CN104124464A - 一种全钒液流电池电解液的制备方法 - Google Patents

一种全钒液流电池电解液的制备方法 Download PDF

Info

Publication number
CN104124464A
CN104124464A CN201310144098.3A CN201310144098A CN104124464A CN 104124464 A CN104124464 A CN 104124464A CN 201310144098 A CN201310144098 A CN 201310144098A CN 104124464 A CN104124464 A CN 104124464A
Authority
CN
China
Prior art keywords
vanadium
preparation
flow battery
electrolyte
battery electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310144098.3A
Other languages
English (en)
Other versions
CN104124464B (zh
Inventor
杨辉
张海峰
周毅
李雪梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Advanced Research Institute of CAS
Original Assignee
Shanghai Advanced Research Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Advanced Research Institute of CAS filed Critical Shanghai Advanced Research Institute of CAS
Priority to CN201310144098.3A priority Critical patent/CN104124464B/zh
Publication of CN104124464A publication Critical patent/CN104124464A/zh
Application granted granted Critical
Publication of CN104124464B publication Critical patent/CN104124464B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供一种全钒液流电池电解液的制备方法,至少包括以下步骤:1)将五氧化二钒∶碳还原剂按照质量百分比为182∶6~182∶12称量并混合均匀;2)将上述材料放入真空炉中进行加热,升温至620~670℃,保温2~4h,然后继续升温至900~1100℃,保温2~4h后冷却至室温,获得钒氧化物;3)将预设质量的钒氧化物溶解到3~6mol/L的硫酸溶液中,采用过滤器将未溶解的钒氧化物过滤去除,获得钒浓度为1~2mol/L的钒电解液。本发明的制备方法原材料易得、成本低廉,反应条件容易控制、操作方便,所得电解液浓度性能稳定,使用温度范围宽,易于产业化。

