CN104112853B - 一种锂离子电池层状正极材料及其制备方法 - Google Patents

一种锂离子电池层状正极材料及其制备方法 Download PDF

Info

Publication number
CN104112853B
CN104112853B CN201410316292.XA CN201410316292A CN104112853B CN 104112853 B CN104112853 B CN 104112853B CN 201410316292 A CN201410316292 A CN 201410316292A CN 104112853 B CN104112853 B CN 104112853B
Authority
CN
China
Prior art keywords
cathode material
layered cathode
ion battery
lithium ion
layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410316292.XA
Other languages
English (en)
Other versions
CN104112853A (zh
Inventor
孔继周
周飞
王春雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201410316292.XA priority Critical patent/CN104112853B/zh
Publication of CN104112853A publication Critical patent/CN104112853A/zh
Application granted granted Critical
Publication of CN104112853B publication Critical patent/CN104112853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明所述的一种锂离子电池层状正极材料及其制备方法,该材料是在层状锂电池正极材料的表面包覆MoS2/WS2薄膜。方法为1)将四硫代钼酸铵或四硫代钨酸铵加入到乙醇水溶液中,搅拌溶解;再将锂离子电池层状正极材料加入到上述溶液中,在80~100℃条件下加热搅拌,干燥后得到包覆后的前驱体;3)将前驱体研磨后置于管式炉中,在一定气氛下400~600℃温度下退火处理2~5h,得到表面包覆0.5wt%~6wt% MoS2或WS2的目标产物。本发明采用的包覆物层状过渡金属二硫化物具有类石墨烯结构,其有利于该材料中Li+ 嵌入/脱出,使得包覆后的正极材料表面包覆薄膜均匀,且采用的包覆方法技术成熟可靠。

Description

一种锂离子电池层状正极材料及其制备方法
技术领域
本发明涉及锂离子电池层状正极材料制备领域,特别是涉及锂离子电池层状正极材料的表面包覆改性及其制备方法。
背景技术
由于锂离子电池具有能量密度高、重量轻、无记忆效应、倍率性能好、循环寿命长等一系列突出优点,被公认为下一代电动汽车、混合动力电动汽车的理想能源。锂离子电池的能量密度主要取决于正极材料的能量密度,所以,开发出高能量密度的正极材料成为人们关注的焦点。
对于锂离子电池,由于正极材料与电解液发生反应(如氧化还原反应),会造成正极材料中的金属元素溶解(如Mn)、固体电解质界面膜的增加等问题,从而导致电池的容量衰减,并导致安全性下降。因此,需要采用表面包覆等技术手段来改进锂离子电池层状正极材料的电化学性能。现今的包覆方式大体可以分为两种:干法包覆和湿法包覆。相比较来说,湿法包覆均匀,且得到的正极材料的电化学性能更优越。如中国发明专利申请“锂离子电池正极材料及其制备方法”(公开号CN1627550)中使用湿法在锂钴氧、锂镍钴氧、锂镍钴锰氧、锂锰氧材料表面包覆金属Al、Mg、Zn、Ca、Ba、Ti、V、Sn或非金属Si、B中某一种元素的氧化物来改善材料的循环性能、高温稳定性、倍率性能和安全性能。
由于层状过渡金属二硫化物,如MoS2, SnS2, WS2,ZrS2等,具有石墨烯相同的结构,因此,他们被广泛用作锂离子电池负极材料。而层状过渡金属二硫化物的类石墨烯结构将有利于该材料中Li+ 嵌入/脱出。到目前为止,层状过渡金属二硫化物包覆改性锂离子电池层状正极材料的研究还未见报道。
发明内容
本发明所要解决的技术问题是提供一种表面包覆改性锂离子电池层状正极材料及其制备方法,采用该方法包覆的正极材料表面包覆均匀、技术成熟可靠。
本发明所述的一种锂离子电池层状正极材料,是在层状锂电池正极材料的表面包覆MoS2/WS2薄膜。
该锂离子电池层状正极材料的制备方法有两种,对于包覆MoS2薄膜,其制备过程为:
1)将一定量的四硫代钼酸铵加入到乙醇水溶液中,搅拌溶解;
2)再将锂离子电池层状正极材料加入到上述溶液中,在80~100℃条件下加热搅拌,干燥后得到包覆后的前驱体;
3)将前驱体研磨后置于管式炉中,在一定气氛下400~600℃温度下退火处理2~5h,得到表面包覆0.5wt%~6wt% MoS2的目标产物。
上述步骤1)中所述的四硫代钼酸铵与乙醇的摩尔比为 1:500~5000,乙醇水溶液中去离子水与乙醇的体积比为1:0.5~2。
上述步骤2)中所述的层状正极材料包括:一元层状正极材料如LiCoO2;二元层状正极材料如Li[Ni0.5Mn0.5]O2;三元层状正极材料如Li[Ni0.5Co0.2Mn0.3]O2、Li[Ni1/3Co1/3Mn1/3]O2、Li1.2[Mn0.51Ni0.19Co0.1]O2、Li1.2[Mn0.54Ni0.13Co0.13]O2
上述步骤3)中所述的气氛为Ar或N2
对于包覆WS2薄膜,其制备过程为:
1)将一定量的四硫代钨酸铵加入到乙醇水溶液中,搅拌溶解;
2)再将锂离子电池层状正极材料加入到上述溶液中,在80~100℃条件下加热搅拌,干燥后得到包覆后的前驱体;
3)将前驱体研磨后置于管式炉中,在一定气氛下400~600℃温度下退火处理2~5h,得到表面包覆0.5wt%~6wt% WS2的目标产物。
上述步骤1)中所述的四硫代钨酸铵与乙醇的摩尔比为1:500~5000,乙醇水溶液中去离子水与乙醇的体积比为1:0.5~2。
上述步骤2)中所述的层状正极材料包括:一元层状正极材料如LiCoO2;二元层状正极材料如Li[Ni0.5Mn0.5]O2;三元层状正极材料如Li[Ni0.5Co0.2Mn0.3]O2、Li[Ni1/3Co1/3Mn1/3]O2、Li1.2[Mn0.51Ni0.19Co0.1]O2、Li1.2[Mn0.54Ni0.13Co0.13]O2
上述步骤3)中所述的气氛为Ar或N2
本发明采用的包覆物层状过渡金属二硫化物具有类石墨烯结构,其有利于该材料中Li+ 嵌入/脱出,使得包覆后的正极材料表面包覆薄膜均匀,且采用的包覆方法技术成熟可靠。
附图说明
图1是本发明实施例1的2wt% MoS2包覆Li1.2[Mn0.54Ni0.13Co0.13]O2/Li扣式电池的XRD图;
图2是本发明实施例1的2wt% MoS2包覆Li1.2[Mn0.54Ni0.13Co0.13]O2/Li扣式电池的循环曲线。
具体实施方式
以下结合实施例对本发明进行具体说明。
实施例1
将0.163克四硫代钼酸铵加入到乙醇水溶液中,搅拌溶解,其中四硫代钼酸铵与乙醇的摩尔比为 1:1000,去离子水与乙醇的体积比为1:1;再将4.90克层状正极材料Li1.2[Mn0.54Ni0.13Co0.13]O2加入到上述溶液中,在90℃条件下加热搅拌,干燥后得到包覆后的前驱体;将前驱体研磨后置于管式炉中,在Ar气氛下500℃温度下退火处理2h,得到表面包覆2wt% MoS2的目标产物。由图1和图2可见,包覆后的电池性能得到了明显改善。
实施例2
将0.81克四硫代钼酸铵加入到乙醇水溶液中,搅拌溶解,其中四硫代钼酸铵与乙醇的摩尔比为 1:500,去离子水与乙醇的体积比为1:0.5;再将99.5克锂离子电池层状正极材料Li[Ni0.5Co0.2Mn0.3]O2加入到上述溶液中,在100℃条件下加热搅拌,干燥后得到包覆后的前驱体;将前驱体研磨后置于管式炉中,在N2气氛下400℃温度下退火处理5h,得到表面包覆0.5wt%MoS2的目标产物。
实施例3
将0.49克四硫代钼酸铵加入到乙醇水溶液中,搅拌溶解,其中四硫代钼酸铵与乙醇的摩尔比为 1:5000,去离子水与乙醇的体积比为1:2;再将4.7克锂离子电池层状正极材料LiCoO2加入到上述溶液中,在80℃条件下加热搅拌,干燥后得到包覆后的前驱体;将前驱体研磨后置于管式炉中,在Ar气氛下600℃温度下退火处理2h,得到表面包覆6wt% MoS2的目标产物。
实施例4
将1.4克四硫代钨酸铵加入到乙醇水溶液中,搅拌溶解,其中四硫代钨酸铵与乙醇的摩尔比为1:500,去离子水与乙醇的体积比为1:2;再将49克锂离子电池层状正极材料Li(Ni0.5Mn0.5)O2加入到上述溶液中,在90℃条件下加热搅拌,干燥后得到包覆后的前驱体;将前驱体研磨后置于管式炉中,在Ar气氛下400℃温度下退火处理3h,得到表面包覆2wt% WS2的目标产物。
实施例5
将0.07克四硫代钨酸铵加入到乙醇水溶液中,搅拌溶解,其中四硫代钨酸铵与乙醇的摩尔比为 1:1000,去离子水与乙醇的体积比为1:1;再将9.95克锂离子电池层状正极材料Li[Ni1/3Co1/3Mn1/3]O2加入到上述溶液中,在100℃条件下加热搅拌,干燥后得到包覆后的前驱体;将前驱体研磨后置于管式炉中,在N2气氛下400℃温度下退火处理4h,得到表面包覆0.5wt% WS2的目标产物。
实施例6
将4.21克四硫代钨酸铵加入到乙醇水溶液中,搅拌溶解,其中四硫代钨酸铵与乙醇的摩尔比为1:5000,去离子水与乙醇的体积比为1:0.5;再将47克层状正极材料Li1.2[Mn0.51Ni0.19Co0.1]O2加入到上述溶液中,在90℃条件下加热搅拌,干燥后得到包覆后的前驱体;将前驱体研磨后置于管式炉中,在Ar气氛下500℃温度下退火处理2h,得到表面包覆6wt% WS2的目标产物。
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (6)

1.一种锂离子电池层状正极材料,其特征在于,在层状锂电池正极材料的表面包覆MoS2薄膜,制备的具体过程包括以下步骤:
1)将一定量的四硫代钼酸铵加入到乙醇水溶液中,搅拌溶解,所述的四硫代钼酸铵与乙醇的摩尔比为 1:500~5000,乙醇水溶液中去离子水与乙醇的体积比为1:0.5~2;
2)再将锂离子电池层状正极材料加入到上述溶液中,在80~100℃条件下加热搅拌,干燥后得到包覆后的前驱体;
3)将前驱体研磨后置于管式炉中,在一定气氛下400~600℃温度下退火处理2~5h,得到表面包覆0.5wt%~6wt% MoS2的目标产物。
2.根据权利要求1所述锂离子电池层状正极材料,其特征在于,所述步骤2)中所述的层状正极材料为:一元层状正极材料LiCoO2、二元层状正极材料Li[Ni0.5Mn0.5]O2、三元层状正极材料Li[Ni0.5Co0.2Mn0.3]O2、Li[Ni1/3Co1/3Mn1/3]O2或Li1.2[Mn0.51Ni0.19Co0.1]O2
3.根据权利要求1或2所述锂离子电池层状正极材料,其特征在于,所述步骤3)中的气氛为Ar或N2
4.一种锂离子电池层状正极材料,其特征在于,在层状锂电池正极材料的表面包覆WS2薄膜,制备的具体过程包括以下步骤:
1)将一定量的四硫代钨酸铵加入到乙醇水溶液中,搅拌溶解,所述的四硫代钨酸铵与乙醇的摩尔比为 1:500~5000,乙醇水溶液中去离子水与乙醇的体积比为1:0.5~2;
2)再将锂离子电池层状正极材料加入到上述溶液中,在80~100℃条件下加热搅拌,干燥后得到包覆后的前驱体;
3)将前驱体研磨后置于管式炉中,在一定气氛下400~600℃温度下退火处理2~5h,得到表面包覆0.5wt%~6wt% WS2的目标产物。
5.根据权利要求4所述锂离子电池层状正极材料,其特征在于,所述步骤2)中所述的层状正极材料为:一元层状正极材料LiCoO2、二元层状正极材料Li[Ni0.5Mn0.5]O2、三元层状正极材料Li[Ni0.5Co0.2Mn0.3]O2、Li[Ni1/3Co1/3Mn1/3]O2或Li1.2[Mn0.51Ni0.19Co0.1]O2
6.权利要求4或5所述锂离子电池层状正极材料,其特征在于,所述步骤3)中的气氛为Ar或N2
CN201410316292.XA 2014-07-04 2014-07-04 一种锂离子电池层状正极材料及其制备方法 Active CN104112853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410316292.XA CN104112853B (zh) 2014-07-04 2014-07-04 一种锂离子电池层状正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410316292.XA CN104112853B (zh) 2014-07-04 2014-07-04 一种锂离子电池层状正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104112853A CN104112853A (zh) 2014-10-22
CN104112853B true CN104112853B (zh) 2016-08-24

Family

ID=51709563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410316292.XA Active CN104112853B (zh) 2014-07-04 2014-07-04 一种锂离子电池层状正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104112853B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058192B (zh) * 2016-07-20 2019-02-26 南京航空航天大学 一种包覆改性锂离子电池层状正极材料及其制备方法
CN106315678B (zh) * 2016-08-22 2017-10-24 河南师范大学 一种1t相单层二硫化钨纳米片的制备方法
CN108232188A (zh) * 2018-01-15 2018-06-29 桂林理工大学 一种高容量富锂层状正极材料及其制备方法
CN108832089A (zh) * 2018-06-08 2018-11-16 中南大学 一种二硫化钼包覆镍钴锰酸锂复合材料及其制备方法和应用
CN109065852A (zh) * 2018-07-04 2018-12-21 上海电气集团股份有限公司 一种正极材料及其制备方法
CN109326780B (zh) * 2018-09-18 2021-05-14 昆明理工大学 一种二硫化钨负极材料包覆硫复合材料制备方法
CN112289982B (zh) * 2019-07-22 2023-01-06 比亚迪股份有限公司 一种正极材料及其制备方法、一种固态锂电池
CN113363484B (zh) * 2021-05-20 2023-01-20 贵州梅岭电源有限公司 一种提升富锂正极材料库伦效率和循环稳定性的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505434A (ja) * 2004-04-27 2008-02-21 テル アビブ ユニバーシティ フューチャー テクノロジー ディベロップメント リミティド パートナーシップ インターレース型のマイクロコンテナ構造に基づく3−dマイクロ電池
CN102117909B (zh) * 2009-12-30 2013-07-24 比亚迪股份有限公司 一种正极材料及其制备方法
CN103094553A (zh) * 2013-01-12 2013-05-08 上海大学 一种锂离子电池正极材料表面改性的方法

Also Published As

Publication number Publication date
CN104112853A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
CN104112853B (zh) 一种锂离子电池层状正极材料及其制备方法
JP6143945B2 (ja) 亜鉛イオン二次電池及びその製造方法
CN104393277B (zh) 表面包覆金属氧化物的锂离子电池三元材料及其制备方法
CN108172891B (zh) 一种全固态锂电池及其制备方法
CN104681809B (zh) 富锂锰基正极材料的改性方法
CN106684323A (zh) 一种活性氧化物多重改善锂离子电池三元正极材料及其制备方法
CN108511786B (zh) 一种全固态锂电池及其制备方法
JP2014116308A (ja) 正極活物質、その製造方法およびそれを含むリチウム二次電池
CN104766959B (zh) 一种Li(Ni0.8Co0.1Mn0.1)O2三元材料的制备方法
CN104617267B (zh) 锂电池正极材料超薄TiO2包覆层、锂电池正极材料及其制备方法
JP2014535126A (ja) 凝縮ポリアニオン電極
JP2012169066A (ja) リチウムイオン二次電池用の正極活物質の製造方法
CN105489859A (zh) 表面改性的高电压镍锰酸锂材料及其制备方法
CN106006762A (zh) 花瓣层状镍钴锰三元材料前驱体的制备及作为锂离子电池正极材料的应用
CN107204426A (zh) 一种锆掺杂改性的氧化镍钴锰锂/钛酸锂复合正极材料
JP2023508021A (ja) 正極活物質、その製造方法、およびこれを含むリチウム二次電池
CN115064670B (zh) 一种掺杂包覆改性的镍锰酸钠正极材料的制备方法
CN105161715A (zh) 镍钴锰酸锂正极材料前驱体及其制备方法和镍钴锰酸锂正极材料及其制备方法
WO2016155504A1 (zh) 一种镍基可充电电池及其制造方法
CN105810933B (zh) 一种钼掺杂氧化锌包覆富锂锰基正极材料的制备方法
CN105914354A (zh) 室温钠离子电池用富钠型钛基层状固溶体电极材料及制备方法
CN111326706B (zh) 碳包覆五氧化二铌复合还原氧化石墨烯材料及制备和应用
CN104577090A (zh) 一种碳及氧化物复合改性钛酸锂材料的制备方法
CN109616658A (zh) 一种硒、硫酸根共掺杂高镍正极材料及其制备方法和应用
WO2013125798A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant