CN104091759B - 一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法 - Google Patents

一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法 Download PDF

Info

Publication number
CN104091759B
CN104091759B CN201410295141.0A CN201410295141A CN104091759B CN 104091759 B CN104091759 B CN 104091759B CN 201410295141 A CN201410295141 A CN 201410295141A CN 104091759 B CN104091759 B CN 104091759B
Authority
CN
China
Prior art keywords
gan
sapphire substrate
hemt
temperature
growing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410295141.0A
Other languages
English (en)
Other versions
CN104091759A (zh
Inventor
何苗
陈芳胜
郑树文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu intellectual property operation center Co.,Ltd.
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201410295141.0A priority Critical patent/CN104091759B/zh
Publication of CN104091759A publication Critical patent/CN104091759A/zh
Application granted granted Critical
Publication of CN104091759B publication Critical patent/CN104091759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法,在蓝宝石衬底上依次生长高温AlN层、中温高Ⅴ‑Ⅲ比GaN过渡层、高温GaN缓冲层、GaN沟道层、AlN插入层、AlGaN势垒层和GaN盖层。本发明方法实用蓝宝石作为衬底,降低成本,并采用金属有机物化学气相沉积在蓝宝石衬底上外延生长足够厚度的高温AlN层,阻止了蓝宝石衬底中氧的向上扩散,获得半绝缘GaN缓冲层;同时,利用了中温高Ⅴ‑Ⅲ比GaN过渡层,降低了高温GaN缓冲层的刃位错密度,减少了对二维电子气的散射,提高二维电子气迁移率,从而实现高电子迁移率晶体管的制备。本发明做为一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法可广泛应用于半导体技术领域。

Description

一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法
技术领域
本发明涉及半导体技术领域,尤其是一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法。
背景技术
HEMT作为微波器件的重要组成部分,广泛用于移动通信、卫星通信、雷达等设备中。GaN及其Ⅲ-Ⅴ族化合物半导体材料由于具有大的禁带宽度、高的电子饱和漂移速等优点,特别是在非掺杂的情况下,在AlGaN/GaN异质结界面就可以形成的具有高电子浓度和高电子迁移率的二维电子气,使其在大功率、高电压的HEMT器件中有巨大的潜在应用价值。由于二维电子气的迁移率和浓度与器件的功率密度密切相关,所以提高二维电子气的迁移率和浓度是GaN基HEMT的关键所在。
为了提高二维电子气的性能参数,很多新型结构、生长方法被提出,已经验证并商业化的就是AlGaN/AlN/GaN结构,利用薄的AlN插层减少合金散射和提高导带带阶,从而提高二维电子气的迁移率和浓度。在器件工艺方面的技术也不断发展,比如采用场板、不同钝化材料、T型栅等减小电流崩塌效应和提高器件功率密度和工作频率。
在衬底材料选择方面,目前由于GaN和AlN单晶材料制备存在较大困难,无法规模化应用,导致GaN基HEMT只能在其他异质材料衬底上制作。Si衬底上GaN制备技术已近比较成熟,并得到了商业化,但是距离器件应用还有很多问题需要解决。当前性能较好的GaN基HEMT均是在SiC衬底上制作而成,但是SiC价格昂贵,限制了其推广应用。因此,目前的微波功率放大器还是以Si基CMOS和GaAs基增强型器件为主。
发明内容
为了解决上述技术问题,本发明的目的是:提供一种低成本实现的蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法。
本发明所采用的技术方案是:一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法,包括以下步骤:
A、将蓝宝石衬底在氢气气氛中进行高温处理;
B、在蓝宝石衬底上利用三甲基铝和氨气在氢气气氛下生长厚度为1μm的高温AlN层;
C、在高温AlN层上利用三甲基镓和氨气生长厚度为500nm的中温高Ⅴ-Ⅲ比GaN过渡层;
D、在中温高Ⅴ-Ⅲ比GaN过渡层上生长半绝缘的高温GaN缓冲层;
E、在高温GaN缓冲层上生长高电子迁移率GaN沟道层;
F、在GaN沟道层上生长AlN插入层;
G、利用三甲基铝、三甲基镓和氨气生长AlGaN势垒层;
H、利用三甲基镓和氨气生长GaN盖层。
进一步,所述步骤A具体为:将蓝宝石衬底在氢气气氛中用1020℃高温处理15分钟。
进一步,所述步骤D中生成的高温GaN缓冲层厚度为2μm。
进一步,所述步骤E中生成的GaN沟道层厚度为100nm。
进一步,所述步骤F中生成的AlN插入层厚度为1nm。
进一步,所述步骤G中AlGaN势垒层中Al组分为25%。
进一步,所述步骤G中AlGaN势垒层的厚度为25 nm。
进一步,所述步骤G中AlGaN势垒层的生长过程中,保持温度和压力不变。
进一步,所述步骤H中GaN盖层的厚度为1 nm。
进一步,所述步骤H中GaN盖层的生长过程中,保持温度和压力不变。
本发明的有益效果是:本发明方法实用蓝宝石作为衬底,降低成本,并采用金属有机物化学气相沉积在蓝宝石衬底上外延生长足够厚度的高温AlN层,阻止了蓝宝石衬底中氧的向上扩散,获得半绝缘GaN缓冲层;同时,利用了中温高Ⅴ-Ⅲ比GaN过渡层,降低了高温GaN缓冲层的刃位错密度,减少了对二维电子气的散射,提高二维电子气迁移率,从而实现高电子迁移率晶体管的制备。
附图说明
图1为蓝宝石衬底上高电子迁移率晶体管的生长结构图;
图2为GaN缓冲层(002)晶面ω摇摆曲线测试结果;
图3为GaN缓冲层(102)晶面ω摇摆曲线测试结果;
图4为外延片方块电阻测试结果。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
参照图1,说明本发明的具体实施方式:
第一步:将蓝宝石衬底在氢气气氛中高温(1020℃)处理15分钟。
第二步:利用TMAl(三甲基铝)和纯度为99.99994%的氨气在氢气气氛下生长厚度约为1μm的AlN,生长温度为1150℃,反应室压力为50mbar,Ⅴ-Ⅲ比为125。
第三步:将温度降到980℃~1000℃之间,反应室压力为110mbar,Ⅴ-Ⅲ变为3600,利用TMGa(三甲基镓)和氨气生长厚度约为500nm的GaN过渡层。
第四步:保持反应室压力为110mbar,将温度升至1100℃左右,Ⅴ-Ⅲ变为1800,生长厚度约为2μm的半绝缘高温GaN缓冲层。
第五步:保持温度不变,反应室压力升至400mbar,Ⅴ-Ⅲ为12000,在半绝缘GaN缓冲层上生长高电子迁移率的沟道层,其厚度约为100nm。
第六步:将温度升至1150℃左右,压力降至100mbar,Ⅴ-Ⅲ调为6000,生长厚度为1nm的AlN。
第七步:保持温度、压力不变,利用TMAl、TMGa和氨气生长Al组分为25%的AlGaN势垒,其厚度约为25nm。
第八步:保持温度、压力不变,利用TMGa和氨气生长1nm的GaN盖层。
本发明方法通过在蓝宝石上直接生长AlN外延层,之后优化生长条件得到晶体质量较好的半绝缘GaN缓冲层,在此基础上生长HEMT结构是目前较为可行的方案。这种方法采用相对廉价的蓝宝石衬底,减小了成本压力,而且整个过程属于原位生长,生长所需条件不是很苛刻,容易满足。
本发明的具体测试结果参照图2-图4,外延片方块电阻是指一个正方形的薄膜导电材料边到边之间的电阻,用来衡量某块材料的导电能力的参数。方块电阻与二维电子气有如下关系:
其中Rs为方块电阻值,e为电子电荷量,ns为二维电子气浓度,μs为二维电子气迁移率。
其中外延片的电阻平均值、均匀性和二维电子气的具体参数见下表1。
表 1:
图2、图3中FWHM为XRD测试摇摆曲线的半高宽(Full Width at Half Maximum)。
(002)晶面的XRD摇摆曲线测试是一种表征晶体中螺位错密度的方法,通过曲线的半高宽大小来衡量。
(102)晶面的XRD摇摆曲线测试是一种表征晶体中螺位错密度、刃位错密度和混合位错密度的方法,通过曲线的半高宽大小来衡量。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可以作出种种的等同变换或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (9)

1.一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法,其特征在于:包括以下步骤:
A、将蓝宝石衬底在氢气气氛中用1020℃高温处理15分钟;
B、在蓝宝石衬底上利用三甲基铝和氨气在氢气气氛下生长厚度为1μm的高温AlN层;
C、在高温AlN层上利用三甲基镓和氨气生长厚度为500nm的中温高Ⅴ-Ⅲ比GaN过渡层;
D、在中温高Ⅴ-Ⅲ比GaN过渡层上生长半绝缘的高温GaN缓冲层;
E、在高温GaN缓冲层上生长高电子迁移率GaN沟道层;
F、在GaN沟道层上生长AlN插入层;
G、利用三甲基铝、三甲基镓和氨气生长AlGaN势垒层;
H、利用三甲基镓和氨气生长GaN盖层。
2.根据权利要求1所述的一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法,其特征在于:所述步骤D中生成的高温GaN缓冲层厚度为2μm。
3.根据权利要求1所述的一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法,其特征在于:所述步骤E中生成的GaN沟道层厚度为100nm。
4.根据权利要求1所述的一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法,其特征在于:所述步骤F中生成的AlN插入层厚度为1nm。
5.根据权利要求1所述的一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法,其特征在于:所述步骤G中AlGaN势垒层中Al组分为25%。
6.根据权利要求1所述的一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法,其特征在于:所述步骤G中AlGaN势垒层的厚度为25 nm。
7.根据权利要求1所述的一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法,其特征在于:所述步骤G中AlGaN势垒层的生长过程中,保持温度和压力不变。
8.根据权利要求1所述的一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法,其特征在于:所述步骤H中GaN盖层的厚度为1 nm。
9.根据权利要求1所述的一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法,其特征在于:所述步骤H中GaN盖层的生长过程中,保持温度和压力不变。
CN201410295141.0A 2014-06-25 2014-06-25 一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法 Active CN104091759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410295141.0A CN104091759B (zh) 2014-06-25 2014-06-25 一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410295141.0A CN104091759B (zh) 2014-06-25 2014-06-25 一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法

Publications (2)

Publication Number Publication Date
CN104091759A CN104091759A (zh) 2014-10-08
CN104091759B true CN104091759B (zh) 2017-07-25

Family

ID=51639465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410295141.0A Active CN104091759B (zh) 2014-06-25 2014-06-25 一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法

Country Status (1)

Country Link
CN (1) CN104091759B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611014A (zh) * 2017-09-01 2018-01-19 苏州云舒新材料科技有限公司 一种GaN热电薄膜材料的制备方法
CN107799632A (zh) * 2017-09-12 2018-03-13 合肥惠科金扬科技有限公司 一种提高led外延层结晶质量的方法
CN111129114A (zh) * 2019-12-26 2020-05-08 西安电子科技大学芜湖研究院 一种Si基GaN外延低位错薄膜及其制备方法
WO2023216167A1 (en) * 2022-05-12 2023-11-16 Innoscience (suzhou) Semiconductor Co., Ltd. Nitride-based semiconductor device and method for manufacturing the same
CN115799332B (zh) * 2023-02-13 2023-04-21 江西兆驰半导体有限公司 一种极性硅基高电子迁移率晶体管及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399284A (zh) * 2007-09-26 2009-04-01 中国科学院半导体研究所 氮化镓基高电子迁移率晶体管结构
CN101847578A (zh) * 2010-04-23 2010-09-29 西安电子科技大学 基于m面Al2O3衬底上半极性GaN的生长方法
CN103367417A (zh) * 2012-03-31 2013-10-23 稳懋半导体股份有限公司 三族氮化物高电子迁移率晶体管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399284A (zh) * 2007-09-26 2009-04-01 中国科学院半导体研究所 氮化镓基高电子迁移率晶体管结构
CN101847578A (zh) * 2010-04-23 2010-09-29 西安电子科技大学 基于m面Al2O3衬底上半极性GaN的生长方法
CN103367417A (zh) * 2012-03-31 2013-10-23 稳懋半导体股份有限公司 三族氮化物高电子迁移率晶体管

Also Published As

Publication number Publication date
CN104091759A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
CN100495724C (zh) 氮化镓基异质结场效应晶体管结构及制作方法
CN104091759B (zh) 一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法
CN101266999B (zh) 氮化镓基双异质结场效应晶体管结构及制作方法
CN100555660C (zh) 宽带隙氮化镓基异质结场效应晶体管结构及制作方法
US20130026489A1 (en) AlN BUFFER N-POLAR GaN HEMT PROFILE
CN103066103B (zh) 硅衬底上的iii族氮化物的衬底击穿电压改进方法
JP2007324247A (ja) 化合物半導体エピタキシャル基板およびその製造方法
CN104600109A (zh) 一种高耐压氮化物半导体外延结构及其生长方法
CN102931229B (zh) 一种AlGaN/GaN/InGaN双异质结材料及其生产方法
CN102427084B (zh) 氮化镓基高电子迁移率晶体管及制作方法
US9882042B2 (en) Group 13 nitride composite substrate semiconductor device, and method for manufacturing group 13 nitride composite substrate
JP2015527749A (ja) Inganチャネルのn極のganhemt特性
CN218039219U (zh) 一种高迁移率晶体管的外延结构
JP2015149391A (ja) 高耐圧窒化ガリウム系半導体デバイス及びその製造方法
CN105047695A (zh) 用于高电子迁移率晶体管的高阻衬底以及生长方法
US8994032B2 (en) III-N material grown on ErAIN buffer on Si substrate
CN105322009A (zh) 氮化镓基高电子迁移率晶体管外延结构及其制造方法
CN107887255B (zh) 一种高阻GaN薄膜外延生长的方法
CN104465720A (zh) 一种半导体外延结构及其生长方法
Ikejiri et al. Mass production-ready characteristics of AlGaN/AlN/GaN high-electron-mobility transistor structures grown on 200 mm diameter silicon substrates using metal-organic chemical vapor deposition
CN111863945A (zh) 一种高阻氮化镓及其异质结构的制备方法
KR101032010B1 (ko) 화합물 반도체 에피택셜 기판 및 그 제조 방법
CN208368514U (zh) 基于Si衬底的GaN基射频器件外延结构
Sun et al. A-plane GaN growth on (11-20) 4H-SiC substrate with an ultrathin interlayer
CN108155224A (zh) 氮化镓外延片、外延方法及氮化镓基晶体管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200601

Address after: 215500 No.13, Caotang Road, Changshu, Suzhou, Jiangsu Province

Patentee after: Changshu intellectual property operation center Co.,Ltd.

Address before: 510630 No. 55, Zhongshan Avenue, Tianhe District, Guangdong, Guangzhou

Patentee before: SOUTH CHINA NORMAL University

TR01 Transfer of patent right
CP02 Change in the address of a patent holder

Address after: 215500 5th floor, building 4, 68 Lianfeng Road, Changfu street, Changshu City, Suzhou City, Jiangsu Province

Patentee after: Changshu intellectual property operation center Co.,Ltd.

Address before: No.13 caodang Road, Changshu City, Suzhou City, Jiangsu Province

Patentee before: Changshu intellectual property operation center Co.,Ltd.

CP02 Change in the address of a patent holder