Description

一种全钒液流电池电解液的制备方法
技术领域
本发明属于化学电源技术领域,具体涉及一种全钒液流电池电解液的制备方法。
背景技术
石化能源日渐枯竭,为应对能源危机,全球各国均在积极探索新能源的开发与利用,譬如,目前已初具规模的风电以及太阳能。风能与光伏能源具有清洁、无污染、不枯竭的特点,可以说取之不尽用之不竭,并且环境友好;但是风能与光伏能源又有着固有的缺点,如随机性、间断性和不可调度性,这些缺点限制了风电与光伏发电上网,从而降低了资源利用率,致“弃风”等现象频频发生。
为解决上述资源浪费现象,在风电等新能源与电网之间中接入储能系统,储能系统可以有效调节风光发电的输出功率,使之处于平稳状态,从而将风光等不可控能源变为可控能源,解决了风光等新能源上网难的问题,同时也为解决能源危机提供了可行性方案。
目前的储能系统大致包含锂电储能、铅酸储能、钠硫电池储能以及全钒液流电池储能等几类。锂电及钠硫电池由于其安全性仍未得到解决,存在安全隐患,因此难以推广;铅酸储能由于其效率低、寿命短,也难以推广;全钒液流电池储能具有无可比拟的安全性、超长的使用寿命、较高的能量转换效率等优点,因此成为储能系统首选对象。全钒液流电池储能系统已在全国有多处示范项目,其中以国家电网在张北的“风光储输”项目中的应用规模最大,达2MW/4h,成为了全钒液流电池示范项目的典范。
全钒液流电池是由电堆、管路、泵、电解液等几部分组成,电解液经过泵在电堆中循环,实现充放电,电能恰恰存储在电解液中,因此电解液在全钒液流电池系统中占据重要地位。电解液的制备直接影响着全钒液流电池的成本与性能。
若直接以硫酸氧钒配制电解液,则会导致全钒液流电池的成本翻倍。若使用二氧化硫或者硫还原五氧化二钒得到硫酸氧钒,则会涉及到尾气处理问题,处理不好会造成二氧化硫污染大气现象,同时也会面临V(IV)到V(III)电解的过程,工艺复杂,效率低下。若使用氢气还原五氧化二钒得到三氧化二钒,同样面临生产效率低的问题,并且存在高温下使用氢气带来的安全性问题。如何解决生产安全问题以及生产效率问题,成为电解液制备的关键。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种全钒液流电池电解液的制备方法,用于解决现有技术中钒液流电池制备面临的环境污染、工艺复杂、效率低下及安全性差等问题。
钒电池电解液由正负极两极组成,正极由V(V)+V(IV)混合溶液组成,负极由V(III)+V(II)混合溶液组成。充电过程中,正极电解液价态由V(IV)向V(V)转化,负极电解液价态由V(III)向V(II)转化,而放电过程中,正极电解液价态由V(V)向V(IV)转化,负极电解液价态由V(II)向V(III)转化。可见,作为钒电池正负极电解液起始平均价态为3.5价,因此配制价态为3.5的钒电解液成为钒电解液制备的基本目标。
为实现上述目的及其他相关目的,本发明通过如下技术方案实现:以高纯度五氧化二钒V2O5为原料,与碳还原剂C按一定比例混合均匀,将其放置在真空炉中加热发生还原反应,得到V2O3和V2O5的混合物,将所得混合物放在一定浓度的硫酸溶液中溶解得到V价态为3.5的钒电解液。
在真空炉中加热发生的还原反应包括两个阶段中,第一阶段发生的反应为:
V2O5+C=2VO2+CO
V2O5+CO=2VO2+CO2
第二阶段发生的反应为:
2VO2+C=V2O3+CO
2VO2+CO=V2O3+CO2
具体地,本发明提供一种全钒液流电池电解液的制备方法,至少包括以下步骤:
1)将五氧化二钒∶碳还原剂按照质量百分比为182∶6~182∶12称量并混合均匀;
2)将上述材料放入真空炉中进行加热,升温至620~670℃,保温2~4h,然后继续升温至900~1100℃,保温2~4h后冷却至室温,获得钒氧化物;
3)将预设质量的钒氧化物溶解到3~6mol/L的硫酸溶液中,采用过滤器将未溶解的钒氧化物过滤去除,获得钒浓度为1~2mol/L的钒电解液。
作为本发明的全钒液流电池电解液的制备方法的一种优选方案,步骤1)所述的碳还原剂为炭黑及石墨材料中的一种。
作为本发明的全钒液流电池电解液的制备方法的一种优选方案,步骤2)所述的真空炉上装设有减压阀,以防止真空炉内的压力过大。
作为本发明的全钒液流电池电解液的制备方法的一种优选方案,所述钒氧化物包括三氧化二钒及五氧化二钒。
作为本发明的全钒液流电池电解液的制备方法的一种优选方案,所述过滤器的滤芯孔径小于200nm。
作为本发明的全钒液流电池电解液的制备方法的一种优选方案,所述过滤器为平板过滤器或滤芯过滤器。
作为本发明的全钒液流电池电解液的制备方法的一种优选方案,所述钒电解液中钒离子的平均价态为3.5。
如上所述,本发明提供一种全钒液流电池电解液的制备方法,至少包括以下步骤:1)将五氧化二钒∶碳还原剂按照质量百分比为182∶6~182∶12称量并混合均匀;2)将上述材料放入真空炉中进行加热,升温至620~670℃,保温2~4h,然后继续升温至900~1100℃,保温2~4h后冷却至室温,获得钒氧化物;3)将预设质量的钒氧化物溶解到3~6mol/L的硫酸溶液中,采用过滤器将未溶解的钒氧化物过滤去除,获得钒浓度为1~2mol/L的钒电解液。本发明的制备方法原材料易得、成本低廉,反应条件容易控制、操作方便,所得电解液浓度性能稳定,使用温度范围宽,易于产业化。
