组织的组织学研究显示CGRP存在于骶骨和髂骨的软骨的浅层中(Szadek,Hoogland等人2010)。一致地,CGRP表达在大鼠的佐剂诱导的腰痛过程中在背根神经节中增加(Lee,Kim等人2009)。
CGRP牵涉癌症疼痛的证据由显示这样的研究提供,所述研究显示增加的具有CGRP-阳性纤维的肿瘤神经分布和CGRP释放与痛觉过敏相关(Wacnik,Baker等人2005;Schweizerhof,Stosser等人2009)。CGRP(8-37)的瘤内注射部分地阻断肿瘤相关的疼痛过敏(Wacnik,Baker等人2005)。
疼痛是肠易激综合征的特征症状。在慢性结肠超敏反应的非炎症模型中,CGRP受体的阻断减弱结肠超敏反应。这表明CGRP拮抗可作为用于肠易激综合征的腹痛的潜在治疗(Bourdu,Dapoigny等人2005)。
在偏头痛、其它形式的头痛、急性和慢性疼痛的治疗干预的情况下,本发明的或根据本发明制备的核酸分子、药物组合物和药剂可与已建立的镇痛药例如NSAID、麦角类生物碱衍生物(例如二氢麦角胺)和色胺类,5-HT1B/1D受体激动剂(例如舒马普坦)用于联合治疗。
对基于吗啡的镇痛的耐受性。对基于吗啡的药物的长期暴露导致镇痛效率的逐渐降低,从而限制了它们的临床使用。CGRP被认为参与介导该对基于吗啡的镇痛药的耐受性。在大鼠中,长期的鞘内吗啡治疗导致对其镇痛作用的耐受性并且在脊髓背侧角中诱导CGRP上调。继而,从这些神经末梢释放的CGRP促成了对吗啡诱导的镇痛的耐受性的发生。在动物模型中,利用奥塞吉泮或CGRP(8-37)的鞘内治疗阻断这些下游效应,从而导致长期使用的吗啡的镇痛性质的维持。因此,CGRP拮抗剂可潜在地在基于阿片剂的疗法中用作佐剂(Powell,Ma等人2000;Wang,Ma等人2009)。
骨关节炎。具有疼痛性骨关节炎(缩写OA)的患者的髋关节的CGRP阳性神经的密度为对照的3倍,类风湿关节炎和OA患者的滑膜组织的组织学显示OA中有显著更高的CGRP阳性神经纤维的密度(Saxler,Loer等人2007;Dirmeier,Capellino等人2008)。一致地,分布在关节的CGRP阳性纤维的百分比在OA的动物模型中显著增加(Ferreira-Gomes,Adaes等人2010)。瞬时受体电位阳离子通道亚家族V成员1的拮抗剂的镇痛作用在OA模型中与降低的脊柱CGRP水平相关(Puttfarcken,Han等人2010)。除了其在伤害感受中的作用外,CGRP还可直接参与骨的新陈代谢。CGRP信号传导通过刺激成骨细胞增殖和分化以及通过抑制RANKL-诱导的骨诱裂发生和骨质吸收来维持骨量(Han,Zhang等人2010;Wang,Shi等人2010)。
肿瘤血管生成和生长。在CGRP缺陷型小鼠中,移植的肺癌细胞的肿瘤生长和肿瘤相关血管生成显著减少。在wt小鼠中,CGRP(8-37)或去神经支配抑制癌细胞生长。这些结果表明CGRP促进肿瘤相关血管生成和肿瘤生长。有迹象表明与血管生成的CGRP依赖性增强相关的下游分子为VEGF(Toda,Suzuki等人2008)。在人中,已在来自特定癌症(包括小细胞肺癌、前列腺癌、乳腺癌和甲状腺癌)的血浆和肿瘤中鉴定出升高的CGRP表达。在前列腺癌中,血清CGRP与高-等级/分期疾病相关。已在良性和恶性嗜铬细胞瘤、Conn’s腺瘤和胰腺癌中检测到RAMP1mRNA表达(Hay,Walker等人2011)。
缺血诱发的血管生成。缺血诱发血管生成作为代偿机制。CGRP水平在大鼠后肢缺血组织中升高,并且CGRP的腺病毒过表达导致缺血后肢中增加的毛细血管密度(Zheng,Li等人2010)。CGRP缺陷型小鼠在实验性后肢缺血后显示受损的血流恢复和减小的毛细血管密度。CGRP(8-37)经由微量渗透泵的皮下输注延迟血管生成(Mishima,Ito等人2011)。
炎症。有证据表明CGRP直接影响炎症过程。CGRP在关节炎的动物模型中被上调(Nohr,Schafer等人1999;Chen,Willcockson等人2008)。在多发性硬化的模型中,已显示CGRP促进病原性T细胞反应(Mikami,Watanabe等人2012)。在2型糖尿病的动物模型中也观察到升高的CGRP水平(Gram,Hansen等人2005;Tanaka,Shimaya等人2011)。在银屑病的小鼠模型中,去神经支配或CGRP(8-37)对CGRP的抑制导致CD4+细胞数目和棘皮病的显著减少(Ostrowski,Belkadi等人2011)。CGRP在皮肤炎症中的作用得到研究的进一步表明,所述研究显示CGRP抑制人皮肤毛细血管内皮细胞的趋化因子的产生(Huang,Stohl等人2011)以及其调节特异性皮炎患者的T细胞的细胞因子的产生(Antunez,Torres等人2009)。
焦虑。CGRP的输注在大鼠中激发焦虑样反应,这表明CGRP拮抗可以是用于减少焦虑的临床上有用的策略(Sink,Walker等人2011)。
神经变性疾病。最近的研究显示对于脊髓延髓肌肉萎缩症(SBMA)的发病机制至关重要的雄激素受体的突变与增加的CGRP表达相关以及CGRP表达的抑制减少临床症状(Minamiyama,Katsuno等人2012)。
CGRP的病原性作用在各种其它疾病,包括囊性纤维化(Xie,Fisher等人2011)、肥大细胞增多(Maintz,Wardelmann等人2011)、多囊卵巢综合征(PCOS)(Zhang,Gong等人2012)、非糜烂性反流病(Xu,Li等人2012)中得以表明。
在其它实施方案中,药剂包含其它药物活性剂。这样的其它药物活性化合物,除其它以外,是(但不限于其)用于治疗和/或预防偏头痛、急性和慢性疼痛的化合物,其中化合物选自包含三甲基丁烷、NSAID、阿片类药物、N-型电压门控钙通道阻断剂(齐考诺肽)、抗抑郁药和抗癫痫药。本领域技术人员应理解,考虑到可利用根据本发明的核酸分子按照本发明解决的各种适应征,所述其它药物活性剂可以是原则上适合用于治疗和/或预防这样的疾病的任何药物活性剂。根据本发明的核酸分子,特别地当以药剂存在或用作药剂时,优选地与三甲基丁烷、NSAID、阿片类药物、N-型电压门控钙通道阻断剂(齐考诺肽)、抗抑郁药和抗癫痫药组合或将与所述药物组合。
在本发明的范围内,本发明的药剂原则上可选择地或另外地用于预防公开的与药剂用于治疗所述疾病的用途有关的疾病中的任何疾病。因而,各自的标志物即针对各自的疾病的标志物,对于本领域技术人员来说是已知的。优选地,各自的标志物为CGRP。
在本发明的药剂的一个实施方案中,将这样的药剂与用于本文中公开的疾病中的任何疾病的其它治疗,特别地会对其使用本发明的药剂的那些治疗组合使用。
"联合治疗"(或"协同治疗(co-therapy)")包括本发明的药剂和至少第二或其它药物活性剂的施用以作为意在从这些治疗剂(即本发明的核酸分子和所述第二或其它试剂)的共同作用提供有益作用的特异治疗方案的部分。组合的有益作用包括但不限于由治疗剂的组合产生的药代动力学或药效共同作用。通过在一段确定的时间(通常数分钟、数小时、数天或数周,取决于选择的组合)内进行这些治疗剂的组合施用。
"联合治疗"可能会,但通常不会期望包括这些治疗剂的两种或更多种的施用以作为分开的单一疗法方案的部分。"联合治疗"意欲包括以连续方式施用这些治疗剂,即,其中在不同的时间施用每种治疗剂,以及以大体上同时的方式施用这些治疗剂,或所述治疗剂的至少两种。大体上同时的施用可以例如通过给受试者施用具有固定比率的每一种治疗剂的单个胶囊或多个每个具有一种治疗剂的单个胶囊来实现,其中同时地或以及时的方式(以便获得如同同时施用多个单个胶囊一样的治疗作用)施用多个单个胶囊。
每一种治疗剂的连续或大体上同时施用可通过任何适当的途径来实现,所述途径包括但不限于局部途径、口服途径、静脉内途径、肌内途径和通过粘膜组织的直接吸收。治疗剂可通过相同途径或通过不同途径施用。例如,组合的第一治疗剂可通过注射施用,而组合的其它治疗剂可局部施用。
或者,例如,可局部施用所有治疗剂,或可通过注射施用所有治疗剂。"联合治疗"还可包括与其它生物活性成分或药物活性成分进一步组合的上述治疗剂的施用。当联合治疗还包括非药物治疗时,可在任何适当的时间进行非药物治疗,只要可从治疗剂与非药物治疗的组合的共同作用获得有益作用。例如,在适当的情况下,当非药物治疗与治疗剂的施用暂时分开(可能数天或甚至数周)时,仍可获得有益作用。
如上述一般术语中概述的,根据本发明的药剂原则上可以以本领域技术人员已知的任何形式施用。优选施用途径为全身性施用,更优选通过胃肠外施用,优选通过注射。或者,可局部施用药剂。其它施用途径包括肌内、腹膜内和皮下、口服(per orum)、鼻内、气管内或经肺,优先考虑侵入性最小然而确保功效的施用途径。
胃肠外施用通常用于皮下、肌内或静脉内注射和输注。此外,用于胃肠外施用的一个方法使用缓释或持续释放系统的植入,这确保了剂量的恒定水平得到维持,这对于本领域技术人员来说是公知的。
此外,本发明的优选药剂可通过适当的鼻内媒介物、吸入剂的局部使用以鼻内形式施用,或使用对于本领域技术人员来说是公知的经皮贴剂的那些形式通过经皮肤途径来施用。为了以透皮递送系统的形式施用,剂量施用优选地在给药方案中从始至终是连续的而非间歇性的。其它优选局部用制剂包括乳膏剂、软膏、洗剂、气溶胶喷雾剂和凝胶。
有利地响应本发明的方法的受试者通常包括医学和兽医学受试者,包括人类和人患者。本发明的方法和工具对于其是有用的其它受试者为猫、狗、大型动物、禽类例如鸡等。
本发明的药剂通常会包含有效量的治疗的活性组分,包括但不限于本发明的核酸分子,其溶解于或分散在药学上可接受的介质中。药学上可接受的介质或载体包括任何和所有溶剂、分散介质、包衣、抗菌和抗真菌剂、等渗剂和吸收延迟剂等。这样的介质和试剂用于药物活性物质的用途在本领域是公知的。还可将补充的活性成分掺入本发明的药剂。
在其它方面,本发明涉及药物组合物。这样的药物组合物包含至少根据本发明的核酸分子和优选药学上可接受的粘合剂。这样的粘合剂可以是本领域使用和/或已知的任何粘合剂。更具体地,这样的粘合剂是但不限于与本文中公开的药剂的制备相关论述的任何粘合剂。在其它实施方案中,本发明的药物组合物包含其它药物活性剂。
根据本公开内容,本发明的药剂和药物组合物的制备对于本领域技术人员来说是已知的。通常地,可将这样的组合物制备为:可注射的液体溶液或悬浮液;适合在注射之前溶于或悬浮于液体的固定形式;片剂或用于口服施用的其它固体;定时释放胶囊;或目前使用的任何其它形式,包括滴眼剂、乳膏、洗剂、软膏、吸入剂等。由外科医生、内科医生或医护人员使用无菌制剂例如基于盐水的洗涤剂,处理手术区的特定区域也可以是特别有用的。还可通过微工具、微粒或海绵递送本发明的组合物。
配制后,将以与剂量配方相容的方式,并且以这样的药理学上有效的量施用本发明的药剂。以多种剂型例如上述可注射溶液的类型容易地施用制剂,但也可使用药物释放胶囊等。
本发明的药剂还可以以口服剂型如定时释放和持续释放片剂或胶囊、丸剂、粉剂、粒剂、酏剂、酊剂、悬浮剂、糖浆剂和乳剂进行施用。有利地从脂肪乳剂或悬浮剂配制栓剂。
本发明的药物组合物或药剂可被灭菌和/或包含佐剂例如防腐剂、稳定剂、润湿剂或乳化剂、溶液促进剂、用于调节渗透压的盐和/或缓冲剂。此外,它们还可包含其它治疗上有价值的物质。组合物可按照常规的混合、粒化或包衣法来制备,通常包含约0.1%至75%,优选地约1%至50%的活性成分。
液体,特别地可注射组合物可以例如通过溶解、分散等来制备。将活性化合物溶解在药用纯溶剂(例如水、盐水、含水葡萄糖、甘油、乙醇等)中或与其混合,从而形成可注射溶液或悬浮液。此外,可配制适合在注射之前溶解于液体中的固体形式。
还可将本发明的药剂和核酸分子分别地以脂质体递送系统的形式例如小的单层囊泡、大的单层囊泡以及多层囊泡施用。脂质体可从多种磷脂包括胆固醇、硬脂酰胺或磷脂酰胆碱形成。在一些实施方案中,利用药物的水溶液水化脂质组分的薄膜以形成封装药物的脂质层,这对于本领域技术人员来说是公知的。例如,可以以使用本领域已知的方法构建的与亲脂化合物或非免疫原性高分子量化合物的复合物的形式提供核酸分子。此外,脂质体可在其表面上具有这样的核酸分子,以将细胞毒素剂靶向和运载至内部,从而介导细胞杀伤。核酸缔合的复合物的实例提供于美国专利No.6,011,020中。
本发明的药剂和核酸分子分别地还可与可溶性聚合物如可靶向的药物载体偶联。这样的聚合物可包括聚乙烯吡咯烷酮、吡喃共聚物、聚羟基丙基-甲基丙烯酰胺-苯酚、聚羟基乙基天冬酰胺苯酚或被棕榈酰基残基取代的聚氧化乙烯聚赖氨酸。此外,本发明的药剂和核酸分子分别地可偶联至一类用于实现药物的受控释放的生物可降解聚合物,例如聚乳酸、聚ε-己内酯、聚羟基丁酸、多正酯类、缩醛树脂、聚二氢吡喃、聚腈基丙烯酸酯和水凝胶的交联的或两亲性嵌段共聚物。
必要时,待施用的药物组合物和药剂分别地还可包含少量无毒辅助物质例如湿润剂或乳化剂、pH缓冲剂以及其它物质例如醋酸钠和三乙醇胺油酸酯。
分别地使用本发明的核酸分子和药剂的给药方案按照多个因素来选择,所述因素包括患者的类型、物种、年龄、体重、性别和医学状况;待治疗的病况的严重度;施用途径;患者的肾和肝功能;以及使用的特定适体或其盐。普通熟练医生或兽医可容易地确定和开出防止、抵御或停止病况的进展所需的药物的有效量。
在本文中公开的疾病的任何疾病的治疗中,根据本发明的核酸分子的有效血浆水平范围优选在500fM与200μM,优选地1nM与20μM,更优选地5nM与20μM,最优选50nM与20μM之间。
本发明的核酸分子和药剂分别地可优选地以单个日剂量、每两天或每三天一次、每周一次、每两周一次、以单个月剂量或每三个月一次来进行施用。
在本发明的范围内,本文中描述的本发明的药剂组成本文中公开的药物组合物和优选地本发明的药物组合物。
在其它方面,本发明涉及用于治疗需要这样的治疗的受试者的方法,其中所述方法包括施用药物活性量的根据本发明的核酸分子。在实施方案中,受试者患有疾病或处于发生这样的疾病的风险中,其中所述疾病为本文中公开的那些疾病的任何疾病,特别地结合根据本发明的核酸分子的任一种用于制造药剂的用途而公开的那些疾病的任何疾病。
如本文中优选地使用的,诊断法或诊断试剂或诊断工具适合用于直接或间接地检测CGRP,优选如本文中描述的CGRP,更优选如本文中描述的与本文中描述的各种障碍和疾病相关的CGRP。诊断法适合用于分别地检测和/或随访本文中描述的障碍和疾病的任何一种。这样的检测可通过根据本发明的核酸子对CGRP的结合来进行。这样的结合可被直接或间接地检测。各自的方法和工具对于本领域技术人员来说是已知的。除其它以外,根据本发明的核酸分子可包含允许检测根据本发明的核酸分子,优选结合于CGRP的核酸分子的标记。这样的标记优选选自放射性标记、酶促标记和荧光标记。原则上,针对抗体开发的所有已知测定可用于根据本发明的核酸分子,其中靶结合抗体被本发明的靶结合核酸替代。在使用未标记靶结合抗体的抗体-测定中,检测优选通过利用第二抗体来进行,所述第二抗体已用放射性标记、酶促标记和荧光标记修饰,并且在其Fc-片段上结合靶结合抗体。在核酸、优选根据本发明的核酸分子的情况下,利用这样的标记修饰核酸,其中优选地这样的标记选自生物素、Cy-3和Cy-5,并且这样的标记通过针对这样的标记的抗体例如抗-生物素抗体、抗-Cy3抗体或抗-Cy5抗体来检测,或在标记是生物素的情况下,标记通过天然地结合生物素的链霉抗生物素蛋白或抗生物素蛋白来检测。这样的抗体、链霉抗生物素蛋白或抗生物素蛋白继而优选地利用各自的标记例如放射性标记、酶促标记或荧光标记(如第二抗体)来修饰,所述标记提供信号允许检测。
在其它实施方案中,通过第二检测工具检测或分析根据本发明的核酸分子,其中所述检测工具为分子信标。分子信标的方法对于本领域技术人员来说是已知的并由Mairal等人进行了综述(Mairal等人,2008)。
应认识到使用根据本发明的核酸分子进行的CGRP的检测会特别地允许检测本文中定义的CGRP。
关于CGRP的检测,本发明的优选方法包括下列步骤:
(a)提供将测试其CGRP的存在的样品,
(b)提供根据本发明的核酸分子,
(c)将样品优选地在反应容器中与核酸反应
其中可在步骤(b)之前进行步骤(a),或可在步骤(a)之前进行步骤(b)。
在优选实施方案中,提供了另外的步骤d),所述步骤在于检测样品与核酸分子的反应。优选地,将步骤b)的核酸分子固定于表面。表面可以是反应容器例如反应管、板的孔的表面,或包含在这样的反应容器中的工具例如珠粒的表面。核酸分子至表面的固定可通过本领域技术人员已知的任何方式包括但不限于非共价或共价连接来进行。优选地,连接通过表面与核酸分子之间的共价化学键来建立。然而,也在本发明范围内的是,将本发明的核酸分子间接地固定于表面,其中这样的间接固定包括其它组分或一对相互作用伴侣的使用。这样的其它组分优选为与待固定的核酸特异性相互作用的化合物,其也被称为相互作用伴侣,从而介导核酸分子至表面的连接。相互作用伴侣优选选自核酸、多肽、蛋白质和抗体。优选地,相互作用伴侣为抗体,更优选单克隆抗体。或者,相互作用伴侣为核酸,优选功能性核酸。更优选,这样的功能性核酸选自适体、spiegelmer和与所述核酸至少部分互补的核酸。在其它可选择的实施方案中,核酸至表面的结合由多部分相互作用伴侣介导。这样的多部分相互作用伴侣优选为一对相互作用伴侣或由第一成员和第二成员组成的相互作用伴侣,其中第一成员由核酸分子包含或连接于所述核酸分子,并且第二成员连接于表面或被表面包含。多部分相互作用伴侣优选选自包括生物素与抗生物素蛋白、生物素与链霉抗生物素蛋白以及生物素与neutravidin的相互作用伴侣对的组。优选地,相互作用伴侣对的第一成员为生物素。
这样的方法的优选结果为CGRP与本发明的核酸分子的固定复合物的形成,其中更优选检测到所述复合物。在实施方案内,从复合物检测到CGRP部分。
顺从该要求的各自检测工具是例如特异于CGRP的那部分/那些部分的任何检测工具。特别优选的检测工具为选自核酸、多肽、蛋白质和抗体的检测工具,所述检测工具的产生对于本领域技术人员来说是已知的。
用于检测CGRP的本发明的方法在实施方案中还包括从已优选地用于进行步骤c)的反应容器除去样品。
本发明的方法还在其它实施方案中包括将CGRP的相互作用伴侣固定在表面,优选上文中定义的表面上的步骤,其中相互作用伴侣是如本文中定义的,优选如上文中结合各自方法定义的,更优选在它们的各种实施方案中包括核酸、多肽、蛋白质和抗体。在该实施方案中,特别优选的检测工具为根据本发明的核酸分子,其中这样的核酸可优选地是标记的或非标记的。如果这样的核酸分子被标记,则其可被直接或间接检测。这样的检测还可包括使用第二检测工具,其优选地也选自核酸、多肽、蛋白质。这样的检测工具优选特异于根据本发明的核酸分子。在更优选实施方案中,第二检测工具为分子信标。核酸分子或第二检测工具或两者可在优选实施方案中包含检测标记。检测标记优选选自生物素、溴代脱氧尿苷标记、地高辛标记、荧光标记、UV-标记、放射性-标记和螯合剂分子。或者,第二检测工具与检测标记相互作用,所述检测标记优选由核酸分子包含、包括或连接于核酸分子。特别优选的组合为如下组合:
检测标记是生物素并且第二检测工具为针对生物素的抗体,或
检测标记是生物素并且第二检测工具为抗生物素蛋白或具有抗生物素蛋白的分子,或
检测标记是生物素并且第二检测工具为链霉抗生物素蛋白或具有链霉抗生物素蛋白的分子,或
检测标记是生物素并且第二检测工具为neutravidin或具有neutravidin的分子,或
检测标记为溴代脱氧尿苷并且第二检测工具为针对溴代脱氧尿苷的抗体,或
检测标记为地高辛并且第二检测工具针对地高辛的抗体,或
检测标记是螯合剂,并且第二检测工具为放射性核素,其中优选地所述检测标记连接于核酸分子。应认识到该类型的组合也适用于其中核酸连接于表面的实施方案。在这样的实施方案中,优选检测标记连接于相互作用伴侣。
最后,也在本发明范围内的是,使用第三检测工具检测第二检测工具,优选第三检测工具为酶,更优选在第二检测工具的检测上显示酶促反应,或第三检测工具为用于检测放射线的工具,更优选由放射性核素发射的放射线。优选地,第三检测工具特异性地检测第二检测工具和/或与其相互作用。
在其中CGRP的相互作用伴侣固定在表面上并且将根据本发明的核酸分子优选地添加至在相互作用伴侣与CGRP之间形成的复合物的实施方案中,还可从反应物,更优选从其中进行步骤c)和/或d)的反应容器中除去样品。
在实施方案中,根据本发明的核酸分子包括荧光部分,并且其中荧光部分的荧光在核酸与CGRP和与游离CGRP之间的复合物形成后不同。
在其它实施方案中,核酸分子是根据本发明的核酸分子的衍生物,其中核酸的衍生物包含至少一个替代腺苷的腺苷的荧光衍生物。在优选实施方案中,腺苷的荧光衍生物为亚乙烯基腺苷。
在其它实施方案中,使用荧光检测由根据本发明的核酸分子的衍生物和CGRP组成的复合物。
在方法的实施方案中,信号在步骤(c)或步骤(d)中产生,优选信号与样品中的CGRP浓度相关。
在优选的方面,可在96孔板中进行作为本发明的方法的部分的测定,其中如上所述将组分固定在反应容器中,孔用作反应容器。
本发明的核酸分子还可用作用于药物发现的起始材料。大体上存在两个可能的方法。一个方法是筛选化合物文库,其中这样的化合物文库优选是低分子量化合物文库。在实施方案中,筛选是高通量筛选。优选地,高通量筛选是在基于靶的测定中进行的化合物的快速、高效的试错评价。在最佳情况下通过色度测量进行分析。与其结合使用的文库对于本领域技术人员来说是已知的。
在筛选化合物文库的情况下,例如通过使用本领域技术人员已知的竞争性测定,可鉴定适当的CGRP类似物、CGRP激动剂或CGRP拮抗剂。这样的竞争性测定可如下建立。将本发明的核酸分子,优选地为靶结合性L-核酸的spiegelmer,偶联于固相。为了鉴定CGRP类似物,可将标记的CGRP添加至测定。潜在类似物与CGRP分子竞争对Spiegelmer的结合,这伴随通过各自标记获得的信号的减弱。激动剂或拮抗剂的筛选可包括本领域技术人员已知的细胞培养测定的使用。
根据本发明的试剂盒可包括至少一种或数种核酸分子,优选用于检测CGRP。此外,试剂盒可包括至少一个或数个阳性或阴性对照。阳性对照可以例如是CGRP,特别地是本发明的核酸分子针对其进行选择或其结合的CGRP,优选地其以液体形式存在。阴性对照可以例如是按照与CGRP相似的生物物理性质定义的但不被本发明的核酸分子识别的肽。此外,所述试剂盒还可包括一种或数种缓冲液。可以以干燥或冻干的形式或溶解于液体中的形式将各种成分包含在试剂盒中。试剂盒可包含一种或数种容器,其继而可包含试剂盒的一种或数种成分。在其它实施方案中,试剂盒包括给用户提供关于如何使用试剂盒及其各种成分的信息的说明或说明书。
根据本发明的核酸分子的药物和生物分析测定对于其在人体和非人体的几种体液、组织和器官中的药代动力学和生物动力学特征谱的估量是必要的。为此目的,可使用任何本文中公开的或本领域技术人员已知的检测法。在本发明的其它方面,提供了用于检测根据本发明的核酸分子的夹心杂交测定。在该检测测定内,使用捕获探针和检测探针。捕获探针与根据本发明的核酸分子的第一部分互补,并且检测探针与其第二部分互补。捕获探针被固定在表面或基质上。检测探针优选具有可如本文中先前所述检测的标志物分子或标记。
可如下进行根据本发明的核酸分子的检测:
根据本发明的核酸分子以其末端之一与捕获探针杂交并以另一末端与检测探针杂交。随后,通过例如一次或数次洗涤步骤除去未结合的检测探针。可随后测量结合的优选具有标记或标志物分子的检测探针的量,如例如在WO/2008/052774(将其通过引用并入本文)中更详细概述的。
如本文中优选使用的,术语治疗,在优选实施方案中,包括额外地或可选择地预防和/或随访。
如本文中优选地使用的,术语疾病和障碍应当以可互换的方式使用,如果没有相反指明的话。
如本文中所用,术语包含优选地不意欲限定所述术语之后或由其描述的主题。
不同的SEQ ID NO:,根据本发明的核酸分子的化学性质,其实际序列和内部名称编号概述于下表中。
本发明通过可从其获得其它特性、实施方案和有利方面的附图、实施例和序列表来进一步举例说明,其中
图1A-B显示本发明的CGRP结合性核酸分子的序列比对以及在竞争性结合测定中对于人α-CGRP的相对活性;
图2显示具有不同的第一和第二末端区段的CGRP结合性核酸分子226-F2-001的衍生物;
图3A-D显示CGRP结合性核酸分子226-F2-001的衍生物,包括如通过表面等离子体共振测量测定的KD值和对于人α-CGRP的相对结合活性;
图4是显示通过Biacore测量测定的CGRP结合性Spiegelmer226-F2-001和226-F2-001-D41针对固定的人α-CGRP的动力学评价的图示,其中1000、500、250、125、62.5、31.25、15.63、7.8、3.9、1.95和0nM的Spiegelmer226-F2-001和226-F2-001-D41的数据以反应单位表示;
图5是显示通过Biacore测量测定的CGRP结合性Spiegelmer226-F2-001和226-F2-001-D44对固定的人α-CGRP的动力学评价的图示,其中1000、500、250、125、62.5、31.25、15.63、7.8、3.9、1.95和0nM的Spiegelmer226-F2-001和226-F2-001-D44的数据以反应单位表示;
图6是显示通过Biacore测量测定的CGRP结合性Spiegelmer226-F2-001-D41和226-F2-001-D41/44对固定的人α-CGRP的动力学评价的图示,其中1000、500、250、125、62.5、31.25、15.63、7.8、3.9、1.95和0nM的Spiegelmer226-F2-001-D41和226-F2-001-D41/44的数据以反应单位表示;
图7A是显示CGRP结合性Spiegelmer212-G1-001(黑色菱形)和226-F2-001(黑色圆圈)对人α-CGRP诱导的cAMP的产生的抑制的图示,其中a)将每孔cAMP的产生量针对每一个数据组的最大值进行标准化,并且描述为针对Spiegelmer浓度的百分比活性,b)使用非线性回归(四参数拟合),利用Prism5软件计算cAMP的产生被抑制50%(IC50)时Spiegelmer的浓度,c)测定的212-G1-001和226-F2-001的IC50值分别为8.7nM和3.5nM;
图7B是显示CGRP结合性Spiegelmer226-F2-001-5’40kDa-PEG(黑色圆圈)和NOX-L41(也称为226-F2-001-D41-5’40kDa-PEG,黑色方块)对人CGRP诱导的cAMP的产生的抑制的图示,其中a)将每孔cAMP的产生量针对每一个数据组的最大值进行标准化,并且描述为针对Spiegelmer浓度的百分比活性,b)使用非线性回归(四参数拟合),利用Prism5软件计算cAMP的产生被抑制50%(IC50)时Spiegelmer的浓度,c)测定的226-F2-001-5’40kDa-PEG和NOX-L41的IC50值分别为3.8nM和0.39nM;
图8A显示人α-CGRP、人β-CGRP、人淀粉不溶素、人降钙素、人肾上腺髓素和人垂体中间叶激素的氨基酸序列比对;
图8B显示来自人、恒河猴、大鼠、小鼠、野猪、绵羊和狗的α-CGRP的氨基酸序列比对;
图9显示人与大鼠CGRP以及人与大鼠淀粉不溶素的氨基酸序列比对;利用人CGRP受体通过体外测定测定的IC50值和通过动力学Biacore测量测定的CGRP结合性Spiegelmer NOX-L41(也称为226-F2-001-D41-5’40kDa-PEG)和226-F2-001-D41的解离常数KD
图10是显示CGRP-结合性Spiegelmer NOX-L41(也称为226-F2-001-D41-5’40kDa-PEG,黑色方块)和淀粉不溶素-结合性对照Spiegelmer(黑色三角形)对人淀粉不溶素诱导的cAMP的产生的抑制的图示,其中将每孔cAMP的产生量针对每一个数据组的最大值进行标准化,并且描述为针对Spiegelmer浓度的百分比活性;
图11A-B显示组成根据本发明的核酸分子的2’脱氧核糖核苷酸;
图12显示组成根据本发明的核酸分子的核糖核苷酸;
图13是显示通过Biacore测量测定的CGRP结合性Spiegelmer226-F2-001-D41、226-F2-001-D41-dU20和226-F2-001-D41-dU28针对固定的人CGRP的动力学评价的图示,其中500-250-125-62.5-31.3-15.6-7.8(2x)-3.9-1.95-0.98-0.48-0nM的Spiegelmer226-F2-001-D41、226-F2-001-D41-dU20和226-F2-001-D41-dU28的数据以反应单位表示。
实施例1:能够特异性结合CGRP的核酸分子
鉴定了数种CGRP结合性核酸分子及其衍生物:其核苷酸序列描述于图1至3中。CGRP结合性核酸分子对于人α-CGRP的结合亲和力以及它们针对人α-CGRP与CGRP受体的相互作用的拮抗功能被表征为
a)适体,即为D-核酸分子,使用比较性竞争性拉下测定(实施例3)表征的;
b)Spiegelmer,即L-核酸,通过表面等离子体共振测量(实施例4)以及通过利用表达人CGRP受体的细胞的体外测定(实施例5)表征的。
如实施例2中所述合成spiegelmer和适体。
这样产生的核酸分子显示略微不同的序列,其中序列可被概述或归类为序列家族。
关于核糖核苷酸序列基序的定义,使用了对于不确定的核苷酸的IUPAC缩写:
S     强       G或C;
W     弱       A或U;
R     嘌呤     G或A;
Y     嘧啶     C或U;
K     酮       G或U;
M     亚胺基   A或C;
B    非A       C或U或G;
D     非C     A或G或U;
H     非G     A或C或U;
V     非U     A或C或G;
N     全部     A或G或C或U。
为了区分2’-脱氧核糖核苷酸与核糖核苷酸,使用下列缩写:
对于2’-脱氧核糖核苷酸:dG、dC、dT、dA和dU(参见图11A和11B)。
对于核糖核苷酸:G、C、T、U(参见图12)。
如果无相反说明,则任何核酸序列或区段序列分别地以5’→3’方向显示。
如图1-3中所描述的,CGRP结合性核酸分子包含一个定义潜在的CGRP结合性基序的中央核苷酸区段,其中图1(图1A和1B)显示序列家族的不同序列,图2至3显示核酸分子226-F2-001的衍生物。
一般地,CGRP结合性核酸分子在5’-末端和3’-末端包含末端核苷酸区段:第一末端核苷酸区段和第二末端核苷酸区段。第一末端核苷酸区段和第二末端核苷酸区段可彼此杂交,其中在杂交后,形成双链结构。然而,在体内和/或体外,这样的杂交不一定在分子中提供。
CGRP结合性核酸分子的3个核苷酸的区段-第一末端核苷酸区段、中央核苷酸区段和第二末端核苷酸区段-以5’→3’-方向彼此排列:第一末端核苷酸区段–中央核苷酸区段–第二末端核苷酸区段。然而,或者,第一末端核苷酸区段、中央核苷酸区段和第二末端核苷酸区段以5’→3’-方向彼此排列:第二末端核苷酸区段-中央核苷酸区段-第一末端核苷酸区段。
定义的区段的序列在CGRP结合性核酸分子之间可以不同,这影响对CGRP,优选人α-CGRP的结合亲和力。基于不同的CGRP结合性核酸分子的结合分析,下文中描述的中央核苷酸区段及其核苷酸序列单个地和更优选在其整体性上是结合CGRP,优选人α-CGRP所必需的。
根据本发明的CGRP结合性核酸分子(如图1A和1B中所示的)由核糖核苷酸组成。CGRP结合性核酸分子212-G1-001对于人α-CGRP具有KD为5.12nM的结合亲和力(通过等离子体共振测量测定,参见实施例4)。在比较性竞争性拉下测定中测试CGRP结合性核酸分子226-F2-001、212-F1-001、224-B2-001、224-E1-001、226-A2-002、226-A3-001、226-G2-002、226-G1-002、226-C2-002、226-E1-002、226-F1-001、226-C3-001、231-A1-001、231-G2-001、231-C1-001、231-C2-001、231-D1-001、231-F1-001、231-E1-001、231-B3-001、231-A2-001、231-E2-001和231-H2-001相对CGRP结合性核酸212-G1-001的结合人α-CGRP的能力(参见实施例3,图1A和1B)。
CGRP结合性核酸分子226-F2-001、226-A3-001、226-C3-001、231-A1-001、231-C1-001、231-C2-001、231-F1-001、231-E1-001、231-A2-001和231-E2-001显示比212-G1-001更好的结合亲和力。CGRP结合性核酸分子212-F1-001、224-B2-001、224-E1-001和226-F1-001显示与212-G1-001相似的结合亲和力。CGRP结合性核酸分子226-A2-002、226-G2-002、226-C2-002、226-E1-002、231-G2-001、231-D1-001、231-B3-001和231-H2-001显示比212-G1-001更弱的结合亲和力(图1A和1B)。
CGRP结合性核酸分子212-G1-001、226-F2-001、212-F1-001、224-B2-001、224-E1-001、226-A2-002、226-A3-001、226-G2-002、226-C2-002、226-E1-002、226-F1-001、226-C3-001、231-A1-001、231-G2-001、231-C1-001、231-C2-001、231-D1-001、231-F1-001、231-E1-001、231-B3-001、231-A2-001、231-E2-001和231-H2-001由核糖核苷酸组成并且共有序列5’HWRUYGGAKACUMMBYNYNRVKKRGADAUARRUYCCBUCC 3’[SEQ ID NO:95]。
CGRP结合性核酸分子226-F2-001、212-F1-001、224-B2-001、224-E1-001、226-A3-001、226-F1-001、226-C3-001、231-A1-001、231-C1-001、231-C2-001、231-F1-001、231-E1-001、231-A2-001和231-E2-001显示与212-G1-001相似或比其更好的对人α-CGRP的结合亲和力,并且共有序列5’CUGUYGGAGACUMMUBDYHRVKKAGADAUAGGUYCCCUCC 3’[SEQ ID NO:96]。
CGRP结合性核酸分子226-F2-001、226-A3-001、226-C3-001、231-A1-001、231-C1-001、231-C2-001、231-F1-001、231-E1-001、231-A2-001和231-E2-001显示最好的对人α-CGRP的结合亲和力,并且共有序列5’CUGUCGGAGACUACUCRYHGRGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:97],其中序列5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:98]是其优选实施方案。
本发明人令人惊讶地发现CGRP结合性核酸分子226-F2-001对人α-CGRP的结合亲和力通过在中央核苷酸区段以及第一和第二末端核苷酸区段的序列内用2′-脱氧核糖核苷酸替代核糖核苷酸得到改善,具体地,在CGRP结合性核酸分子226-F2-001中利用2′-脱氧核糖核苷酸替代达到2个核糖核苷酸导致改善的对人α-CGRP的结合亲和力,如通过等离子体共振测量(关于方案,参见实施例4)测定的。更详细地,本发明人已令人惊讶地发现
a)在CGRP结合性核酸分子226-F2-001的中央核苷酸区段中的位置3、4、9、11、14、15、17、18、19、20、21、23、25、28、29、32、34、36、37、39和40上利用一个2′-脱氧核糖核苷酸替代一个核糖核苷酸导致相较于CGRP结合性核酸分子226-F2-001的结合亲和力增强的对人CGRP的结合亲和力(参见图3A、3B、3C和3D;Spiegelmer226-F2-001-D08、226-F2-001-D09、226-F2-001-D14、226-F2-001-D16、226-F2-001-D19、226-F2-001-D22、226-F2-001-D23、226-F2-001-D24、226-F2-001-D25、226-F2-001-D26、226-F2-001-D28、226-F2-001-D30、226-F2-001-D33、226-F2-001-D34、226-F2-001-D37、226-F2-001-D39、226-F2-001-D41、226-F2-001-D42、226-F2-001-D44、226-F2-001-D45、226-F2-001-dU-20和226-F2-001-dU-28);
b)在CGRP结合性核酸分子226-F2-001的位置3或5上或第一末端核苷酸区段中利用一个2′-脱氧核糖核苷酸替代一个核糖核苷酸导致相较于CGRP结合性核酸分子226-F2-001的结合亲和力增强的对人CGRP的结合亲和力(参见图3A;spiegelmer226-F2-001-D03和226-F2-011-D05);
c)在CGRP结合性核酸分子226-F2-001的第二末端核苷酸区段中的任何位置上利用一个2′-脱氧核糖核苷酸替代一个核糖核苷酸导致相较于CGRP结合性核酸分子226-F2-001的结合亲和力增强的对人CGRP的结合亲和力(参见图3A和3C;spiegelmer226-F2-001-D46、226-F2-001-D47、226-F2-001-D48、226-F2-001-D49、226-F2-001-D50);
d)在CGRP结合性核酸分子226-F2-001的中央核苷酸区段中的位置36和39或位置36和15或位置36和23上利用2个2′-脱氧核糖核苷酸替代2个核糖核苷酸导致相较于CGRP结合性核酸分子226-F2-001的结合亲和力增强的对人CGRP的结合亲和力(参见图3A、3C和3D;spiegelmer226-F2-001-D41/44、226-F2-001-D41-dU-20和226-F2-001-D41-dU28);
e)在CGRP结合性核酸分子226-F2-001的中央核苷酸区段中的位置36、39和15或位置36、39和23上利用3个2′-脱氧核糖核苷酸替代3个核糖核苷酸导致相较于CGRP结合性核酸分子226-F2-001的结合亲和力增强的对人CGRP的结合亲和力(参见图3D;spiegelmer226-F2-001-D41/D44-dU20、226-F2-001-D41/D44-dU28)。
基于显示在CGRP结合性核酸分子的中央核苷酸区段的数个位置上利用2′-脱氧核糖核苷酸替代核糖核苷酸导致增强的对人α-CGRP的结合的数据,所有测试的CGRP结合性核酸分子的中央区段可以以下列通式来进行概述:
5’HWn1n2YGGAn3An4UMn5n6Yn7n8n9n10n11Kn12Rn13ADn14n15ARn16Un17Cn18n19Un20n213’[SEQ ID NO:99],
其中H、W、Y、G、A、U、M、B、K、R、D、C为核糖核苷酸,并且
n1为R或dG,n2为U或dT,n3为K或dG,n4为C或dC,n5为M或dC,n6为B或dU,n7为N或dG,n8为Y或dT,n9为N或dC,n10为R或dG,n11为V或dA,n12为K或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为R或dG,n17为Y或dC,n18为C或dC,n19为B或dC,n20为C或dC,n21为C或dC,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。
通式
5’CUn1n2YGGAn3An4UMn5n6Bn7n8n9n10n11Kn12An13ADn14n15AGn16Un17Cn18n19Un20n213’[SEQ ID NO:100]
概述了CGRP结合性核酸分子226-F2-001及其衍生物,212-F1-001、224-B2-001、224-E1-001、226-A3-001、226-F1-001、226-C3-001、231-A1-001、231-C1-001、231-C2-001、231-F1-001、231-E1-001、231-A2-00和231-E2-001的中央区段的序列,所述核酸分子及其衍生物显示与212-G1-001相似或比其更好的对于人α-CGRP的结合亲和力,
其中C、U、Y、G、A、M、B、Y、H、K、D、R和V为核糖核苷酸并且
n1为G或dG,n2为U或dT,n3为G或dG,n4为C或dC,n5为M或dC,n6为B或dU,n7为D或dG,n8为Y或dT,n9为H或dC,n10为R或dG,n11为V或dA,n12为K或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为G或dG,n17为Y或dC,n18为C或dC,n19为C或dC,n20为C或dC,n21为C或dC,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。
通式
5’CUn1n2CGGAn3An4UAn5n6Cn7n8n9n10n11Gn12An13AAn14n15AGn16Un17Cn18n19Un20n213’[SEQ ID NO:101]
概述了具有最好的对于CGRP的结合亲和力的CGRP结合性核酸分子(Spiegelmer226-F2-001及其衍生物,以及Spiegelmer226-A3-001、226-C3-001、231-A1-001、231-C1-001、231-C2-001、231-F1-001、231-E1-001、231-A2-001和231-E2-001)的中央区段的序列
其中C、U、Y、G、A、H和R为核糖核苷酸并且
n1为G或dG,n2为U或dT,n3为G或dG,n4为C或dC,n5为C或dC,n6为U或dU,n7为R或dG,n8为Y或dT,n9为H或dC,n10为G或dG,n11为R或dA,n12为U或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为G或dG,n17为C或dC,n18为C或dC,n19为C或dC,n20为C或dC,n21为C或dC,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。
CGRP结合性核酸226-F2-001以及其因在中央核苷酸区段的数个位置上利用2′-脱氧核糖核苷酸替代核糖核苷酸而显示相较于226-F2-001增强的对CGRP的结合的衍生物的中央核苷酸区段可概述于下列通式:
5’CUn1n2CGGAn3An4UAn5n6Cn7n8n9n10n11Gn12An13AAn14n15AGn16Un17Cn18n19Un20n213’[SEQ ID NO:102]
其中C、U、G、A为核糖核苷酸并且
n1为G或dG,n2为U或dT,n3为G或dG,n4为C或dC,n5为C或dC,n6为U或dU,n7为G或dG,n8为U或dT,n9为C或dC,n10为G或dG,n11为A或dA,n12为U或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为G或dG,n17为C或dC,n18为C或dC,n19为C或dC,n20为C或dC,n21为C或dC,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸,
其中在优选实施方案中,中央核苷酸区段包含如下序列:
(1)5’CUdGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:103],
(2)5’CUGdTCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:104],
(3)5’CUGUCGGAdGACUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:105],
(4)5’CUGUCGGAGAdCUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:106],
(5)5’CUGUCGGAGACUAdCUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:107],
(6)5’CUGUCGGAGACUACUCdGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:108],
(7)5’CUGUCGGAGACUACUCGdTCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:109],
(8)5’CUGUCGGAGACUACUCGUdCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:110],
(9)5’CUGUCGGAGACUACUCGUCdGAGUAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:111],
(10)5’CUGUCGGAGACUACUCGUCGdAGUAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:112],
(11)5’CUGUCGGAGACUACUCGUCGAGdTAGAAAUAGGUCCCCUCC 3’[SEQ ID NO:113],
(12)5’CUGUCGGAGACUACUCGUCGAGUAdGAAAUAGGUCCCCUCC 3’[SEQ ID NO:114]
(13)5’CUGUCGGAGACUACUCGUCGAGUAGAAdAUAGGUCCCCUCC 3’[SEQ ID NO:115]
(14)5’CUGUCGGAGACUACUCGUCGAGUAGAAAdTAGGUCCCCUCC 3’[SEQ ID NO:116],
(15)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGdGUCCCCUCC 3’[SEQ ID NO:117],
(16)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUdCCCCUCC 3’[SEQ ID NO:118],
(17)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUCC 3’[SEQ ID NO:119],
(18)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCdCUCC 3’[SEQ ID NO:120],
(19)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUdCC3’[SEQ ID NO:121],
(20)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUCdC 3’[SEQ ID NO:122],
(21)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUdCC 3’[SEQ ID NO:123],
(22)5’CUGUCGGAGACUACdUCGUCGAGUAGAAAUAGGUCCdCCUCC 3’[SEQ ID NO:130],
(23)5’CUGUCGGAGACUACUCGUCGAGdUAGAAAUAGGUCCdCCUCC 3’[SEQ ID NO:131],
(24)5’CUGUCGGAGACUACdUCGUCGAGdUAGAAAUAGGUCCdCCUCC 3’[SEQ IDNO:132],
(25)5’CUGUCGGAGACUACdUCGUCGAGUAGAAAUAGGUCCdCCUdCC 3’[SEQ IDNO:133],
(26)5’CUGUCGGAGACUACUCGUCGAGdUAGAAAUAGGUCCdCCUdCC 3’[SEQ IDNO:134],
(27)5’CUGUCGGAGACUACdUCGUCGAGdUAGAAAUAGGUCCdCCUdCC 3’[SEQ IDNO:90],
其中在更优选实施方案中,中央核苷酸区段包含如下序列
5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUCC 3’(参见Spiegelmer226-F2-001-D41,[SEQ ID NO:119]),或
5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUdCC 3’(参见Spiegelmer226-F2-001-D41/44,[SEQ ID NO:123]),或
5’CUGUCGGAGACUACUCGUCGAGdUAGAAAUAGGUCCdCCUCC 3’(参见Spiegelmer226-F2-001-D41-dU28,[SEQ ID NO:131]。
本发明的CGRP结合性核酸分子的第一和第二末端区段包含4、5、6或7个核苷酸(图1至图3),其中区段任选地彼此杂交,其中在杂交后形成双链结构。该双链结构可由1至7个碱基对组成。然而,在体内和体外,这样的杂交不一定在分子中提供。
通过分析所有测试的CGRP结合性核酸分子的第一末端核苷酸区段和第二末端核苷酸区段,第一末端核苷酸区段的通式为5’Z1Z2Z3SZ4WZ53’并且第二末端核苷酸区段的通式为5’Z6Z7Z8Z9Z10Z11Z123’,
其中
Z1为S或不存在,Z2为V或不存在,Z3为B或不存在,Z4为V或dG,Z5为G或dG,Z6为Y或dC,Z7为W或dA,Z8为B或dC,Z9为S或dG,Z10为S或dG或不存在,Z11为B或不存在,Z12为K或不存在,并且
其中S,W,V,B,Y和K为核糖核苷酸并且
dG,dC和dA为2’-脱氧核糖核苷酸,
其中在优选实施方案中,
a)Z1为S,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12为K,
b)Z1不存在,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12为K,
c)Z1为S,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12不存在
d)Z1不存在,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12不存在
e)Z1不存在,Z2不存在,Z3为B,Z10为S或dG,Z11为B,Z12不存在
f)Z1不存在,Z2为V,Z3为B,Z10为S或dG,Z11不存在,Z12不存在
g)Z1不存在,Z2不存在,Z3为B,Z10为S或dG,Z11不存在,Z12不存在
h)Z1不存在,Z2不存在,Z3不存在,Z10为S或dG,Z11不存在,Z12不存在
i)Z1不存在,Z2不存在,Z3为B,Z10不存在,Z11不存在,Z12不存在
j)Z1不存在,Z2不存在,Z3不存在,Z10不存在,Z11不存在,Z12不存在。
包含由核糖核苷酸组成的第一和第二末端区段的CGRP结合性核酸分子包含第一和第二末端区段的下列组合:
a)第一末端核苷酸区段包含核苷酸序列5’CACCGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACGGUG 3’;或
b)第一末端核苷酸区段包含核苷酸序列5’GGCCGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACGGCU 3’;或
c)第一末端核苷酸区段包含核苷酸序列5’GUCAUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACGGC 3’;或
d)第一末端核苷酸区段包含核苷酸序列5’GCCAUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CAUGGC 3’;或
e)第一末端核苷酸区段包含核苷酸序列5’GCCGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACGGC 3’;或
f)第一末端核苷酸区段包含核苷酸序列5’CCCGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACGGG 3’;或
g)第一末端核苷酸区段包含核苷酸序列5’GCGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACGC 3’;或
h)第一末端核苷酸区段包含核苷酸序列5’GGGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACCC 3’;或
i)第一末端核苷酸区段包含核苷酸序列5’GCCUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CAGGC 3’;或
j)第一末端核苷酸区段包含核苷酸序列5’CGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACG 3’;或
k)第一末端核苷酸区段包含核苷酸序列5’CGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’UACG 3’;或
l)第一末端核苷酸区段包含核苷酸序列5’GCAG 3’并且第二末端核苷酸区段包含核苷酸序列5’CUGC 3’。
包含由核糖核苷酸和2’-脱氧核苷酸组成的第一和第二末端区段的CGRP结合性核酸分子包含第一和第二末端区段的下列组合:
第一末端核苷酸区段包含核苷酸序列5’CCZ4UZ53’并且第二末端核苷酸区段包含核苷酸序列5’Z6Z7Z8Z9Z103’,或
其中C、G、A和U为核糖核苷酸并且
Z4为G或dG,Z5为G或dG,Z6为C或dC,Z7为A或dA,Z8为C或dC,Z9为G或dG,Z10为G或dG,
dC、dG和dA为2’-脱氧核糖核苷酸,
其中在优选实施方案中
a)第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACGG 3’;或
b)第一末端核苷酸区段包含核苷酸序列5’CCdGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACGG 3’;或
c)第一末端核苷酸区段包含核苷酸序列5’CCGUdG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACGG 3’;或
d)第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’dCACGG 3’;或
e)第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CdACGG 3’;或
f)第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CAdCGG 3’;或
g)第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACdGG 3’;或
h)第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且第二末端核苷酸区段包含核苷酸序列5’CACGdG 3’。
CGRP结合性Spiegelmer212-G1-001、226-F2-001、226-F2-001-D41、226-F2-001-D44、226-F2-001-D41/D44和226-F2-001-D41-dU28对于人α-CGRP的结合亲和力(表达为KD)通过等离子体共振测量来进行测定(实施例4,图4、5、6和13):
212-G1-001:5.12nM的KD
226-F2-001:2.62nM的KD
226-F2-001-D41:0.55nM的KD
226-F2-001-D44:0.52nM的KD
226-F2-001-D41/D44:0.2nM的KD
226-F2-001-D41-dU28:0.07nM的KD
226-F2-001-D41-dU28:0.21nM的KD
CGRP结合性分子212-G1-001和226-F2-001共有相同的中央核苷酸区段(参见图1A)。如通过亲和力测量显示的(参见上文),具有5个核苷酸(参见226-F2-001)而非4个核苷酸(参见212-G1-001)的第一和第二末端区段导致对于人CGRP的结合亲和力的显著增强。
此外,如上文中和图4、5和6中显示的,在CGRP结合性分子226-F2-001中利用2′-脱氧核糖核苷酸替代一个(参见226-F2-001-D41和226-F2-001-D44)或两个(参见226-F2-001-D41/D44)核糖核苷酸导致对于人α-CCRP的结合亲和力的显著增强。
一般而言,利用PEG部分来修饰Spiegelmer以在体内使用它们。将CGRP结合性核酸分子226-F2-001和226-F2-001-D41合成为在其5’-末端包含氨基的Spiegelmer。将40kDa PEG-部分偶联于所述氨基修饰的Spiegelmer,从而产生CGRP结合性Spiegelmer226-F2-001-5’-40kDa-PEG和226-F2-001-D41-40kDa-PEG(也称为NOX-L41)。Spiegelmer的合成和PEG化描述于实施例2中。CGRP结合性核酸分子226-F2-001和226-F2-001-D41的PEG修饰对Spiegelmer的结合和功能没有影响(参见下文)。
CGRP结合性分子212-G1-001、226-F2-001、226-F2-001-5’-40kDa-PEG和226-F2-001-D41-5′40kDa-PEG(也称为NOX-L41)能够在体外以下列IC50(实施例5,图7A和7B)拮抗人CGRP针对其受体的功能:
212-G1-001:8.7nM的IC50
226-F2-001:3.5nM的IC50
226-F2-001-5′40kDaPEG:3.8nM的IC50
226-F2-001-D41-5′40kDa-PEG:0.39nM的IC50
与亲和力测量(参见上文)一致,具有5个核苷酸(参见226-F2-001)而非4个核苷酸(参见212-G1-001)的第一和第二末端区段导致显著更强的对人α-CCRP的功能的抑制(图7A)。
此外,如上文和图7B中显示的,利用2′-脱氧核糖核苷酸对一个核糖核苷酸的替代(226-F2-001-5’-40kDa-PEG和NOX-L41,也称为226-F2-001-D41-5′40kDa-PEG)导致显著更强的对人α-CCRP的功能的抑制(参见图7B)。
实施例2:适体和Spiegelmer的合成及衍生
小规模合成
用ABI394合成仪(Applied Biosystems,Foster City,CA,USA),使用具有标准的环外胺保护基团的2’TBDMS RNA和DNA亚磷酰胺化学合成法(Damha和Ogilvie,1993),通过固相合成产生适体(D-RNA核酸或D-DNA修饰的D-RNA核酸)和spiegelmer(L-RNA核酸或L-DNA修饰的L-RNA核酸)。对于寡核苷酸的RNA部分,使用以D-和L-构型存在的rA(N-Bz)-、rC(N-Ac)-、rG(N-ibu)-和rU-亚磷酰胺,然而对于DNA部分,使用以D-和L-构型存在的dA(N-Bz)-、dC(N-Ac)-、dG(N-ibu)-、dT和dU。所有亚磷酰胺购自ChemGenes,Wilmington,MA。在合成和脱保护后,通过凝胶电泳纯化适体和spiegelmer。
大规模合成+修饰
利用合成仪(GE Healthcare,Freiburg),使用具有标准的环外胺保护基团的2’TBDMS RNA和DNA亚磷酰胺化学合成法(Damha和Ogilvie,1993),通过固相合成产生Spiegelmer。L-rA(N-Bz)-、L-rC(N-Ac)-、L-rG(N-ibu)-、L-rU-、L-dA(N-Bz)-、L-dC(N-Ac)-、L-dG(N-ibu)-和L-dT-亚磷酰胺购自ChemGenes,Wilmington,MA。5’-氨基-改性剂购自American InternationalChemicals Inc.(Framingham,MA,USA)。在L-riboA、L-riboC、L-riboG、L-riboU、L-2’脱氧A、L-2’脱氧C、L-2’脱氧G或L-2’脱氧T修饰的CPG孔径(Link Technology,Glasgow,UK)上开始未修饰的或5’-氨基-修饰的spiegelmer的合成。为了偶联RNA和DNA亚磷酰胺(15min/循环),使用乙腈中的0.3M的苄硫基四氮唑(CMS-Chemicals,Abingdon,UK)和乙腈中的2个当量的各0.2M的亚磷酰胺溶液。使用氧化-封端循环。用于寡核苷酸合成的其它标准溶剂和试剂购自Biosolve(Valkenswaard,NL)。将Spiegelmer合成为DMT-ON的形式;在脱保护后,使用Source15RPC介质(Amersham)通过制备型RP-HPLC(Wincott等人,1995)纯化其。利用80%的醋酸除去5’DMT-基团(在RT进行30min)。在5’氨基修饰的Spiegelmer的情况下,利用80%醋酸除去5’MMT-基团(在RT进行90min)。随后,添加2M NaOAc水溶液,使用5K再生纤维素膜(Millipore,Bedford,MA)通过切向流过滤技术对Spiegelmer进行脱盐。
Spiegelmer的PEG化
为了延长Spiegelmer的体内血浆停留时间,在spiegelmer的5’-末端共价偶联40kDa聚乙二醇(PEG)部分。
为了进行PEG化(关于用于PEG化的方法的技术细节,参见欧洲专利申请EP1 306 382),将纯化的5’-氨基修饰的Spiegelmer溶解于H2O(2.5ml)、DMF(5ml)和缓冲液A(5ml;通过混合柠檬酸·H2O[7g]、硼酸[3.54g]、磷酸[2.26ml]和1M NaOH[343ml]和添加水至1l的终体积制备的;利用1M HCl将pH调整为pH=8.4)的混合物中。
利用1M NaOH将Spiegelmer溶液的pH调整至8.4。随后,在37℃每隔30min添加6份0.25当量的40kDa PEG-NHS酯(Jenkem Technology,Allen,TX,USA),直到达到75至85%的最大产率。在PEG-NHS酯的添加过程中使用1M NaOH使反应混合物的pH保持在8-8.5。
将反应混合物与4ml尿素溶液(8M)和4ml缓冲液B(H2O中的0.1M的三乙铵醋酸酯)混合并加热至95℃,进行15min。随后使用乙腈梯度(缓冲液B;缓冲液C:乙腈中的0.1M的三乙铵醋酸酯),以Source15RPC介质(Amersham)通过RP-HPLC纯化PEG化的Spiegelmer。过量的PEG洗脱在5%缓冲液C,PEG化Spiegelmer洗脱在10-15%缓冲液C中。将具有>95%的纯度(如通过HPLC估量的)的产物级分组合并与40ml 3MNaOAC混合。通过切向流过滤(5K再生纤维素膜,Millipore,BedfordMA)对PEG化Spiegelmer进行脱盐。
实施例3:利用竞争性拉下结合测定对D-α-CGRP结合性适体进行的分级
拉下结合测定用于对一组不同的测试适体进行比较分级。为此目的,非标记适体与标记的参照适体竞争对生物素化D-CGRP的结合,从而减弱结合信号(根据测试适体对D-CGRP的亲和力)。利用T4多核苷酸激酶(Invitrogen,Karlsruhe,Germany),使用[γ-32P]-标记的ATP(Hartmann Analytic,Braunschweig,Germany)在5’-末端放射性标记参照适体至400000-800000cpm/pmol的比放射活性。在37℃利用150pM放射性标记的参照适体与恒定量的10-20nM生物素化D-CGRP一起在360μl选择缓冲液(20mM Tris-HCl pH7.4;150mM NaCl;5mM KCl;1mMMgCl2;1mM CaCl2;0.1%[w/vol]Tween-20;10μg/ml HSA;10μg/ml酵母RNA)中进行2-4小时的结合反应。这些条件导致在NeutrAvidin琼脂糖或Streptavidin Ultralink Plus(两者都来自PierceBiotechnology,Rockford,USA)上固定和洗涤后参照适体对生物素化D-CGRP的约5-10%的结合。为了进行竞争,将非标记测试适体以5nM、50nM和500nM与恒定量的标记参照适体一起添加至结合反应。在结合竞争、固定、适当的洗涤以及利用闪烁计数器进行的固定的放射性的测定完成后,将在测试中发现为最具活性的适体随后用作用于其它适体变体的比较分析的新参照。结果示于图1A-B中。
实施例4:Spiegelmer对CGRP和相关肽的结合的Biacore测量
Biacore测定设置
使用0.4M EDC(水中的1-乙基-3-(3-二甲基氨基丙基)碳二亚胺;GE,BR-1000-50)与0.1M NHS(水中的N-羟基琥珀酰亚胺;GE,BR-1000-50)的1:1混合物,通过氨基偶联法将人CGRP及相关肽固定在羧甲基化(缩写CM)葡聚糖涂覆的传感器芯片上。用生物素封闭相同传感器芯片上的参照流动池。
一般动力学评价
将CGRP结合性Spiegelmer于水中溶解至100μM的原液浓度(通过在260nm处的吸收测量定量),于水浴或热混合器中加热至95℃,进行30秒,随后于冰上迅速冷却以确保均一溶解的溶液。
通过注射一系列浓度为1000、500、250、125、62.5、31.25、15.63、7.8、3.9、1.95和0nM或浓度为500-250-125-62.5-31.3-15.6-7.8(2x)-3.9-1.95-0.98-0.48-0nM的于电泳缓冲液中稀释的Spiegelmer来评价动力学参数和解离常数。在所有实验中,使用Kinject命令(确定240至360秒的缔合时间和240至360秒的解离时间)在37℃以30μl/min的流动进行分析。测定为双参照,其中FC1用作(封闭的)表面对照(每一个Spiegelmer浓度的合计贡献),一系列无分析物的缓冲液注射确定测定缓冲液本身的合计贡献。利用BIAevaluation3.1.1软件(BIACORE AB,Uppsala,Sweden),使用改进的Langmuir1:1化学计量拟合算法进行数据分析和解离常数KD的计算。
利用BIAevaluation3.1.1软件(BIACORE AB,Uppsala,Sweden),使用改进的Langmuir1:1化学计量拟合算法,利用常数RI和传质评价(使用1x107[RU/M*s]的传质系数kt)进行数据分析和解离常数KD的计算。结果示于图3A-D、4-6、9和13中。
实施例5:人成神经细胞瘤细胞中α-CGRP诱导的cAMP产生的抑制
如下分析CGRP-结合性Spiegelmer的生物效能。
将SK-N-MC人成神经细胞瘤细胞(ACC203,DSMZ,Braunschweig)以5x10e4个细胞/孔接种于平底96孔板(Greiner)中,并在37℃和5%CO2于100μl的补充有10%热灭活胎牛血清(FCS)、4mM L-丙氨酰-L-谷氨酰胺(GLUTAMAX)、50个单位/ml青霉素和50μg/ml链霉素的DMEM(1000mg/L葡萄糖,Invitrogen)中培养48h。
使用v型底0.2ml低轮廓96孔板,以一式三份在补充有1mg/ml BSA和20mM HEPES的HBSS(Gibco)中制备刺激溶液(1nM人或大鼠L-αCGRP(Bachem)+递增浓度的Spiegelmer),并在37℃温育总共60min。以一式三份包括空白试验值(无L-αCGRP,无Spiegelmer)和对照值(1nM L-αCGRP,无Spiegelmer)。在刺激前20min,将1mM磷酸二酯酶抑制剂3-异丁基-1-甲基黄嘌呤(IBMX,Sigma;于HBSS/BSA/HEPES中稀释的DMSO中的50mM原液)添加至细胞和刺激溶液。
为了进行刺激,从细胞除去细胞培养基,利用100μl预温育的刺激溶液替代所述培养基。在37℃,5%CO2刺激细胞30min。在除去刺激溶液后,通过添加50μl/孔测定/裂解缓冲液(Applied Biosystems,TropixcAMP-ScreenTM System试剂盒)在37℃进行30min来裂解细胞。
随后按照制造商的说明书,使用Tropix cAMP-ScreenTM ELISASystem试剂盒(Applied Biosystems)测量每孔产生的cAMP的量。简而言之,在测定/裂解缓冲液中制备范围从6nmol至0.6pmolcAMP/孔的标准曲线。将于测定/裂解缓冲液中稀释的细胞裂解物和标准曲线样品添加至利用山羊抗-兔IgG预涂覆的微量培养板。将cAMP碱性磷酸酶缀合物和抗-cAMP抗体添加至样品,在室温温育60min。随后,洗涤板,添加化学发光底物。30min后,在FLUOstar OPTIMA板读数装置(BMGLabtech)中测量化学发光。cAMP-ScreenTM ELISA系统是比较性免疫测定形式。因此,光信号强度与样品或标准制剂中的cAMP水平成反比。该测定系统用于测试本文中描述的实施例1和7的范围内的Spiegelmer。结果举例说明于图7和8中。产生的cAMP的量以对照的百分比提供。cAMP的产生相对于对照的50%抑制所需的Spiegelmer的浓度定义抑制常数IC50。结果示于图7A和7B中。
实施例6:淀粉不溶素-诱导的cAMP的产生的抑制
如下分析CGRP-结合性Spiegelmer与人或大鼠淀粉不溶素的交叉反应性。
将MCF-7人乳腺癌细胞(ACC115,DSMZ,Braunschweig)以5x10e4个细胞/孔接种于平底96孔板(Greiner)中,并在37℃和5%CO2于100μl的补充有10%热灭活胎牛血清(FCS)、4mM L-丙氨酰-L-谷氨酰胺(GLUTAMAX)、50个单位/ml青霉素和50μg/ml链霉素的DMEM(1000mg/L葡萄糖,Invitrogen)中培养24h。
使用v型底0.2ml低轮廓96孔板,以一式三份在补充有1mg/ml BSA和20mM HEPES的HBSS(Gibco)中制备刺激溶液(3nM人或大鼠L-淀粉不溶素(Bachem)+递增浓度的Spiegelmer),并在37℃温育总共60min。以一式三份包括空白试验值(无L-淀粉不溶素,无Spiegelmer)和对照值(1nM L-淀粉不溶素,无Spiegelmer)。在刺激前20min,将1mM磷酸二酯酶抑制剂3-异丁基-1-甲基黄嘌呤(IBMX,Sigma;于HBSS/BSA/HEPES中稀释的DMSO中的50mM原液)添加至细胞和刺激溶液。
为了进行刺激,从细胞除去细胞培养基,利用100μl预温育的刺激溶液替代所述培养基。在37℃,5%CO2刺激细胞30min。在除去刺激溶液后,通过添加50μl/孔裂解缓冲液(Applied Biosystems,TropixcAMP-ScreenTM System试剂盒)在37℃进行30min来裂解细胞。
随后按照制造商的说明书,如上文简要描述的,使用TropixcAMP-ScreenTM ELISA System试剂盒(Applied Biosystems)测量每孔产生的cAMP的量。
该测定系统用于测试本文中描述的实施例7的范围内的Spiegelmer。结果举例说明于图10中。产生的cAMP的量以对照的百分比提供。cAMP的产生相对于对照的50%抑制所需的Spiegelmer的浓度定义抑制常数IC50
实施例7:CGRP结合性Spiegelmer NOX-L41对CGRP与淀粉不溶素的区分
图9显示4种C末端酰氨化肽人α-CGRP、大鼠α-CGRP、人淀粉不溶素和大鼠淀粉不溶素的比对。所有4种肽都具有保守的Cys2-Cys7二硫键。
Spiegelmer NOX-L41(也称为226-F2-001-D41-5’40kDa-PEG)及其非PEG化形式226-F2-001-D41区分这些密切相关的肽,并且选择性结合人和大鼠α-CGRP。NOX-L41以0.39nM的IC50抑制人α-CGRP诱导的cAMP的产生(图9)。相反地,浓度达到1μM的NOX-L41不抑制人淀粉不溶素对细胞的活化(图10)。淀粉不溶素-结合性Spiegelmer(序列:5’-40kDa-PEG-GGACUGAUGGCGCGGUCCUAUUACGCCGAUAGGGUGAGGGGA,[SEQ IDNO:135])抑制人淀粉不溶素诱导的cAMP的产生(图10)。一致地,通过动力学Biacore测量未检测到226-F2-001-D41对人淀粉不溶素的结合(图9)。226-F2-001-D41对人CGRP的亲和力(KD)为0.55nM(图9)。因此,NOX-L41以超过1000的系数区分人α-CGRP与人淀粉不溶素。大鼠α-CGRP与人淀粉不溶素的区分较不明显,IC50分别为3.6nM和283nM,其对应于超过75的差异系数(图9)。
根据抑制浓度与亲和力的关系,可大致推断出哪个氨基酸残基可参与Spiegelmer结合。
大鼠淀粉不溶素被NOX-L41以可测量的IC50抑制,然而人淀粉不溶素的抑制是不可检测的(图9和10)。存在于大鼠和人淀粉不溶素中仅有的不同的氨基酸残基为氨基酸残基18和29。从大鼠至人淀粉不溶素的各自改变为R18H和P29S。因此,R18或P29或两者为最小结合表位的部分。在P29的情况下,肽骨架中脯氨酸诱导的变曲可能对于相邻保守残基的正确识别是需要的。根据文献,已知核酸适体优选靶向精氨酸。此外,被适体结合的靶分子的表位通常包含超过一个具有多个弱接触的氨基酸,从而促成总体亲和力。因此,在该情况下R18也在Spiegelmer与相邻残基的结合中起着中心作用,从而促成结合事件,这解释了相较于CGRP更弱的对大鼠淀粉不溶素的结合。
参考资料
如果无相反说明的话,本文中引用的文献的完全目录资料如下,其中将所述参考资料的公开内容通过引用并入本文。
Adwanikar,H.,G.Ji,et al.(2007)."Spinal CGRP1 receptorscontribute to supraspinally organized pain behavior andpain-related sensitization of amygdala neurons."Pain 132(1-2):53-66.
Alessandri,M.,L.Massanti,et al.(2006)."Plasma changesof calcitonin gene-related peptide and substance P in patientswith dialysis headache."Cephalalgia 26(11):1287-93.
Altschul,S.F.,Gish,W.,et al.(1990)."Basic localalignment search tool."J Mol Biol 215(3):403-10.
Altschul,S.F.,Madden,T.L.,et al.(1997)."Gapped BLASTand PSI-BLAST:a new generation of protein database searchprograms."Nucleic Acids Res 25(17):3389-402.
Amara,S.G.,V.Jonas,et al.(1982)."Alternative RNAprocessing in calcitonin gene expression generates mRNAsencoding different polypeptide products."Nature 298(5871):240-4.
Ambalavanar,R.,M.Moritani,et al.(2006)."Deep tissueinflammation upregulates neuropeptides and evokes nociceptivebehaviors which are modulated by a neuropeptide antagonist."Pain120(1-2):53-68.
Antunez,C.,M.J.Torres,et al.(2009)."Calcitoningene-related peptide modulates interleukin-13 in circulatingcutaneous lymphocyte-associated antigen-positive T cells inpatients with atopic dermatitis."Br J Dermatol 161(3):547-53.
Bennett,A.D.,K.M.Chastain,et al.(2000)."Alleviationof mechanical and thermal allodynia by CGRP(8-37)in a rodentmodel of chronic central pain."Pain 86(1-2):163-75.
Bourdu,S.,M.Dapoigny,et al.(2005)."Rectal instillationof butyrate provides a novel clinically relevant model ofnoninflammatory colonic hypersensitivity in rats."Gastroenterology 128(7):1996-2008.
Breeze,A.L.,T.S.Harvey,et al.(1991)."Solutionstructure of human calcitonin gene-related peptide by 1H NMR anddistance geometry with restrained molecular dynamics."Biochemistry 30(2):575-82.
Chen,Y.,H.H.Willcockson,et al.(2008)."Increasedexpression of CGRP in sensory afferents of arthritic mice--effectof genetic deletion of the vanilloid receptor TRPV1."Neuropeptides 42(5-6):551-6.
Connor,K.M.,R.E.Shapiro,et al.(2009)."Randomized,controlled trial of telcagepant for the acute treatment ofmigraine."Neurology 73(12):970-7.
Damha,M.J.,Ogilvie,K.K.,et al.(1993)."Oligoribonucleotide synthesis.The silyl-phosphoramiditemethod."Methods Mol Biol 20:81-114.
Denekas,T.,M.Troltzsch,et al.(2006)."Inhibition ofstimulated meningeal blood flow by a calcitonin gene-relatedpeptide binding mirror-image RNA oligonucleotide."Br JPharmacol 148(4):536-43.
Diener,H.C.,P.Barbanti,et al.(2011)."BI 44370 TA,anoral CGRP antagonist for the treatment of acute migraine attacks:results from a phase II study."Cephalalgia 31(5):573-84.
Dirmeier,M.,S.Capellino,et al.(2008)."Lower density ofsynovial nerve fibres positive for calcitonin gene-relatedpeptide relative to substance P in rheumatoid arthritis but notin osteoarthritis."Rheumatology(Oxford)47(1):36-40.
Edvinsson,L.and T.W.Ho(2010)."CGRP receptor antagonismand migraine."Neurotherapeutics 7(2):164-75.
Edvinsson,L.,E.Nilsson,et al.(2007)."Inhibitory effectof BIBN4096BS,CGRP(8-37),a CGRP antibody and an RNA-Spiegelmeron CGRP induced vasodilatation in the perfused and non-perfusedrat middle cerebral artery."Br J Pharmacol 150(5):633-40.
Ferreira-Gomes,J.,S.Adaes,et al.(2010)."Phenotypicalterations of neurons that innervate osteoarthritic joints inrats."Arthritis Rheum 62(12):3677-85.
Field,B.C.,O.B.Chaudhri,et al.(2010)."Bowels controlbrain:gut hormones and obesity."Nat Rev Endocrinol 6(8):444-53.
Frese,A.,M.Schilgen,et al.(2005)."Calcitoningene-related peptide in cervicogenic headache."Cephalalgia25(9):700-3.
Gabra,B.H.and P.Sirois(2004)."Pathways for thebradykinin B1 receptor-mediated diabetic hyperalgesia in mice."Inflamm Res 53(12):653-7.
Gallai,V.,P.Sarchielli,et al.(1995)."Vasoactive peptidelevels in the plasma of young migraine patients with and withoutaura assessed both interictally and ictally."Cephalalgia 15(5):384-90.
Goadsby,P.J.(2003)."Migraine:diagnosis and management."Intern Med J 33(9-10):436-42.
Goadsby,P.J.and L.Edvinsson(1994)."Human in vivoevidence for trigeminovascular activation in cluster headache.Neuropeptide changes and effects of acute attacks therapies."Brain 117(Pt 3):427-34.
Goadsby,P.J.,L.Edvinsson,et al.(1990)."Vasoactivepeptide release in the extracerebral circulation of humans duringmigraine headache."Ann Neurol 28(2):183-7.
Gram,D.X.,A.J.Hansen,et al.(2005)."Plasma calcitoningene-related peptide is increased prior to obesity,and sensorynerve desensitization by capsaicin improves oral glucosetolerance in obese Zucker rats."Eur J Endocrinol 153(6):963-9.
Han,N.,D.Y.Zhang,et al.(2010)."Calcitonin gene-relatedpeptide induces proliferation and monocyte chemoattractantprotein-1 expression via extracellular signal-regulated kinaseactivation in rat osteoblasts."Chin Med J(Engl)123(13):1748-53.
Hay,D.L.,C.S.Walker,et al.(2011)."Adrenomedullin andcalcitonin gene-related peptide receptors in endocrine-relatedcancers:opportunities and challenges."Endocr Relat Cancer18(1):C1-14.
Ho,T.W.,L.Edvinsson,et al.(2010)."CGRP and itsreceptors provide new insights into migraine pathophysiology."Nat Rev Neurol 6(10):573-82.
Ho,T.W.,M.D.Ferrari,et al.(2008)."Efficacy andtolerability of MK-0974(telcagepant),a new oral antagonist ofcalcitonin gene-related peptide receptor,compared withzolmitriptan for acute migraine:a randomised,placebo-controlled,parallel-treatment trial."Lancet 372(9656):2115-23.
Hou,Q.,T.Barr,et al.(2011)."Keratinocyte expression ofcalcitonin gene-related peptide beta:implications forneuropathic and inflammatory pain mechanisms."Pain 152(9):2036-51.
Huang,J.,L.L.Stohl,et al.(2011)."CalcitoninGene-related Peptide Inhibits Chemokine Production by HumanDermal Microvascular Endothelial Cells."Brain Behav Immun.
Juhasz,G.,T.Zsombok,et al.(2003)."NO-induced migraineattack:strong increase in plasma calcitonin gene-relatedpeptide(CGRP)concentration and negative correlation withplatelet serotonin release."Pain 106(3):461-70.
Juhl,L.,L.Edvinsson,et al.(2007)."Effect of two novelCGRP-binding compounds in a closed cranial window rat model."EurJ Pharmacol 567(1-2):117-24.
Klussmann S.(2006)."The Aptamer Handbook–FunctionalOligonucleotides and their Applications."Edited by S.Klussmann.WILEY-VCH,Weinheim,Germany,ISBN 3-527-31059-2
Kopp,S.(2001)."Neuroendocrine,immune,and localresponses related to temporomandibular disorders."J Orofac Pain15(1):9-28.
Kusser,W.(2000)."Chemically modified nucleic acidaptamers for in vitro selections:evolving evolution."JBiotechnol 74(1):27-38.
Lassen,L.H.,P.A.Haderslev,et al.(2002)."CGRP may playa causative role in migraine."Cephalalgia 22(1):54-61.
Lee,M.,B.J.Kim,et al.(2009)."Complete Freund'sadjuvant-induced intervertebral discitis as an animal model fordiscogenic low back pain."Anesth Analg 109(4):1287-96.
Lee,S.E.and J.H.Kim(2007)."Involvement of substanceP and calcitonin gene-related peptide in development andmaintenance of neuropathic pain from spinal nerve injury modelof rat."Neurosci Res 58(3):245-9.
Limmroth,V.,Z.Katsarava,et al.(2001)."An in vivo ratmodel to study calcitonin gene related peptide release followingactivation of the trigeminal vascular system."Pain 92(1-2):101-6.
Liu,L.S.,M.Shenoy,et al.(2011)."Substance P andCalcitonin Gene Related Peptide Mediate Pain in ChronicPancreatitis and Their Expression is Driven by Nerve GrowthFactor."JOP 12(4):389-94.
Lutz,T.A.(2006)."Amylinergic control of food intake."Physiol Behav 89(4):465-71.
Lutz,T.A.,E.Del Prete,et al.(1994)."Reduction of foodintake in rats by intraperitoneal injection of low doses ofamylin."Physiol Behav 55(5):891-5.
Ma,W.and R.Quirion(2006)."Increased calcitoningene-related peptide in neuroma and invading macrophages isinvolved in the up-regulation of interleukin-6 and thermalhyperalgesia in a rat model of mononeuropathy."J Neurochem 98(1):180-92.
Maintz,L.,E.Wardelmann,et al.(2011)."Neuropeptide bloodlevels correlate with mast cell load in patients withmastocytosis."Allergy.
Mairal T.,Ozalp V.C.,Lozano Sánchez P.,et al.(2008)."Aptamers:molecular tools for analytical applications."AnalBioanal Chem 390(4):989-1007
McDougall,J.J.(2006)."Arthritis and pain.Neurogenicorigin of joint pain."Arthritis Res Ther 8(6):220.
McGinnis,S.,Madden,T.L.et al.(2004)."BLAST:at the coreof a powerful and diverse set of sequence analysis tools."NucleicAcids Res 32(Web Server issue):W20-5.
McLatchie,L.M.,N.J.Fraser,et al.(1998)."RAMPs regulatethe transport and ligand specificity of thecalcitonin-receptor-like receptor."Nature 393(6683):333-9.
Mikami,N.,K.Watanabe,et al.(2012)."Calcitoningene-related peptide enhances experimental autoimmuneencephalomyelitis by promoting Th17-cell functions."Int Immunol24(11):681-91.
Minamiyama,M.,M.Katsuno,et al.(2012)."Naratriptanmitigates CGRP1-associated motor neuron degeneration caused byan expanded polyglutamine repeat tract."Nat Med 18(10):1531-8.
Mishima,T.,Y.Ito,et al.(2011)."Calcitonin gene-relatedpeptide facilitates revascularization during hindlimb ischemiain mice."Am J Physiol Heart Circ Physiol 300(2):H431-9.
Mogil,J.S.,F.Miermeister,et al.(2005)."Variablesensitivity to noxious heat is mediated by differentialexpression of the CGRP gene."Proc Natl Acad Sci U S A 102(36):12938-43.
Monteith,T.S.and P.J.Goadsby(2011)."Acute migrainetherapy:new drugs and new approaches."Curr Treat Options Neurol13(1):1-14.
Morley,J.E.,J.F.Flood,et al.(1994)."Modulation of foodintake by peripherally administered amylin."Am J Physiol 267(1Pt 2):R178-84.
Needleman and Wunsch(1970)."A general method applicable tothe search for similarities in the amino acid sequence of twoproteins."J Mol Biol 48(3):443-53.
Nitzan-Luques,A.,M.Devor,et al.(2011)."Genotype-selective phenotypic switch in primary afferentneurons contributes to neuropathic pain."Pain 152(10):2413-26.
Nohr,D.,M.K.Schafer,et al.(1999)."Calcitoningene-related peptide gene expression in collagen-inducedarthritis is differentially regulated in primary afferents andmotoneurons:influence of glucocorticoids."Neuroscience 93(2):759-73.
Olesen,J.,H.C.Diener,et al.(2004)."Calcitoningene-related peptide receptor antagonist BIBN 4096 BS for theacute treatment of migraine."N Engl J Med 350(11):1104-10.
Ostrowski,S.M.,A.Belkadi,et al.(2011)."CutaneousDenervation of Psoriasiform Mouse Skin Improves Acanthosis andInflammation in a Sensory Neuropeptide-Dependent Manner."JInvest Dermatol.
Ottosson,A.and L.Edvinsson(1997)."Release of histaminefrom dural mast cells by substance P and calcitonin gene-relatedpeptide."Cephalalgia 17(3):166-74.
Pearson and Lipman(1988)."Improved tools for biologicalsequence comparison."Proc.Nat'l.Acad.Sci.USA 85:2444
Powell,K.J.,W.Ma,et al.(2000)."Blockade and reversalof spinal morphine tolerance by peptide and non-peptidecalcitonin gene-related peptide receptor antagonists."Br JPharmacol 131(5):875-84.
Puttfarcken,P.S.,P.Han,et al.(2010)."A-995662[(R)-8-(4-methyl-5-(4-(trifluoromethyl)phenyl)oxazol-2-ylamino)-1,2,3,4-te trahydronaphthalen-2-ol],a novel,selectiveTRPV1 receptor antagonist,reduces spinal release of glutamateand CGRP in a rat knee joint pain model."Pain 150(2):319-26.
Raddant,A.C.and A.F.Russo(2011)."Calcitoningene-related peptide in migraine:intersection of peripheralinflammation and central modulation."Expert Rev Mol Med 13:e36.
Saxler,G.,F.Loer,et al.(2007)."Localization of SP-andCGRP-immunopositive nerve fibers in the hip joint of patientswith painful osteoarthritis and of patients with painless failedtotal hip arthroplasties."Eur J Pain 11(1):67-74.
Schweizerhof,M.,S.Stosser,et al.(2009)."Hematopoieticcolony-stimulating factors mediate tumor-nerve interactions andbone cancer pain."Nat Med 15(7):802-7.
Sink,K.S.,D.L.Walker,et al.(2011)."Calcitoningene-related Peptide in the bed nucleus of the stria terminalisproduces an anxiety-like pattern of behavior and increases neuralactivation in anxiety-related structures."J Neurosci 31(5):1802-10.
Smith and Waterman(1981),Adv.Appl.Math.2:482
Stepien,A.,P.Jagustyn,et al.(2003)."[Suppressing effectof the serotonin 5HT1B/D receptor agonist rizatriptan oncalcitonin gene-related peptide(CGRP)concentration in migraineattacks]."Neurol Neurochir Pol 37(5):1013-23.
Summ,O.,A.P.Andreou,et al.(2010)."A potential nitrergicmechanism of action for indomethacin,but not of other COXinhibitors:relevance to indomethacin-sensitive headaches."JHeadache Pain 11(6):477-83.
Szadek,K.M.,P.V.Hoogland,et al.(2010)."Possiblenociceptive structures in the sacroiliac joint cartilage:Animmunohistochemical study."Clin Anat 23(2):192-8.
Tan,K.K.,M.J.Brown,et al.(1995)."Calcitoningene-related peptide as an endogenous vasodilator:immunoblockade studies in vivo with an anti-calcitoningene-related peptide monoclonal antibody and its Fab'fragment."Clin Sci(Lond)89(6):565-73.
Tanaka,H.,A.Shimaya,et al.(2011)."Enhanced insulinsecretion and sensitization in diabetic mice on chronic treatmentwith a transient receptor potential vanilloid 1 antagonist."LifeSci.
Tfelt-Hansen,P.and H.Le(2009)."Calcitonin gene-relatedpeptide in blood:is it increased in the external jugular veinduring migraine and cluster headache?A review."J Headache Pain10(3):137-43.
Tfelt-Hansen,P.and M.Ashina(2010)."Extracranial sourceof increased CGRP in migraine children?"Cephalalgia 30(3):380-1.
Toda,M.,T.Suzuki,et al.(2008)."Neuronalsystem-dependent facilitation of tumor angiogenesis and tumorgrowth by calcitonin gene-related peptide."Proc Natl Acad SciU S A 105(36):13550-5.
Tvedskov,J.F.,K.Lipka,et al.(2005)."No increase ofcalcitonin gene-related peptide in jugular blood duringmigraine."Ann Neurol 58(4):561-8.
van Rossum,D.,U.K.Hanisch,et al.(1997)."Neuroanatomical localization,pharmacologicalcharacterization and functions of CGRP,related peptides andtheir receptors."Neurosci Biobehav Rev 21(5):649-78.
Vater,A.,F.Jarosch,et al.(2003)."Short bioactiveSpiegelmers to migraine-associated calcitonin gene-relatedpeptide rapidly identified by a novel approach:tailored-SELEX."Nucleic Acids Res 31(21):e130.
Venkatesan,N.,S.J.Kim,et al.(2003)."Novelphosphoramidite building blocks in synthesis and applicationstoward modified oligonucleotides."Curr Med Chem 10(19):1973-91.
Wacnik,P.W.,C.M.Baker,et al.(2005)."Tumor-inducedmechanical hyperalgesia involves CGRP receptors and alteredinnervation and vascularization of DsRed2 fluorescent hindpawtumors."Pain 115(1-2):95-106.
Wang,L.,X.Shi,et al.(2010)."Calcitonin-gene-relatedpeptide stimulates stromal cell osteogenic differentiation andinhibits RANKL induced NF-kappaB activation,osteoclastogenesisand bone resorption."Bone 46(5):1369-79.
Wang,Z.,W.Ma,et al.(2009)."Cell-type specificactivation of p38 and ERK mediates calcitonin gene-relatedpeptide involvement in tolerance to morphine-induced analgesia."FASEB J 23(8):2576-86.
Wick,E.C.,S.G.Hoge,et al.(2006)."Transient receptorpotential vanilloid 1,calcitonin gene-related peptide,andsubstance P mediate nociception in acute pancreatitis."Am JPhysiol Gastrointest Liver Physiol 290(5):G959-69.
Wincott,F.,DiRenzo,A,et al.(1995)."Synthesis,deprotection,analysis and purification of RNA and ribozymes."Nucleic Acids Res 23(14):2677-84.
Winston,J.H.,Z.J.He,et al.(2005)."Molecular andbehavioral changes in nociception in a novel rat model of chronicpancreatitis for the study of pain."Pain 117(1-2):214-22.
Xie,W.,J.T.Fisher,et al.(2011)."CGRP induction incystic fibrosis airways alters the submucosal gland progenitorcell niche in mice."J Clin Invest 121(8):3144-58.
Xu,X.,Z.Li,et al.(2012)."High Expression of CalcitoninGene-Related Peptide and Substance P in Esophageal Mucosa ofPatients with Non-Erosive Reflux Disease."Dig Dis Sci.
Zeller,J.,K.T.Poulsen,et al.(2008)."CGRPfunction-blocking antibodies inhibit neurogenic vasodilatationwithout affecting heart rate or arterial blood pressure in therat."Br J Pharmacol 155(7):1093-103.
Zhang,C.and J.J.McDougall(2006)."Stimulation of sensoryneuropeptide release by nociceptin/orphanin FQ leads tohyperaemia in acutely inflamed rat knees."Br J Pharmacol 148(7):938-46.
Zhang,Z.,F.Gong,et al.(2012)."Plasma level of calcitoningene-related peptide in patients with polycystic ovary syndromeand its relationship to hormonal and metabolic parameters."Peptides.
Zheng,L.F.,R.Wang,et al.(2008)."Calcitoningene-related peptide dynamics in rat dorsal root ganglia andspinal cord following different sciatic nerve injuries."BrainRes 1187:20-32.
Zheng,S.,W.Li,et al.(2010)."Calcitonin gene-relatedpeptide promotes angiogenesis via AMP-activated protein kinase."Am J Physiol Cell Physiol 299(6):C1485-92.
说明书、权利要求和/或附图中公开的本发明的特性可分开地和以其任意组合地用作以其各种形式实现本发明的材料。

Claims (54)

1.一种能够结合CGRP的核酸分子,其中所述核酸分子包含中央核苷酸区段,其中所述中央核苷酸区段包含如下核苷酸序列
5’HWn1n2YGGAn3An4UMn5n6Yn7n8n9n10n11Kn12Rn13ADn14n15ARn16Un17Cn18n19Un20n213’[SEQ ID NO:99],
其中H、W、Y、G、A、U、M、B、K、R、D、C为核糖核苷酸并且
n1为R或dG,n2为U或dT,n3为K或dG,n4为C或dC,n5为M或dC,n6为B或dU,n7为N或dG,n8为Y或dT,n9为N或dC,n10为R或dG,n11为V或dA,n12为K或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为R或dG,n17为Y或dC,n18为C或dC,n19为B或dC,n20为C或dC,n21为C或dC,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。
2.权利要求1的核酸分子,其中所述中央核苷酸区段包含如下核苷酸序列
5’CUn1n2YGGAn3An4UMn5n6Bn7n8n9n10n11Kn12An13ADn14n15AGn16Un17Cn18n19Un20n213’[SEQ ID NO:100]
其中C、U、Y、G、A、M、B、Y、H、K、D、R和V为核糖核苷酸并且
n1为G或dG,n2为U或dT,n3为G或dG,n4为C或dC,n5为M或dC,n6为B或dU,n7为D或dG,n8为Y或dT,n9为H或dC,n10为R或dG,n11为V或dA,n12为K或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为G或dG,n17为Y或dC,n18为C或dC,n19为C或dC,n20为C或dC,n21为C或dC,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。
3.根据权利要求1和2的任一项的核酸分子,其中所述中央核苷酸区段包含如下核苷酸序列
5’CUn1n2CGGAn3An4UAn5n6Cn7n8n9n10n11Gn12An13AAn14n15AGn16Un17Cn18n19Un20n213’[SEQ ID NO:101]
其中C、U、Y、G、A、H和R为核糖核苷酸并且
n1为G或dG,n2为U或dT,n3为G或dG,n4为C或dC,n5为C或dC,n6为U或dU,n7为R或dG,n8为Y或dT,n9为H或dC,n10为G或dG,n11为R或dA,n12为U或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为G或dG,n17为C或dC,n18为C或dC,n19为C或dC,n20为C或dC,n21为C或dC,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。
4.根据权利要求1至3的任一项的核酸分子,其中所述中央核苷酸区段包含如下核苷酸序列:
5’CUn1n2CGGAn3An4UAn5n6Cn7n8n9n10n11Gn12An13AAn14n15AGn16Un17Cn18n19Un20n213’[SEQ ID NO:102]
其中C、U、G、A,为核糖核苷酸并且
n1为G或dG,n2为U或dT,n3为G或dG,n4为C或dC,n5为C或dC,n6为U或dU,n7为G或dG,n8为U或dT,n9为C或dC,n10为G或dG,n11为A或dA,n12为U或dT或dU,n13为G或dG,n14为A或dA,n15为U或dT,n16为G或dG,n17为C或dC,n18为C或dC,n19为C或dC,n20为C或dC,n21为C或dC,并且
dG、dT、dC、dA和dU为2’-脱氧核糖核苷酸。
5.根据权利要求1至4的任一项的核酸分子,其中所述中央核苷酸区段包含选自如下的核苷酸序列
(1)5’CUdGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:103],
(2)5’CUGdTCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ IDNO:104],
(3)5’CUGUCGGAdGACUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ IDNO:105],
(4)5’CUGUCGGAGAdCUACUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:106],
(5)5’CUGUCGGAGACUAdCUCGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQ IDNO:107],
(6)5’CUGUCGGAGACUACUCdGUCGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:108],
(7)5’CUGUCGGAGACUACUCGdTCGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:109],
(8)5’CUGUCGGAGACUACUCGUdCGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:110],
(9)5’CUGUCGGAGACUACUCGUCdGAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:111],
(10)5’CUGUCGGAGACUACUCGUCGdAGUAGAAAUAGGUCCCCUCC 3’[SEQID NO:112],
(11)5’CUGUCGGAGACUACUCGUCGAGdTAGAAAUAGGUCCCCUCC 3’[SEQID NO:113],
(12)5’CUGUCGGAGACUACUCGUCGAGUAdGAAAUAGGUCCCCUCC 3’[SEQID NO:114]
(13)5’CUGUCGGAGACUACUCGUCGAGUAGAAdAUAGGUCCCCUCC 3’[SEQID NO:115]
(14)5’CUGUCGGAGACUACUCGUCGAGUAGAAAdTAGGUCCCCUCC 3’[SEQID NO:116],
(15)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGdGUCCCCUCC 3’[SEQID NO:117],
(16)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUdCCCCUCC 3’[SEQID NO:118],
(17)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUCC 3’[SEQID NO:119],
(18)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCdCUCC 3’[SEQID NO:120],
(19)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUdCC 3’[SEQ IDNO:121],
(20)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCCCUCdC 3’[SEQ IDNO:122],
(21)5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUdCC 3’[SEQID NO:123],
(22)5’CUGUCGGAGACUACdUCGUCGAGUAGAAAUAGGUCCdCCUCC 3’[SEQID NO:130],
(23)5’CUGUCGGAGACUACUCGUCGAGdUAGAAAUAGGUCCdCCUCC 3’[SEQID NO:131],
(24)5’CUGUCGGAGACUACdUCGUCGAGdUAGAAAUAGGUCCdCCUCC 3’[SEQID NO:132],
(25)5’CUGUCGGAGACUACdUCGUCGAGUAGAAAUAGGUCCdCCUdCC 3’[SEQID NO:133],
(26)5’CUGUCGGAGACUACUCGUCGAGdUAGAAAUAGGUCCdCCUdCC 3’[SEQID NO:134],
(27)5’CUGUCGGAGACUACdUCGUCGAGdUAGAAAUAGGUCCdCCUdCC 3’[SEQ ID NO:90],
其中C,U,G,A为核糖核苷酸并且
dG,dT,dC,dA和dU为2’-脱氧核糖核苷酸。
6.根据权利要求1至5的任一项的核酸分子,其中所述中央核苷酸区段包含如下核苷酸序列
5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUCC 3’[SEQ ID NO:119]或5’CUGUCGGAGACUACUCGUCGAGUAGAAAUAGGUCCdCCUdCC 3’[SEQ IDNO:123)或5’CUGUCGGAGACUACUCGUCGAGdUAGAAAUAGGUCCdCCUCC 3’[SEQ ID NO:131]。
7.根据权利要求1至4的任一项的核酸分子,其中所述中央核苷酸区段由核糖核苷酸和2’-脱氧核糖核苷酸组成。
8.根据权利要求1至4的任一项的核酸分子,其中所述中央核苷酸区段由2’-核糖核苷酸组成。
9.根据权利要求1至8的任一项的核酸分子,其中所述核酸分子以5’->3’方向包含第一末端核苷酸区段、中央核苷酸区段和第二末端核苷酸区段,其中
所述第一末端核苷酸区段包含4至7个核苷酸,并且
所述第二末端核苷酸区段包含4至7个核苷酸,
优选地
所述第一末端核苷酸区段包含5至7个核苷酸,并且
所述第二末端核苷酸区段包含5至7个核苷酸。
10.权利要求9的核酸分子,其中
所述第一末端核苷酸区段包含5个核苷酸,并且
所述第二末端核苷酸区段包含5个核苷酸。
11.根据权利要求9至10的任一项的核酸分子,其中所述第一末端核苷酸区段包含核苷酸序列5’Z1Z2Z3SZ4WZ53’并且所述第二末端核苷酸区段包含核苷酸序列5’Z6Z7Z8Z9Z10Z11Z123’,
其中S、W、V、B和K为核糖核苷酸并且
Z1为S或不存在,Z2为V或不存在,Z3为B或不存在,Z4为V或dG,Z5为G或dG,Z6为Y或dC,Z7为W或dA,Z8为B或dC,Z9为S或dG,Z10为S或dG或不存在,Z11为B或不存在,Z12为K或不存在,并且
dG、dC和dA为2’-脱氧核糖核苷酸。
12.权利要求11的核酸分子,其中
a)Z1为S,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12为K;
b)Z1不存在,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12为K;
c)Z1为S,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12不存在;
d)Z1不存在,Z2为V,Z3为B,Z10为S或dG,Z11为B,Z12不存在;
e)Z1不存在,Z2不存在,Z3为B,Z10为S或dG,Z11为B,Z12不存在;
f)Z1不存在,Z2为V,Z3为B,Z10为S或dG,Z11不存在,Z12不存在;
g)Z1不存在,Z2不存在,Z3为B,Z10为S或dG,Z11不存在,Z12不存在;
h)Z1不存在,Z2不存在,Z3不存在,Z10为S或dG,Z11不存在,Z12不存在;
i)Z1不存在,Z2不存在,Z3为B,Z10不存在,Z11不存在,Z12不存在;或
j)Z1不存在,Z2不存在,Z3不存在,Z10不存在,Z11不存在,Z12不存在。
13.根据权利要求9、11和12的任一项的核酸分子,其中
所述第一末端核苷酸区段包含核苷酸序列5’CACCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGGUG 3’;或
所述第一末端核苷酸区段包含核苷酸序列5’GGCCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGGCU 3’;或
所述第一末端核苷酸区段包含核苷酸序列5’GUCAUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGGC 3’;或
所述第一末端核苷酸区段包含核苷酸序列5’GCCAUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CAUGGC 3;或
所述第一末端核苷酸区段包含核苷酸序列5’GCCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGGC 3’;或
所述第一末端核苷酸区段包含核苷酸序列5’CCCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGGG 3’。
14.根据权利要求9至12的任一项的核酸分子,其中
所述第一核末端核苷酸区段包含核苷酸序列5’CCZ4UZ53’并且所述第二末端核苷酸区段包含核苷酸序列5’Z6Z7Z8Z9Z103’,或
其中C、G、A和U为核糖核苷酸并且
Z4为G或dG,Z5为G或dG,Z6为C或dC,Z7为A或dA,Z8为C或dC,Z9为G或dG,Z10为G或dG,
dC、dG和dA为2’-脱氧核糖核苷酸。
15.根据权利要求9至12和14的任一项的核酸分子,其中
a)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGG 3’;或
b)所述第一末端核苷酸区段包含核苷酸序列5’CCdGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGG 3’;或
c)所述第一末端核苷酸区段包含核苷酸序列5’CCGUdG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGG 3’;或
d)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’dCACGG 3’;或
e)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CdACGG 3’;或
f)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CAdCGG 3’;或
g)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACdGG 3’;或
h)所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGdG 3’,其中
优选地所述第一末端核苷酸区段包含核苷酸序列5’CCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGG 3’。
16.根据权利要求9至12和14的任一项的核酸分子,其中
a)所述第一末端核苷酸区段包含核苷酸序列5’GCGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACGC 3’;或
b)所述第一末端核苷酸区段包含核苷酸序列5’GGGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACCC 3’;或
c)所述第一末端核苷酸区段包含核苷酸序列5’GCCUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CAGGC 3’。
17.根据权利要求9、11和12的任一项的核酸分子,其中
所述第一末端核苷酸区段包含核苷酸序列5’CGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CACG 3’;或
所述第一末端核苷酸区段包含核苷酸序列5’CGUG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’UACG 3’;或
所述第一末端核苷酸区段包含核苷酸序列5’GCAG 3’并且所述第二末端核苷酸区段包含核苷酸序列5’CUGC 3’。
18.根据权利要求1至4和8至17的任一项的核酸分子,其中所述核酸分子包含选自SEQ ID NO:2,SEQ ID NO:7,SEQ ID NO:15,SEQID NO:16,SEQ ID NO:18,SEQ ID NO:19,SEQ ID NO:21,SEQ IDNO:22,SEQ ID NO:24,SEQ ID NO:25,SEQ ID NO:26和SEQ ID NO:88的核苷酸序列,或包含与包含选自SEQ ID NO:2,SEQ ID NO:7,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:18,SEQ ID NO:19,SEQID NO:21,SEQ ID NO:22,SEQ ID NO:24,SEQ ID NO:25,SEQ IDNO:26和SEQ ID NO:88的核苷酸序列的核酸分子具有至少85%的同一性的核酸分子,或包含与包含选自SEQ ID NO:2,SEQ ID NO:7,SEQ IDNO:15,SEQ ID NO:16,SEQ ID NO:18,SEQ ID NO:19,SEQ ID NO:21,SEQ ID NO:22,SEQ ID NO:24,SEQ ID NO:25,SEQ ID NO:26和SEQ ID NO:88的核苷酸序列的核酸分子同源的核酸分子,其中所述同源性为至少85%。
19.根据权利要求1至7和9至17的任一项的核酸分子,其中所述核酸分子包含选自SEQ ID NO:33,SEQ ID NO:45,SEQ ID NO:47,SEQ ID NO:54,SEQ ID NO:124和SEQ ID NO:078的核苷酸序列,或包含与包含选自SEQ ID NO:33,SEQ ID NO:45,SEQ ID NO:47,SEQID NO:54,SEQ ID NO:124和SEQ ID NO:078的核苷酸序列的核酸分子具有至少85%的同一性的核酸分子,或包含与包含选自SEQ ID NO:33,SEQ ID NO:45,SEQ ID NO:47,SEQ ID NO:54,SEQ ID NO:124和SEQ ID NO:078的核苷酸序列的核酸分子同源的核酸分子,其中所述同源性为至少85%。
20.根据权利要求1至19的任一项的核酸分子,其中所述核酸分子的核苷酸或形成所述核酸分子的核苷酸为L-核苷酸。
21.根据权利要求1至19的任一项的核酸分子,其中所述核酸分子为L-核酸分子。
22.根据权利要求1至21的任一项的核酸分子,其中所述核酸分子包含至少一个能够结合CGRP的结合部分,其中这样的结合部分由L-核苷酸组成。
23.根据权利要求1至22的任一项的核酸分子,其中所述核酸为由CGRP介导的活性的拮抗剂。
24.根据权利要求1至23的任一项的核酸分子,其中所述核酸分子包含修饰基团,其中包含所述修饰基团的核酸分子从生物体的排泄率相较于不包含所述修饰基团的核酸分子减小。
25.根据权利要求1至23的任一项的核酸分子,其中所述核酸分子包含修饰基团,其中包含所述修饰基团的核酸分子相较于不包含所述修饰基团的核酸分子在生物体中具有增加的停留时间。
26.根据权利要求24和25的任一项的核酸分子,其中所述修饰基团选自生物可降解的和非生物可降解的修饰基团,优选所述修饰基团选自聚乙二醇、线性聚乙二醇、分枝聚乙二醇、羟乙基淀粉、肽、蛋白质、多糖、固醇、聚氧丙烯、聚氧酰胺和聚(2-羟乙基)–L-谷氨酰胺。
27.权利要求26的核酸分子,其中所述修饰基团为聚乙二醇,优选由线性聚乙二醇或分枝聚乙二醇组成,其中所述聚乙二醇的分子量优选为约20,000至约120,000Da,更优选约30,000至约80,000Da和最优选约40,000Da。
28.权利要求26的核酸分子,其中所述修饰基团为羟乙基淀粉,其中优选地所述羟乙基淀粉的分子量为约50至约1000kDa,更优选约100至约700kDa和最优选200至500kDa。
29.根据权利要求24至28的任一项的核酸分子,其中所述修饰基团通过接头偶联于所述核酸分子,其中优选地接头是生物可降解接头。
30.根据权利要求24至28的任一项的核酸分子,其中所述修饰基团偶联于所述核酸分子的5’-末端核苷酸和/或所述核酸分子的3’-末端核苷酸和/或偶联于所述核酸分子的5’-末端核苷酸与所述核酸分子的3’-末端核苷酸之间的所述核酸分子的核苷酸。
31.根据权利要求24至30的任一项的核酸分子,其中所述生物体是动物体或人体,优选人体。
32.根据权利要求1至31的任一项的核酸分子,其用于用来治疗和/或预防疾病的方法。
33.权利要求32的核酸分子,其中所述疾病选自偏头痛,不同形式的头痛,急性疼痛、慢性疼痛、对基于吗啡的镇痛的耐受、骨关节炎、血管生成、自身免疫疾病、肿瘤生长和炎性疾病,其中优选地急性疼痛和慢性疼痛具有炎症性和/或神经性来源。
34.一种包含权利要求1至32的任一项中定义的核酸分子和任选其它成分的药物组合物,其中所述其它成分选自药学上可接受的赋形剂、药学上可接受的载体和药物活性剂。
35.权利要求34的药物组合物,其中所述药物组合物包含权利要求1至32的任一项中定义的核酸分子和药学上可接受的载体。
36.权利要求1至32的任一项的核酸分子用于制造药剂的用途。
37.权利要求36的用途,其中所述药剂用于人类医学或用于兽医医学。
38.权利要求1至32的任一项的核酸分子用于制造诊断工具的用途。
39.权利要求36的用途,其中所述药剂用于治疗和/或预防偏头痛,不同形式的头痛,急性疼痛、慢性疼痛、对基于吗啡的镇痛的耐受、骨关节炎、血管生成、自身免疫疾病、肿瘤生长和炎性疾病,其中优选地急性疼痛和慢性疼痛具有炎症性和/或神经性来源。
40.一种复合物,其包含权利要求1至32的任一项的核酸分子和CGRP,其中优选地所述复合物是结晶复合物。
41.权利要求1至32的任一项的核酸分子用于检测CGRP的用途。
42.一种方法,其用于筛选由CGRP介导的活性的拮抗剂,其包括下列步骤:
-提供由CGRP介导的活性的候选拮抗剂,
-提供权利要求1至32的任一项中定义的核酸分子,
-提供在存在由CGRP介导的活性的拮抗剂的情况下提供信号的测试系统,和
-确定由CGRP介导的活性的候选拮抗剂是否是由CGRP介导的活性的拮抗剂。
43.一种用于检测CGRP的试剂盒,其包括权利要求1至32的任一项的核酸分子和至少说明书或反应容器。
44.一种用于检测样品中的权利要求1至32的任一项中定义的核酸的方法,其中所述方法包括步骤:
a)提供捕获探针,其中所述捕获探针与权利要求1至32的任一项中定义的核酸分子的第一部分至少部分互补,和检测探针,其中所述检测探针与权利要求1至32的任一项中定义的核酸分子的第二部分至少部分互补;或者,可选择地,所述捕获探针与权利要求1至32的任一项中定义的核酸分子的第二部分至少部分互补,以及所述检测探针与权利要求1至32的任一项中定义的核酸分子的第一部分至少部分互补;
b)将所述捕获探针和检测探针分别地或组合地添加至样品,所述样品包含权利要求1至32的任一项中定义的核酸分子或假定包含权利要求1至32的任一项中定义的核酸分子;
c)使所述捕获探针和所述检测探针同时或以任意顺序依次与权利要求1至32的任一项中定义的核酸分子或其部分反应;
d)任选地检测步骤a)中提供的捕获探针是否与权利要求1至32的任一项中定义的核酸分子杂交;和
e)检测步骤c)中形成的由权利要求1至32的任一项中定义的核酸分子与所述捕获探针和所述检测探针组成的复合物。
45.权利要求44的方法,其中所述检测探针包括检测工具,和/或其中所述捕获探针被固定于支持物,优选固体支持物。
46.权利要求44或45的方法,其中从反应中除去不为步骤c)中形成的复合物的部分的任何检测探针以便在步骤e)中仅检测是所述复合物的部分的检测探针。
47.权利要求44至46的任一项的方法,其中所述步骤e)包括步骤:比较当所述捕获探针与所述检测探针在权利要求1至32的任一项中定义的核酸分子或其部分存在的情况下,和在所述核酸分子或其部分不存在的情况下杂交时,由所述检测工具产生的信号。
48.根据权利要求1至32的任一项的核酸分子,其中所述CGRP为人CGRP、小鼠CGRP、大鼠CGRP或来自恒河猴的CGRP,优选CGRP为人CGRP。
49.根据权利要求1至32和48的任一项的核酸分子,其中所述CGRP为α-CGRP或β-CGRP,优选人α-CGRP,人α-CGRP或大鼠α-CGRP。
50.权利要求1至32和48至49的任一项的核酸分子,其中所述核酸分子具有表达为KD的10nM或更少,优选1nM或更少,更优选100pM或更少的针对人α-CGRP的结合亲和力。
51.权利要求1至32和48至50的任一项的核酸分子,其中所述核酸分子具有表达为IC50的10nM或更少,优选1nM或更少,和更优选100pM或更少的针对人α-CGRP的结合亲和力。
52.权利要求1至32和48至51的任一项的核酸分子,其中所述核酸分子具有表达为KD的100nM或更多,优选500nM或更多,更优选1000nM或更多的针对人淀粉不溶素的结合亲和力。
53.权利要求1至32和48至52的任一项的核酸分子,其中所述核酸分子具有表达为IC50的100nM或更多,优选500nM或更多,和更优选1000 nM或更多的针对人淀粉不溶素的结合亲和力。
54.权利要求1至32和48至53的任一项的核酸分子,其中
所述核酸分子具有表达为KD的10nM或更少,优选1nM或更少,和更优选100pM或更少的针对人α–CGRP的结合亲和力,其中所述核酸分子具有表达为KD的100nM或更多,优选500nM或更多,和更优选1000nM或更多的针对人淀粉不溶素的结合亲和力,
和/或
所述核酸分子具有表达为IC50的10nM或更少,优选1nM或更少,和更优选100pM或更少的针对人α–CGRP的结合亲和力,其中所述核酸分子具有表达为IC50的100nM或更多,优选500nM或更多,和更优选1000nM或更多的针对人淀粉不溶素的结合亲和力。
CN201380009019.6A 2012-01-10 2013-01-10 特异性结合cgrp的核酸 Pending CN104136612A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP12000105.2 2012-01-10
EP12000105 2012-01-10
EPPCT/EP2012/000089 2012-01-10
PCT/EP2012/000089 WO2012095303A1 (en) 2011-01-10 2012-01-10 Nucleic acid molecule having binding affinity to a target molecule and a method for generating the same
PCT/EP2013/000055 WO2013104539A1 (en) 2012-01-10 2013-01-10 Nucleic acids specifically binding cgrp

Publications (1)

Publication Number Publication Date
CN104136612A true CN104136612A (zh) 2014-11-05

Family

ID=48781062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380009019.6A Pending CN104136612A (zh) 2012-01-10 2013-01-10 特异性结合cgrp的核酸

Country Status (14)

Country Link
US (1) US9163243B2 (zh)
EP (1) EP2802659A1 (zh)
JP (1) JP2015506174A (zh)
KR (1) KR20140111704A (zh)
CN (1) CN104136612A (zh)
AU (1) AU2013209130A1 (zh)
BR (1) BR112014016939A2 (zh)
CA (1) CA2860809A1 (zh)
HK (1) HK1198370A1 (zh)
IL (1) IL233515A0 (zh)
MX (1) MX2014008456A (zh)
RU (1) RU2014132706A (zh)
SG (1) SG11201403769YA (zh)
WO (1) WO2013104539A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113383079A (zh) * 2018-11-12 2021-09-10 阿普塔里恩生物技术股份公司 Cxcl8结合性核酸

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201403771SA (en) 2012-01-10 2014-07-30 Noxxon Pharma Ag New c5a binding nucleic acids
RS65360B1 (sr) 2014-03-21 2024-04-30 Teva Pharmaceuticals Int Gmbh Antagonistička antitela specifična za peptid genski srodan kalcitoninu i postupci njihove upotrebe
JP6584868B2 (ja) * 2015-02-25 2019-10-02 学校法人 関西大学 ゲル素材及びその製造方法
EP3353202B1 (en) * 2015-09-24 2020-11-04 Teva Pharmaceuticals International GmbH Preventing, treating, and reducing (persistent) post-traumatic headache
ES2607639B1 (es) 2015-09-30 2018-02-28 Urquima, S.A Sal de ácido maleico de un intermedio de silodosina
MX2019003337A (es) 2016-09-23 2019-09-26 Teva Pharmaceuticals Int Gmbh Tratamiento para migraña refractaria.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060183700A1 (en) * 2002-05-06 2006-08-17 Noxxon Pharma Ag Cgrp binding nucleic acids
CN101217967A (zh) * 2005-05-04 2008-07-09 诺松制药股份公司 镜像异构体的新用途

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011020A (en) 1990-06-11 2000-01-04 Nexstar Pharmaceuticals, Inc. Nucleic acid ligand complexes
US5840867A (en) 1991-02-21 1998-11-24 Gilead Sciences, Inc. Aptamer analogs specific for biomolecules
US5582981A (en) 1991-08-14 1996-12-10 Gilead Sciences, Inc. Method for identifying an oligonucleotide aptamer specific for a target
US6682886B1 (en) 1994-04-28 2004-01-27 Gilead Sciences, Inc. Bivalent binding molecules of 7 transmembrane G protein-coupled receptors
ATE265466T1 (de) 1994-08-16 2004-05-15 Human Genome Sciences Inc Calcitoninrezeptor
WO1996038579A1 (en) 1995-06-02 1996-12-05 Nexstar Pharmaceuticals, Inc. High-affinity oligonucleotide ligands to growth factors
US6395029B1 (en) 1999-01-19 2002-05-28 The Children's Hospital Of Philadelphia Sustained delivery of polyionic bioactive agents
US6652886B2 (en) 2001-02-16 2003-11-25 Expression Genetics Biodegradable cationic copolymers of poly (alkylenimine) and poly (ethylene glycol) for the delivery of bioactive agents
RU2180311C1 (ru) 2001-07-05 2002-03-10 Мешалкин Георгий Алексеевич Защитная пробка
US7629456B2 (en) 2001-10-26 2009-12-08 Noxxon Pharma Ag Modified L-nucleic acid
EP1306382A1 (de) 2001-10-26 2003-05-02 Noxxon Pharma AG Modifizierte L-Nukleinsäure
AU2003219796A1 (en) 2002-02-20 2003-09-09 Beth Israel Deaconess Medical Center Conjugates comprising a biodegradable polymer and uses therefor
EP1620450A4 (en) 2003-04-13 2011-01-19 Enzon Pharmaceuticals Inc POLYMER OLIGONUCLEOTIDE PRODRUGS
GB0314472D0 (en) 2003-06-20 2003-07-23 Warwick Effect Polymers Ltd Polymer
WO2005074993A2 (de) 2004-02-09 2005-08-18 Noxxon Pharma Ag Verfahren zur herstellung von konjugaten aus polysacchariden und polynukleotiden
US8377917B2 (en) 2004-03-23 2013-02-19 Complex Biosystems Gmbh Polymeric prodrug with a self-immolative linker
JP5107716B2 (ja) 2004-11-05 2012-12-26 ザ・チルドレンズ・ホスピタル・オブ・フィラデルフィア 分子治療用生分解性リンカー
JP2010503707A (ja) 2006-09-15 2010-02-04 エンゾン ファーマスーティカルズ インコーポレイテッド オリゴヌクレオチドの送達を目的としたヒンダードエステル系生体分解性リンカー
WO2008052774A2 (en) 2006-10-31 2008-05-08 Noxxon Pharma Ag Methods for detection of a single- or double-stranded nucleic acid molecule
EP2561079A1 (en) 2010-04-21 2013-02-27 Noxxon Pharma AG Lipid binding nucleic acids
AU2012206750A1 (en) * 2011-01-10 2013-07-18 Noxxon Pharma Ag Nucleic acid molecule having binding affinity to a target molecule and a method for generating the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060183700A1 (en) * 2002-05-06 2006-08-17 Noxxon Pharma Ag Cgrp binding nucleic acids
CN101217967A (zh) * 2005-05-04 2008-07-09 诺松制药股份公司 镜像异构体的新用途

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DENEKAS ET AL.: "Inhibition of stimulated meningeal blood flow by a calcitonin gene-related peptide binding mirror-image RNA oligonucleotide", 《BRITISH JOURNAL OF PHARMACOLOGY》 *
EATON ET AL.: "Post-SELEX Combinatorial Optimization of Aptamers", 《BIOORGANIC & MEDICINAL CHEMISTRY》 *
JUHL ET AL.: "Effect of two novel CGRP-binding compounds in a closed cranial window rat model", 《EUROPEAN JOURNAL OF PHARMACOLOGY》 *
TREVINO ET AL.: "Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity", 《PNAS》 *
VATER ET AL.: "Shot bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach:Tailored-SELEX", 《NUCLEIC ACIDS RESEARCH》 *
杨晨等: "模拟乳腺癌骨转移微环境中CGRP对成骨细胞OPG和RANKL表达影响", 《中国肿瘤生物治疗杂志》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113383079A (zh) * 2018-11-12 2021-09-10 阿普塔里恩生物技术股份公司 Cxcl8结合性核酸

Also Published As

Publication number Publication date
RU2014132706A (ru) 2016-02-27
CA2860809A1 (en) 2013-07-18
US20150031755A1 (en) 2015-01-29
JP2015506174A (ja) 2015-03-02
EP2802659A1 (en) 2014-11-19
IL233515A0 (en) 2014-08-31
HK1198370A1 (zh) 2015-04-10
US9163243B2 (en) 2015-10-20
MX2014008456A (es) 2014-11-25
AU2013209130A1 (en) 2014-07-10
KR20140111704A (ko) 2014-09-19
SG11201403769YA (en) 2014-07-30
WO2013104539A1 (en) 2013-07-18
BR112014016939A2 (pt) 2019-09-24

Similar Documents

Publication Publication Date Title
CN104136612A (zh) 特异性结合cgrp的核酸
KR102021626B1 (ko) Ngf에 대한 압타머 및 그의 용도
CN103339258A (zh) 具有对于靶分子的结合亲和力的核酸分子及产生所述核酸分子的方法
CN101506364B (zh) Sdf-1结合性核酸
CN101189337A (zh) 生长素释放肽结合核酸
JP4823067B2 (ja) 生物活性グレリンに特異的に結合する核酸
CN101415825B (zh) 结合mcp-1的核酸
CN103958682A (zh) 结合胰高血糖素的核酸
US20120083520A1 (en) Ghrelin binding nucleic acids
CN101809154A (zh) C5a结合核酸
TWI500425B (zh) 對ngf之適體及其用途
CN101331231B (zh) 用于rna治疗的肽核糖核酸缩合粒子的复合物及方法
EP3065744B1 (en) A ccl2 antagonist for use in treating proteinuria
WO2013082515A2 (en) Nucleic acid aptamers directed to surface receptors and methods of use

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141105