CN104089864A - 一种计算凸形多面体粒子堆积体系孔径分布的方法 - Google Patents

一种计算凸形多面体粒子堆积体系孔径分布的方法 Download PDF

Info

Publication number
CN104089864A
CN104089864A CN201410307872.2A CN201410307872A CN104089864A CN 104089864 A CN104089864 A CN 104089864A CN 201410307872 A CN201410307872 A CN 201410307872A CN 104089864 A CN104089864 A CN 104089864A
Authority
CN
China
Prior art keywords
convex polyhedron
particle
build
coordinate
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410307872.2A
Other languages
English (en)
Other versions
CN104089864B (zh
Inventor
刘琳
赵晓光
沈德建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201410307872.2A priority Critical patent/CN104089864B/zh
Publication of CN104089864A publication Critical patent/CN104089864A/zh
Application granted granted Critical
Publication of CN104089864B publication Critical patent/CN104089864B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种计算凸形多面体粒子堆积体系孔径分布的方法,对水泥浆体的内部结构进行合理的假设,形成三维空间凸形多面体粒子堆积体系,凸形多面体粒子堆积间隙即为内部孔隙结构。将体系进行单元划分,判断每个单元格的n个点与凸形多面体粒子的包含关系,从而得出该单元格的分类,单元格的种类有固相、孔相和混合相。对其中的混合相单元格进行更小的单元划分,最终得到全部孔径的大小。通过本发明计算得到模拟孔径分布准确,并且计算速度快。

Description

一种计算凸形多面体粒子堆积体系孔径分布的方法
技术领域
本发明涉及到一种计算凸形多面体粒子堆积体系孔径分布的方法。
背景技术
水泥浆体的孔隙结构是关系到土木工程材料的渗透性,强度和耐久性的关键因素。当材料受到外部荷载,冻融循环和各种盐类侵蚀时,材料的内部结构会发生严重变化。为了提高材料的各项性能,使材料在受到损伤时具有足够的抵抗能力,需要对材料的内部结构有一定深入的了解,孔径分布是材料结构的重要参数之一。
通过压汞法,氮气吸脱附法,微观扫描电镜和热孔计法等试验可以得到水泥浆体内部的孔径分布情况,但是这些试验结果往往受制于试验条件和试验手段,且试验过程中会对水泥浆体内部的孔隙结构有破坏作用。为把人力和资源从大量试验中解脱出来,从本质上把握材料的结构性能变化规律,用于模拟材料微细观结构的计算机模型研究成为当前的一个研究热点。水泥水化后,内部结构非常复杂,包含大量未水化的水泥颗粒,内部和外部的水化产物。这些固体之间相互交错连接,中间形成大量的孔隙。为了研究这些孔隙的大小,需要将固体或孔隙进行简化,即将水泥浆体简化为规则的三维立体体系,而这些固体简化为凸多面体粒子,杂乱无序的排列在三维体系中,而凸多面体粒子间隙即为所要研究的孔相,其大小即为孔径。基于凸多面体粒子的蒙特卡罗法堆积及相应的水化反应,得到混凝土的模拟微观及细观结构【van Breugel K.Simulation of hydration and formation of structure in hardening cement-basedmaterials.Ph.D thesis,Delft University of Technology,Delft,The Netherlands,1991.】【Xu W.X.,Chen H.S.,Lv Z.An overlapping detection algorithm for random sequential packing of ellipticalparticles.Physica A,390(2011)2452-67.】。对于孔径分布的模型分析,已提出的有丢球算法,通过向模拟结构中依次丢入由大到小的球体,判断球体是否能够放入来计算模拟结构的孔径分布【Ye G.Experimental study and numerical simulation of the development of the microstructureand permeability of cementitious materials,PhD thesis,Delft University of Technology,Delft,2003.】。丢球法仅适用于球形粒子堆积模拟的微观结构,且计算量大,计算时间较长,尤其是丢入较小粒径的球体时。本发明的计算方法不仅可以计算凸多面体粒子堆积的孔径分布,且适用于凸多面体粒子堆积的模拟微观结构,而且相对已提出的算法而言,计算时间大大缩短,提高了计算效率。
发明内容
发明目的:本发明所要解决的技术问题在于克服了原有孔径分布计算算法计算时间长,效率低,适用性窄等问题,而且大大提高了计算孔径的效率,能够合理的计算出水泥浆体的孔径分布情况。
技术方案:本发明提出一种计算凸形多面体粒子堆积体系孔径分布的方法,通过将混合相单元格不断地进行划分最后计算求得孔径,包括以下步骤:
步骤1、将水泥浆体假定为三维凸形多面体粒子堆积体系,其微观结构是由固相和毛细孔相组成的两相结构体系;
步骤2、在所述三维凸形多面体粒子堆积体系中确定每一个凸形多面体的顶点坐标和每一个面的空间方程;
步骤3、在整体坐标系中,将三维凸形多面体粒子堆积体系按照边长d1进行单元划分,并且确定出每一个单元格的n个合适点的坐标;d1=L/N,N取大于等于2的整数,L为所述三维凸形多面体粒子堆积体系的边长,且d1≤2μm,2μm为水泥净浆的最大孔径;
步骤4、利用单元格n个点的坐标、凸形多面体的顶点坐标和每个平面的空间方程,判断该单元格与凸形多面体粒子的关系,从而得出单元格的种类;
步骤5、将其中的混合相单元格按照边长d2进行划分,d2=d1/N’,N’取大于等于2的整数,不断将这个三维连续结构体系进行划分,最终可得出全部孔隙的直径。
作为优选,所述微观结构的固相为凸形多面体粒子,所述凸形多面体粒子包括正四面体粒子、正六面体粒子、正八面体粒子、正十二面体粒子和正二十面体粒子。
作为优选,将所包含的固相和毛细孔相的三维体系全部划分。
作为优选,所述n个合适点的坐标包括8个顶点坐标和1个中心点坐标,利用每个单元格9个点的坐标、凸形多面体粒子的顶点坐标和每个平面的空间方程,判断单元格与凸形多面体粒子的关系。
作为优选,所述单元格的种类包含:固相、孔相和混合相。
作为优选,仅将其中的混合相单元格不断进行划分,最终得到全部孔径的大小。
作为优选,取N’=2,即d2=d1/2。
使用时,具体操作如下:
步骤1、将水泥浆体假定为三维凸形多面体粒子堆积体系,其微观结构是由固相(包括未水化水泥颗粒和水化产物)和毛细孔相组成的两相结构体系,是由正四面体粒子、正六面体粒子、正八面体粒子、正十二面体粒子、正二十面体粒子组成的堆积体系;
步骤2、在三维凸形多面体粒子堆积体系中选择全局坐标系为参照坐标系,并且根据所设定的坐标系,计算出每个凸形多面体粒子的顶点坐标和每个平面的空间方程,如S1的平面方程如下:
A(x-x1)+B(y-y1)+C(z-z1)=0
其中,x1,y1,z1为S1上的P1顶点坐标。
步骤3、将三维体系按照边长d1进行单元划分,并且确定出每一个单元格八个顶点和一个中心的坐标。d1=L/N,N取大于等于2的整数,L为所述三维凸形多面体粒子堆积体系的边长,且d1≤2μm,2μm为水泥净浆的最大孔径。
步骤4、对于平面S1,利用单元格的九个点的坐标和不在S1上的其他凸形多面体粒子的顶点坐标,判断该单元格与凸形多面体粒子的关系。判别过程如下:
将点V和不在S1上的其他凸形多面体粒子的顶点P4,P5,…,Pk的坐标分别带入S1的平面方程,观察所得到的结果是否同号。
若同号,则说明V点与不在S1上的其他凸形多面体粒子的顶点均在平面S1的同一侧。对于凸形多面体粒子的任意一平面,若V点与不在该平面上的其他凸形多面体粒子的顶点均在该平面的同侧,则说明V点在该凸形多面体粒子内部。
对于正四面体凸形粒子,需判定V点与其四个表面的关系,同理,对于正六面体凸形粒子,需判定V点与其六个表面的关系;对于正八面体凸形粒子,需判定V点与其八个表面的关系;对于正十二面体凸形粒子,需判定V点与其十二个表面的关系;对于正二十面体凸形粒子,需判定V点与其二十个表面的关系;
若单元格的九个顶点全部符合上述条件,则说明该单元格在凸形多面体粒子的内部,称这种单元格为固相单元格;
若单元格的九个顶点只有部分顶点满足上述条件,其他顶点不满足条件,则说明该单元格只有部分空间在凸形多面体粒子内部,称这种单元格为混合相单元格,混合相单元格是研究孔径分布的关键;
若单元格的全部顶点均不满足上述方程,则说明该单元格在该凸形多面体粒子外部。若该单元格在三维体系内所有凸形多面体粒子外部,则称这种单元格为孔相单元格。
步骤5、选取其中所有的混合相单元格,将混合相单元格按照边长d2进行划分,一般取d2=0.5d1,不断重复步骤4将这个三维连续结构体系进行划分,最终可得出孔隙的半径。
附图说明
图1为正四面体、正六面体、正八面体、正十二面体和正二十面体的堆积体系结构;
图2为在设定坐标系下,凸形多面体粒子(正四面体)的堆积体系结构;
图3为正四面体粒子的几何形状与表示方法;
图4为将三维体系进行单元格的划分;
图5为固相单元格;
图6为混合相单元格;
图7为孔相单元格;
图8为混合相单元格的划分。
具体实施方式
实施例:本发明的计算凸形多面体粒子堆积体系孔径分布的方法,具体包括以下步骤:
步骤1、水泥水化后,内部结构非常复杂,包含大量未水化的水泥颗粒,内部和外部的水化产物(参见文献[刘琳.静荷载和冰冻荷载耦合作用下水泥基材料的劣化研究[D].东南大学,南京:东南大学,2012])。这些固体之间相互交错连接,中间形成大量的孔隙。为了研究这些孔隙的大小,需要将固体和孔隙进行简化,即将水泥浆体简化为规则的三维立体体系,而这些固体简化为凸形多面体粒子,杂乱无序的排列在三维体系中,而凸形多面体粒子间隙即为所要研究的孔相,其大小即为孔径。将水泥浆体假定为三维凸形多面体粒子堆积体系后,其微观结构是由固相(包括未水化水泥颗粒和水化产物)和毛细孔相组成的两相结构体系,包括由如图1所示的正四面体粒子、正六面体粒子、正八面体粒子、正十二面体粒子、正二十面体粒子组成的堆积体系;
步骤2、如图2和图3所示,计算正四面体粒子随机堆积体系的孔径分布。在全局坐标下计算出每个正四面体粒子的顶点坐标和每个平面的空间方程,假定平面S1的三个凸多面体顶点的坐标为P1(x1,y1,z1),P2(x2,y2,z2),P3(x3,y3,z3),则S1的平面方程如下:
A(x-x1)+B(y-y1)+C(z-z1)=0
其中A=n1q2-n2q1,B=q1m2-q2m1,C=m1n2-m2n1
m1=x2-x1,n1=y2-y1,q1=z2-z1,m2=x3-x1,n2=y3-y1,q2=z3-z1
步骤3、将三维体系划分成边长为d1的若干个小单元格,并且确定出每一个单元格八个顶点和一个中心的坐标,如图4所示。
步骤4、对于平面S1,利用单元格的九个点的坐标和不在S1上的其他正四面体粒子的顶点坐标,判断该单元格与该正四面体粒子的关系。判别过程如下:
对于点V(xv,yv,zv)和不在S1上的正四面体粒子的顶点P4,将其坐标带入S1的平面方程,得下式:
nv=A(xv-x1)+B(yv-y1)+C(zv-z1)
n4=A(x4-x1)+B(y4-y1)+C(z4-z1)
如果满足:nvn430则说明P点与不在S1上的其他正四面体粒子的顶点均在平面S1的同一侧。对于正四面体粒子的任意一平面,若V点与不在该平面上的其他正四面体粒子的顶点均在该平面的同侧,则说明V点在该正四面体粒子内部。
对于正四面体凸形粒子,需判定V点与其四个表面的关系,同理,对于正六面体凸形粒子,需判定V点与其六个表面的关系;对于正八面体凸形粒子,需判定V点与其八个表面的关系;对于正十二面体凸形粒子,需判定V点与其十二个表面的关系;对于正二十面体凸形粒子,需判定V点与其二十个表面的关系;
若单元格的九个顶点全部符合上述条件,则说明该单元格在凸形多面体粒子的内部,称这种单元格为固相单元格,如图5所示;
若单元格的九个顶点只有部分顶点满足上述条件且至少有一个顶点符合乘积大于0,其他顶点不满足条件,则说明该单元格只有部分空间在凸形多面体粒子内部,称这种单元格为混合相单元格,混合相单元格是研究孔径分布的关键,如图6所示;
若单元格的全部顶点均不满足上述方程,则说明该单元格在该凸形多面体粒子外部。若该单元格在所有凸形多面体粒子外部,则称这种单元格为孔相单元格,如图7所示。
步骤5、将混合相单元格单独研究,在已设定坐标系下,混合相内的固相空间方程不变,将混合相单元格划分为若干个边长为d2的单元格,一般取d2=0.5d1,确定每个小单元格的八个顶点坐标和一个中心坐标,参照上述标准(步骤2至步骤5),判断每个小单元格的类别,继续将其中的混合相单元格进行划分,直至孔径小于4nm,如图8所示。
以上结合附图对本发明的实施方式做出详细说明,但本发明不局限于所描述的实施方式。对本领域的普通技术人员而言,在本发明的原理和技术思想的范围内,对这些实施方式进行实施方式进行多种变化、修改、替换和变型仍落入本发明的保护范围内。

Claims (7)

1.一种计算凸形多面体粒子堆积体系孔径分布的方法,通过将混合相单元格不断地进行划分最后计算求得孔径,其特征在于包括以下步骤:
步骤1、将水泥浆体假定为三维凸形多面体粒子堆积体系,其微观结构是由固相和毛细孔相组成的两相结构体系;
步骤2、在所述三维凸形多面体粒子堆积体系中确定每一个凸形多面体的顶点坐标和每一个面的空间方程;
步骤3、在整体坐标系中,将三维凸形多面体粒子堆积体系按照边长d1进行单元划分,并且确定出每一个单元格的n个合适点的坐标;d1=L/N,N取大于等于2的整数,L为所述三维凸形多面体粒子堆积体系的边长,且d1≤2μm,2μm为水泥净浆的最大孔径;
步骤4、利用单元格n个点的坐标、凸形多面体的顶点坐标和每个平面的空间方程,判断该单元格与凸形多面体粒子的关系,从而得出单元格的种类;
步骤5、将其中的混合相单元格按照边长d2进行划分,d2=d1/N’,N’取大于等于2的整数,不断将这个三维连续结构体系进行划分,最终可得出全部孔隙的直径。
2.根据权利要求1所述的计算凸形多面体粒子堆积体系孔径分布的方法,其特征在于:所述微观结构的固相为凸形多面体粒子,所述凸形多面体粒子包括正四面体粒子、正六面体粒子、正八面体粒子、正十二面体粒子和正二十面体粒子。
3.根据权利要求1所述的计算凸形多面体粒子堆积体系孔径分布的方法,其特征在于:将所包含的固相和毛细孔相的三维体系全部划分。
4.根据权利要求1所述的计算凸形多面体粒子堆积体系孔径分布的方法,其特征在于:所述n个合适点的坐标包括8个顶点坐标和1个中心点坐标,利用每个单元格9个点的坐标、凸形多面体粒子的顶点坐标和每个平面的空间方程,判断单元格与凸形多面体粒子的关系。
5.根据权利要求1所述的计算椭球粒子堆积体系孔径分布的方法,其特征在于:所述单元格的种类包含:固相、孔相和混合相。
6.根据权利要求1所述的计算凸形多面体粒子堆积体系孔径分布的方法,其特征在于:仅将其中的混合相单元格不断进行划分,最终得到全部孔径的大小。
7.根据权利要求1所述的计算凸形多面体粒子堆积体系孔径分布的方法,其特征在于:取N’=2,即d2=d1/2。
CN201410307872.2A 2014-06-30 2014-06-30 一种计算凸形多面体粒子堆积体系孔径分布的方法 Expired - Fee Related CN104089864B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410307872.2A CN104089864B (zh) 2014-06-30 2014-06-30 一种计算凸形多面体粒子堆积体系孔径分布的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410307872.2A CN104089864B (zh) 2014-06-30 2014-06-30 一种计算凸形多面体粒子堆积体系孔径分布的方法

Publications (2)

Publication Number Publication Date
CN104089864A true CN104089864A (zh) 2014-10-08
CN104089864B CN104089864B (zh) 2016-04-06

Family

ID=51637600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410307872.2A Expired - Fee Related CN104089864B (zh) 2014-06-30 2014-06-30 一种计算凸形多面体粒子堆积体系孔径分布的方法

Country Status (1)

Country Link
CN (1) CN104089864B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732096A (zh) * 2015-03-31 2015-06-24 河海大学 非均质各向异性硬化粒子周围界面体积分数的计算方法
CN110806371A (zh) * 2019-11-20 2020-02-18 成都理工大学 单重煤岩孔隙结构模型的构建方法
CN113405966A (zh) * 2021-06-08 2021-09-17 浙江广天构件集团股份有限公司 一种水泥基材料颗粒堆积体系孔径分布计算方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190576A (ja) * 1995-01-09 1996-07-23 Hitachi Ltd 粒子充填構造シミュレーション方式
WO2002069206A2 (en) * 2001-02-28 2002-09-06 The University Of Leeds Object interaction simulation
CN101706830A (zh) * 2009-11-12 2010-05-12 中国人民解放军国防科学技术大学 对刚性材质物体表面网格模型进行钻孔后模型重建的方法
CN102157015A (zh) * 2011-04-24 2011-08-17 大连理工大学 纤维增强复合材料三维随机孔隙模型的建立方法
CN102270236A (zh) * 2011-08-04 2011-12-07 中国科学院计算技术研究所 一种基于栅格化gis 空间关系判断方法及其系统
CN102521485A (zh) * 2011-11-25 2012-06-27 中冶集团武汉勘察研究院有限公司 一种利用dda对粗粒土工程性质的数值仿真算法
CN102542587A (zh) * 2012-01-17 2012-07-04 大连理工大学 一种孔隙尺寸离散度大的纤维增强复合材料二维随机孔隙模型建立方法
CN103377307A (zh) * 2012-04-16 2013-10-30 利弗莫尔软件技术公司 用于形成包含堆积在任意形状的体积中的多分散球形颗粒的计算机化模型的方法和系统
CN103514370A (zh) * 2013-09-18 2014-01-15 天津大学 一种树脂混凝土骨料级配的优化构建算法
JP2014070992A (ja) * 2012-09-28 2014-04-21 Toyota Motor Corp 粒子モデル作成方法および粒子モデル作成装置
JP5515955B2 (ja) * 2010-03-30 2014-06-11 トヨタ自動車株式会社 粒子充填構造シミュレーション方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190576A (ja) * 1995-01-09 1996-07-23 Hitachi Ltd 粒子充填構造シミュレーション方式
WO2002069206A2 (en) * 2001-02-28 2002-09-06 The University Of Leeds Object interaction simulation
CN101706830A (zh) * 2009-11-12 2010-05-12 中国人民解放军国防科学技术大学 对刚性材质物体表面网格模型进行钻孔后模型重建的方法
JP5515955B2 (ja) * 2010-03-30 2014-06-11 トヨタ自動車株式会社 粒子充填構造シミュレーション方法
CN102157015A (zh) * 2011-04-24 2011-08-17 大连理工大学 纤维增强复合材料三维随机孔隙模型的建立方法
CN102270236A (zh) * 2011-08-04 2011-12-07 中国科学院计算技术研究所 一种基于栅格化gis 空间关系判断方法及其系统
CN102521485A (zh) * 2011-11-25 2012-06-27 中冶集团武汉勘察研究院有限公司 一种利用dda对粗粒土工程性质的数值仿真算法
CN102542587A (zh) * 2012-01-17 2012-07-04 大连理工大学 一种孔隙尺寸离散度大的纤维增强复合材料二维随机孔隙模型建立方法
CN103377307A (zh) * 2012-04-16 2013-10-30 利弗莫尔软件技术公司 用于形成包含堆积在任意形状的体积中的多分散球形颗粒的计算机化模型的方法和系统
JP2014070992A (ja) * 2012-09-28 2014-04-21 Toyota Motor Corp 粒子モデル作成方法および粒子モデル作成装置
CN103514370A (zh) * 2013-09-18 2014-01-15 天津大学 一种树脂混凝土骨料级配的优化构建算法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
W.X.XU ET.AL: "An overlapping detection algorithm for random sequential packing of elliptical particles", 《PHYSICA A》, vol. 390, no. 10, 31 December 2011 (2011-12-31), pages 2452 - 2467, XP028480840, DOI: doi:10.1016/j.physa.2011.02.048 *
周水生等: "计算两个凸多面体间距离的一个新算法", 《苏州科技学院学报(自然科学版)》, vol. 20, no. 2, 30 June 2003 (2003-06-30), pages 11 - 16 *
李运成等: "混凝土随机凸多面体骨料模型生成及细观有限元剖分", 《水利学报》, vol. 37, no. 5, 31 May 2006 (2006-05-31), pages 588 - 592 *
顾馨允: "PFC3D模拟颗粒堆积体的空隙特性初步研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》, no. 3, 31 December 2010 (2010-12-31), pages 038 - 77 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732096A (zh) * 2015-03-31 2015-06-24 河海大学 非均质各向异性硬化粒子周围界面体积分数的计算方法
CN110806371A (zh) * 2019-11-20 2020-02-18 成都理工大学 单重煤岩孔隙结构模型的构建方法
CN110806371B (zh) * 2019-11-20 2021-04-20 成都理工大学 单重煤岩孔隙结构模型的构建方法
CN113405966A (zh) * 2021-06-08 2021-09-17 浙江广天构件集团股份有限公司 一种水泥基材料颗粒堆积体系孔径分布计算方法
CN113405966B (zh) * 2021-06-08 2022-08-23 浙江广天构件集团股份有限公司 一种水泥基材料颗粒堆积体系孔径分布计算方法

Also Published As

Publication number Publication date
CN104089864B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
Sun et al. On the fragmentation of active material secondary particles in lithium ion battery cathodes induced by charge cycling
CN104089864B (zh) 一种计算凸形多面体粒子堆积体系孔径分布的方法
CN102521485A (zh) 一种利用dda对粗粒土工程性质的数值仿真算法
Asahina et al. Voronoi-based discretizations for fracture analysis of particulate materials
CN104091059B (zh) 一种确定椭球粒子堆积体系孔径分布的方法
Saar et al. Continuum percolation for randomly oriented soft-core prisms
Gao et al. Self-assembly of semiflexible block copolymers: 2D numerical implementation of self-consistent field theory
CN109241646B (zh) 基于椭圆堆叠和随机场的多因素二维土石混合体生成方法
CN113405965B (zh) 一种水泥基材料颗粒堆积体系孔隙连通性分析方法
CN103425864A (zh) 应用于金属复杂非均匀媒质混合目标的电磁散射分析方法
CN117195382B (zh) 一种混凝土细观模型的构建方法
CN106517941A (zh) 空胞体结构以及其用于制备防爆多孔混凝土的方法
CN103234875A (zh) 集料三维形态离散元生成方法
Bergsma et al. Interactions between nodes in a physical gel network of telechelic polymers; self-consistent field calculations beyond the cell model
Zhao et al. Percolation laws of a fractal fracture-pore double medium
CN113392570B (zh) 一种水泥基材料颗粒堆积体系孔隙结构均质度的评估方法
CN105019901B (zh) 一种热膨胀裂石剂等比例结构大面积裂石方法
CN107200494B (zh) 一种煤灰、矿渣分选处理方法以及超细掺合料
Song et al. Study on improvement of durability for reinforced concrete by surface-painting migrating corrosion inhibitor and engineering application
CN104700454B (zh) 一种混凝土非均质各向异性集料周围界面过渡区几何拓扑结构的构造方法
CN113962066B (zh) 一种含六相组分的钢筋混凝土三维细观模型
Korobov Scaling properties of the area distribution functions and kinetic curves of dense plane discrete Poisson-Voronoi tessellations
Xie et al. A 2D Irregular Shape Model of Random Packing for Cement Particles
CN113420478B (zh) 基于细观结构特性的高聚物碎石料力学性能分析方法
CN113405966B (zh) 一种水泥基材料颗粒堆积体系孔径分布计算方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160406

Termination date: 20200630

CF01 Termination of patent right due to non-payment of annual fee