附图说明
图1显示为本发明的全钒液流电池电解液的制备方法的步骤流程示意图。
图2显示为采用本发明实施例1中的全钒液流电池电解液的制备方法所制备的电解液用在单体钒电池测试中的充放电曲线图。
图3显示为采用本发明实施例2中的全钒液流电池电解液的制备方法所制备的电解液用在单体钒电池测试中的充放电曲线图。
元件标号说明
S11     步骤1)
S12     步骤2)
S13     步骤3)
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1~图3。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例1
如图1所示,本实施例提供一种全钒液流电池电解液的制备方法,至少包括以下步骤:
首先进行步骤1)S11,将五氧化二钒∶碳还原剂按照质量百分比为182∶6~182∶12称量并混合均匀。
作为示例,所述的碳还原剂为炭黑及石墨材料中的一种。
然后进行步骤2)S12,将上述材料放入真空炉中进行加热,升温至620~670℃,保温2~4h,然后继续升温至900~1100℃,保温2~4h后冷却至室温,获得钒氧化物。
作为示例,所述的真空炉上装设有减压阀,以防止真空炉内的压力过大。
作为示例,所述钒氧化物包括三氧化二钒及五氧化二钒。
具体地,在加热的两个阶段中,第一阶段发生的反应为:
V2O5+C=2VO2+CO
V2O5+CO=2VO2+CO2
第二阶段发生的反应为:
2VO2+C=V2O3+CO
2VO2+CO=V2O3+CO2
最后进行步骤3)S13,将预设质量的钒氧化物溶解到3~6mol/L的硫酸溶液中,采用过滤器将未溶解的钒氧化物过滤去除,获得钒浓度为1~2mol/L的钒电解液。
作为示例,所述过滤器的滤芯孔径小于200nm。
作为示例,所述过滤器为平板过滤器或滤芯过滤器。
作为示例,所述钒电解液中钒离子的平均价态为3.5。
在本实施例的一个具体的实施过程中,包括以下步骤:
步骤1),称量182g高纯(99.9%)V2O5,称量12g碳粉,并将两种物质混合均匀。
步骤2),将上述的混合物放置在真空炉中加热,在温度升到620℃时保温2h,然后继续升温到900℃保温4h,待炉温冷却到室温时取出炉内的钒氧化物,其中:
第一阶段发生的反应为:V2O5+C=2VO2+CO
V2O5+CO=2VO2+CO2
第二阶段发生的反应为:2VO2+C=V2O3+CO
2VO2+CO=V2O3+CO2
步骤3),配制硫酸浓度为6mol/L的硫酸溶液,并量取1000ml溶液,称取上述钒氧化物15.8g,倒入1000ml硫酸溶液中并搅拌使其溶解,使用平板过滤器过滤掉未完全溶解的钒氧化物,得到一定浓度的钒电解液。
步骤4),用电位滴定仪测定钒电解液的总钒浓度为2.1mol/L、钒价态比例V(III)∶V(IV)为1.1∶0.9,氢离子浓度为7.2mol/L。
步骤5)将上述钒电解液用在单体钒电池上,进行性能测试,其充放电曲线如图2所示。
实施例2
如图1所示,本实施例提供一种全钒液流电池电解液的制备方法,包括以下步骤:
步骤1),称量182g高纯(99.9%)V2O5,称量6g碳粉,并将两种物质混合均匀。
步骤2),将上述混合物放置在真空炉中加热,在温度升到670℃时保温2h,然后继续升温到1100℃保温4h,待炉温冷却到室温时取出炉内的钒氧化物,其中:
第一阶段发生的反应为:V2O5+C=2VO2+CO
V2O5+CO=2VO2+CO2
第二阶段发生的反应为:2VO2+C=V2O3+CO
2VO2+CO=V2O3+CO2
步骤3),配制硫酸浓度为3mol/L的硫酸溶液,并量取1000ml溶液,称取上述钒氧化物7.9g,倒入1000ml硫酸溶液中并搅拌使其溶解,使用平板过滤器过滤掉未完全溶解的钒氧化物,得到一定浓度的钒电解液。
步骤4),用电位滴定仪测定钒电解液的总钒浓度为0.97mol/L、钒价态比例V(III)∶V(IV)为0.98∶1.02,以及氢离子浓度为4.6mol/L。
步骤5),将上述钒电解液用在单体钒电池上,进行性能测试,其充放电曲线如图3所示。
综上所述,本发明提供一种全钒液流电池电解液的制备方法,至少包括以下步骤:1)将五氧化二钒∶碳还原剂按照质量百分比为182∶6~182∶12称量并混合均匀;2)将上述材料放入真空炉中进行加热,升温至620~670℃,保温2~4h,然后继续升温至900~1100℃,保温2~4h后冷却至室温,获得钒氧化物;3)将预设质量的钒氧化物溶解到3~6mol/L的硫酸溶液中,采用过滤器将未溶解的钒氧化物过滤去除,获得钒浓度为1~2mol/L的钒电解液。本发明的制备方法原材料易得、成本低廉,反应条件容易控制、操作方便,所得电解液浓度性能稳定,使用温度范围宽,易于产业化。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

1.一种全钒液流电池电解液的制备方法,其特征在于,至少包括以下步骤:
1)将五氧化二钒∶碳还原剂按照质量百分比为182∶6~182∶12称量并混合均匀;
2)将上述材料放入真空炉中进行加热,升温至620~670℃,保温2~4h,然后继续升温至900~1100℃,保温2~4h后冷却至室温,获得钒氧化物;
3)将预设质量的钒氧化物溶解到3~6mol/L的硫酸溶液中,采用过滤器将未溶解的钒氧化物过滤去除,获得钒浓度为1~2mol/L的钒电解液。
2.根据权利要求1所述的全钒液流电池电解液的制备方法,其特征在于:步骤1)所述的碳还原剂为炭黑及石墨材料中的一种。
3.根据权利要求1所述的全钒液流电池电解液的制备方法,其特征在于:步骤2)所述的真空炉上装设有减压阀,以防止真空炉内的压力过大。
4.根据权利要求1所述的全钒液流电池电解液的制备方法,其特征在于:所述钒氧化物包括三氧化二钒及五氧化二钒。
5.根据权利要求1所述的全钒液流电池电解液的制备方法,其特征在于:所述过滤器的滤芯孔径小于200nm。
6.根据权利要求1所述的全钒液流电池电解液的制备方法,其特征在于:所述过滤器为平板过滤器或滤芯过滤器。
7.根据权利要求1所述的全钒液流电池电解液的制备方法,其特征在于:所述钒电解液中钒离子的平均价态为3.5。
CN201310144098.3A 2013-04-23 2013-04-23 一种全钒液流电池电解液的制备方法 Active CN104124464B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310144098.3A CN104124464B (zh) 2013-04-23 2013-04-23 一种全钒液流电池电解液的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310144098.3A CN104124464B (zh) 2013-04-23 2013-04-23 一种全钒液流电池电解液的制备方法

Publications (2)

Publication Number Publication Date
CN104124464A true CN104124464A (zh) 2014-10-29
CN104124464B CN104124464B (zh) 2016-12-28

Family

ID=51769799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310144098.3A Active CN104124464B (zh) 2013-04-23 2013-04-23 一种全钒液流电池电解液的制备方法

Country Status (1)

Country Link
CN (1) CN104124464B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684421A (zh) * 2017-01-13 2017-05-17 河钢股份有限公司承德分公司 一种制备钒电解液的方法
CN108199069A (zh) * 2018-01-17 2018-06-22 大连博融新材料有限公司 氧化还原液流电池用电解液及其制备方法
CN109742433A (zh) * 2018-12-25 2019-05-10 武汉科技大学 一种全钒氧化还原液流电池电解液的制备方法
CN110838592A (zh) * 2018-08-16 2020-02-25 江苏泛宇能源有限公司 液流电池电解液的制备方法
CN112551580A (zh) * 2020-11-30 2021-03-26 鞍钢集团北京研究院有限公司 一种失效钒电池正极电解液回收制备三氧化二钒的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562256A (zh) * 2009-05-27 2009-10-21 青岛武晓集团有限公司 一种用于全钒离子氧化还原液流电池的电解液制备方法
CN101651221A (zh) * 2009-09-27 2010-02-17 湖南维邦新能源有限公司 一种制备钒电池用电解液的方法
CN102468509A (zh) * 2010-11-16 2012-05-23 中国海洋石油总公司 制备钒电池用电解液的方法
CN102969521A (zh) * 2012-12-10 2013-03-13 贵州省岑巩县银峰矿业有限公司 一种钒电池正极电解液的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562256A (zh) * 2009-05-27 2009-10-21 青岛武晓集团有限公司 一种用于全钒离子氧化还原液流电池的电解液制备方法
CN101651221A (zh) * 2009-09-27 2010-02-17 湖南维邦新能源有限公司 一种制备钒电池用电解液的方法
CN102468509A (zh) * 2010-11-16 2012-05-23 中国海洋石油总公司 制备钒电池用电解液的方法
CN102969521A (zh) * 2012-12-10 2013-03-13 贵州省岑巩县银峰矿业有限公司 一种钒电池正极电解液的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684421A (zh) * 2017-01-13 2017-05-17 河钢股份有限公司承德分公司 一种制备钒电解液的方法
CN106684421B (zh) * 2017-01-13 2020-09-11 河钢股份有限公司承德分公司 一种制备钒电解液的方法
CN108199069A (zh) * 2018-01-17 2018-06-22 大连博融新材料有限公司 氧化还原液流电池用电解液及其制备方法
CN108199069B (zh) * 2018-01-17 2020-09-29 大连博融新材料有限公司 氧化还原液流电池用电解液及其制备方法
CN110838592A (zh) * 2018-08-16 2020-02-25 江苏泛宇能源有限公司 液流电池电解液的制备方法
CN109742433A (zh) * 2018-12-25 2019-05-10 武汉科技大学 一种全钒氧化还原液流电池电解液的制备方法
CN112551580A (zh) * 2020-11-30 2021-03-26 鞍钢集团北京研究院有限公司 一种失效钒电池正极电解液回收制备三氧化二钒的方法

Also Published As

Publication number Publication date
CN104124464B (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
Xu et al. Cathode materials for next generation lithium ion batteries
CN102709597B (zh) 一种复合全固态聚合物电解质锂离子电池及其制备方法
CN102569771B (zh) 一种SnO2-Li4Ti5O12复合电极材料及其制备方法
CN104241708B (zh) 一种高储能长寿命铅酸蓄电池
CN102315453A (zh) 一种钛酸锂电极材料的合成方法
CN108039463A (zh) 一种固态电解质/电极复合材料的制备及应用该材料的固态电池
CN104124464B (zh) 一种全钒液流电池电解液的制备方法
CN105742601A (zh) 一种原位合成碳包覆一水合七氧化三钒纳米带的方法及锂离子电池
CN104795564B (zh) 一种水溶液二次电池的正极材料、极片、二次电池和用途
CN104795555A (zh) 一种水溶液钠离子电池及其正极材料、制备方法和用途
CN104505505A (zh) 硅酸锂包覆锂离子电池三元层状正极材料的制备方法
CN104362334A (zh) 硅酸锂包覆锂离子电池富锂层状正极材料的制备方法
CN104659347A (zh) 一种钠离子电池三元金属氧化物正极材料及其制备方法
CN114789993B (zh) 一种改性硫银锗矿型化物固态电解质及其制备方法和应用
CN103762354A (zh) 一种LiNi0.5Mn1.5O4材料、其制备方法及锂离子电池
CN105185963A (zh) 一种高性能富氮型碳复合电极材料及其制备方法
CN112830521B (zh) 一种F掺杂P2-Na0.7MnO2电极材料及其制备方法
CN108373902A (zh) 一种固态电池塑料封装材料及其应用
CN105185978A (zh) 用作负极活性物质的含锰氧化合物及其制备方法和用途
CN102945953A (zh) 高温型长寿命锂离子电池正极材料LiMn2-x-yMIxMIIyO4的制备方法
Zeng et al. Synthesis and electrochemical performance of Mo-doped LiNi0. 5Mn1. 5O4 cathode material
CN105070897A (zh) 钛酸锂材料及其制备方法、应用其的电极极片、电池
CN107492647A (zh) 锂离子电池负极材料、负极材料制备方法及锂离子电池
CN103311525B (zh) 锂离子电池正极材料的制备方法
CN109873157A (zh) 用于锂离子电池的Co2(BDC)2ted负极材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant