CN104085876A - 一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法 - Google Patents

一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法 Download PDF

Info

Publication number
CN104085876A
CN104085876A CN201410303236.2A CN201410303236A CN104085876A CN 104085876 A CN104085876 A CN 104085876A CN 201410303236 A CN201410303236 A CN 201410303236A CN 104085876 A CN104085876 A CN 104085876A
Authority
CN
China
Prior art keywords
carbon nanotube
preparation
nano particle
hollow nano
oxide hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410303236.2A
Other languages
English (en)
Other versions
CN104085876B (zh
Inventor
陈国柱
马冬玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201410303236.2A priority Critical patent/CN104085876B/zh
Publication of CN104085876A publication Critical patent/CN104085876A/zh
Application granted granted Critical
Publication of CN104085876B publication Critical patent/CN104085876B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法。将两种金属盐溶液与碳纳米管混和,干燥,继而在氢气氛围下直接还原,得到碳纳米管负载的双金属纳米颗粒;将氢气转换为空气,进行氧化,控制升温速率、终止温度、保温时间,可获得碳纳米管负载的双金属氧化物空心纳米颗粒。采用该方法制备的双金属氧化物空心纳米颗粒结晶性高,金属组分的比例以及碳纳米管负载量可以通过金属盐前驱体比例、浓度调控。本发明方法简单易行、可控性高、污染小、成本低且具有一定的普适性。所制备的产品具有碳-金属氧化物复合结构,且双金属氧化物之间的协同作用以及空心的几何结构优势,有望在超电容器、催化等方面展现优异性能。

Description

一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法
技术领域
本发明属于功能材料技术领域,具体地说,本发明涉及一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法。
背景技术
纳米或微米尺度的空心金属氧化物具有低密度、高比表面、中空结构等特点,因而被广泛用于与表面性质相关的领域,例如作为气相催化剂、药物缓释剂、气敏材料、光催化材料等,此外,其在超电容器、锂离子电池等方面同样具有潜在的应用价值。
目前,制备空心结构金属氧化物方法很多,除了采用模板法外,也可利用奥氏熟化(Ostwald Ripening)、柯肯达尔扩散(Kirkendall Diffusion)等现象实现空心结构纳米材料的合成。其中,柯肯达尔扩散是利用两种扩散速率不同的物种在扩散过程中形成空位,继而空位聚集形成空心结构。文献Science, 304(2004):711-714首先报道利用柯肯达尔扩散控制合成空心纳米颗粒,如空心Co3O4;文献Small, 3(2007):1660-1671详细介绍了柯肯达尔扩散制备空心纳米颗粒的生成机制。尽管利用柯肯达尔扩散制备金属氧化物空心结构材料取得较大进展,但目标产物主要集中于单金属氧化物。双金属氧化物由于组分间可能存在的协同效应,在许多催化反应中展现出优越的性能,然而其空心结构的合成方法仍处于探索阶段。文献J. Phys. Chem. C 113 (2009): 2792-2797利用碳微球作为硬模板,通过碳微球表面羟基吸附不同金属盐离子,然后升温至合适温度进行煅烧,使不同金属盐分解形成氧化物,同时去除碳模板得到双金属氧化物空心结构。虽然此法具有一定的通用性,但是空心结构的尺寸较大,而且碳微球之间“游离”的金属盐在煅烧后得到实心颗粒,影响了空心结构的纯度;我们在Advanced Functional Materials 18 (2012): 3914-3920中报道了界面氧化还原方法制备CeMnOx、CeFeOx、CoMnOx等双金属氧化物空心纳米管,此法虽然条件温和,但难以推广制备更多的双金属氧化物空心结构材料。
发明内容
针对现有技术制备双金属氧化物空心纳米颗粒存在的不足,本发明的目的在于提供一种简单可行、重复性好、且具有一定的普适性的双金属氧化物空心纳米颗粒的制备方法,可以推广制备其它可能的双金属氧化物空心结构材料 。
本发明是通过以下技术方案实现的:
一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法包括如下步骤:
A、首先进行碳纳米管表面预处理,将碳纳米管分散于浓硝酸,在140℃条件下回流1~2h;
B、以金属硝酸盐为原料,分别称取不同的金属硝酸盐,调控不同金属盐的物质的量比例,溶解于无水乙醇;称取不同质量的预处理的碳纳米管,以调控碳纳米管的负载量,分散于上述乙醇溶液,超声、分散、搅拌,直至乙醇溶剂完全挥发; 
C、将步骤B得到的干燥固体在氮气氛围下预热处理;然后升温,切换至纯氢气还原;
D、对步骤C得到的粉末材料在空气氛围下进行氧化,即可得到具有碳纳米管负载的不同双金属氧化物空心纳米颗粒。
上述步骤B中所述的金属硝酸盐为Fe、Co、Ni的硝酸盐。
上述步骤B中预热处理温度为120℃,保温时间为2 h。
上述步骤B中碳纳米管金属氧化物的总负载量可以达到10 mol%而不影响纳米颗粒的空心结构以及颗粒在碳纳米管的分散性。
上述步骤C中氢气还原温度为650℃,升温速率为5℃/min,保温2 h。
上述步骤D中氧化温度125~400℃,升温速率为3℃/min,保温0.5h~5 h。
在本发明所述的碳纳米管负载的双金属氧化物空心纳米颗粒的制备方法中,还可在步骤A和步骤B之间对所述的碳纳米管悬浮液进行超声处理,超声处理时间优选为15-30min。
本发明的另一个目的是提供一种双金属氧化物空心纳米颗粒的方法,所述双金属为Co-Ni、Fe-Ni、Fe-Co,碳纳米管负载的双金属氧化物空心纳米颗粒优选为FeCoOx、FeNiOx、NiCoOx
本发明所述的制备方法,将碳纳米管与金属盐醇溶液混合、干燥、还原,实质是浸渍法过程。制备过程不需要任何其它有机溶剂和表面活性剂,简单环保。酸化后的碳纳米管表面引入了羧基和羟基,有利于金属离子的吸附。
本发明所述的制备方法,其关键在于选择金属盐种类、控制还原温度、升温速度以及升温速率等条件,保证不同金属离子完全还原而且在氧化过程中金属全部氧化。
本发明所述的制备方法,在对还原得到的双金属颗粒进行氧化过程中,首先在颗粒表面形成双金属氧化物壳层。内部金属的进一步氧化依赖于内部金属原子与外部氧原子通过金属氧化物壳层的相互扩散实现。由于外部氧原子通过金属氧化物壳层向内扩散速率不如金属原子向外扩散速率快,导致内部大量空位的产生并最终形成空洞,得到空心结构。
本发明的有益效果是:本发明无需经过复杂的制备及表面修饰过程,工艺简单,而且通过调变金属盐种类,可以实现不同组分的双金属氧化物空心纳米颗粒的控制合成。此双金属空心纳米颗粒具有中空的内部结构,提高了材料的比表面积;所得双金属氧化物纳米颗粒在400℃仍然保持空心结构,表现出良好的热稳定性;此外,双金属氧化物组分在催化反应中,如Co,Ni氧化物在超电容器中表现出的协同效应,使其成为极具有应用前景的一类催化剂。
附图说明
图1为本发明实施例1-3所得产品示意图(标尺为200 nm);
图2为本发明图1中单个CoNiOx空心纳米颗粒的元素分布图;
图3为本发明实施例1FeNi双金属颗粒在400度不同时间的氧化时产物形貌图(标尺为200 nm);
图4为本发明实施例5碳纳米管负载 10 mol% 的FeNiOx空心纳米颗粒示意图(标尺为200 nm);
图5为本发明实施例6所得CoNi双金属纳米颗粒在不同温度下氧化所得产品的粉末衍射图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明,以便本领域技术人员可以更好的了解本发明,但并不因此限制本发明。
实施例1
碳纳米管负载FeNiOx空心纳米颗粒的制备方法
A、              将5g 碳纳米管分散于50ml 浓硝酸,在140℃条件下回流2h进行碳纳米管的表面预处理;
B、 分别称取2mmol Fe(NO3)3、2mmol Ni(NO3)2溶解于无水乙醇;将步骤A得到的表面预处理过的碳纳米管20 mmol分散于乙醇溶液,超声、分散、搅拌,直至溶剂完全挥发得干燥固体; 
C、 将步骤B得到的干燥固体在氮气氛围下预热处理,预热处理温度为120℃,保温时间为2 h;然后升温,升温速率为5℃/min,切换至纯氢气还原,还原温度为650℃,保温2 h; 
D、              对步骤C得到的材料在空气氛围下进行氧化,氧化温度400℃,升温速率为3℃/min,保温2 h,即可得到碳纳米管负载的FeNiOx双金属氧化物空心纳米颗粒。
实施例2
碳纳米管负载FeCoOx空心纳米颗粒的制备方法
A、              将5g 碳纳米管分散于50ml浓硝酸,在140℃条件下回流2h进行碳纳米管的预表面处理;
B、 分别称取2mmol Fe(NO3)3、2mmol Co(NO3)2溶解于无水乙醇;将步骤A得到的表面预处理过的碳纳米管20 mmol分散于乙醇溶液,超声、分散、搅拌,直至溶剂完全挥发得干燥固体; 
C、 将步骤B得到的干燥固体在氮气氛围下预热处理,预热处理温度为120℃,保温时间为2 h;然后升温,升温速率为5℃/min,切换至纯氢气还原,还原温度为650℃,保温2 h; 
D、              对步骤C得到的材料在空气氛围下进行氧化,氧化温度400℃,升温速率为3℃/min,保温2 h,即可得到碳纳米管负载的FeCoOx双金属氧化物空心纳米颗粒。
实施例3
碳纳米管负载NiCoOx空心纳米颗粒的制备方法
A、              将5g 碳纳米管分散于50ml浓硝酸,在140℃条件下回流2h进行碳纳米管的预表面处理;
B、 分别称取1.33mmol Ni(NO3)2、2.66mmol Co(NO3)2溶解于无水乙醇;将步骤A得到的表面预处理过的碳纳米管20 mmol分散于乙醇溶液,超声、分散、搅拌,直至溶剂完全挥发得干燥固体; 
C、 将步骤B得到的干燥固体在氮气氛围下预热处理,预热处理温度为120℃,保温时间为2 h;然后升温,升温速率为5℃/min,切换至纯氢气还原,还原温度为650℃,保温2 h; 
D、              对步骤C得到的材料在空气氛围下进行氧化,氧化温度400℃,升温速率为3℃/min,保温2 h,即可得到碳纳米管负载的NiCoOx双金属氧化物空心纳米颗粒。
实施例4
碳纳米管负载FeNiOx空心纳米颗粒的制备方法:氧化时间对最终产物形貌影响
A、              将5g 碳纳米管分散于50ml浓硝酸,在140℃条件下回流2h进行碳纳米管的预表面处理;
B、 分别称取2mmol Fe(NO3)3、2mmol Ni(NO3)2溶解于无水乙醇;将步骤A得到的表面预处理过的碳纳米管20 mmol分散于乙醇溶液,超声、分散、搅拌,直至溶剂完全挥发得干燥固体; 
C、 将步骤B得到的干燥固体在氮气氛围下预热处理,预热处理温度为120℃,保温时间为2 h;然后升温,升温速率为5℃/min,切换至纯氢气还原,还原温度为650℃,保温2 h; 
D、              对步骤C得到的材料在空气氛围下进行氧化,氧化温度400℃,升温速率为3℃/min,保温0.5 h, 1h、1.5 h。
实施例5
碳纳米管负载FeNiOx空心纳米颗粒的制备方法:负载量对纳米颗粒形貌影响
A、              将5g 碳纳米管分散于50ml浓硝酸,在140℃条件下回流2h进行碳纳米管的预表面处理;
B、 分别称取10 mmol Ni(NO3)2、10 mmol Co(NO3)2溶解于无水乙醇;将步骤A得到的表面预处理过的碳纳米管20 mmol分散于乙醇溶液,超声、分散、搅拌,直至溶剂完全挥发得干燥固体; 
C、 将步骤B得到的干燥固体在氮气氛围下预热处理,预热处理温度为120℃,保温时间为2 h;然后升温,升温速率为5℃/min,切换至纯氢气还原,还原温度为650℃,保温2 h; 
D、              对步骤C得到的材料在空气氛围下进行氧化,氧化温度400℃,升温速率为3℃/min,保温2 h,即可得到碳纳米管不同负载量的FeNiOx空心纳米颗粒。
实施例6
碳纳米管负载NiCoOx空心纳米颗粒的制备方法:氧化温度对最终产物的物相影响
A、              将5g 碳纳米管分散于50ml浓硝酸,在140℃条件下回流2h进行碳纳米管的预表面处理;
B、 分别称取3.33mmol Ni(NO3)2、6.67mmol Co(NO3)2溶解于无水乙醇;将步骤A得到的表面预处理过的碳纳米管20 mmol分散于乙醇溶液,超声、分散、搅拌,直至溶剂完全挥发得干燥固体; 
C、 将步骤B得到的干燥固体在氮气氛围下预热处理,预热处理温度为120℃,保温时间为2 h;然后升温,升温速率为5℃/min,切换至纯氢气还原,还原温度为650℃,保温2 h; 
D、              对步骤C得到的材料在空气氛围下进行氧化,氧化温度分别为125、250、375℃,升温速率为3℃/min,保温2 h。
由上述实施例1-6并结合附图可以得出:由图1和图4中不同负载量所得FeNiOx空心纳米颗粒可知,不同的负载量对最终产品的影响是:随着负载量提高,纳米管上的空心结构颗粒数目增多。
又如,如图3可知,不同的氧化时间对产品最终的影响是:随着氧化时间的延长,空心趋势越来越明显。
由图5可知随着氧化温度的提高,在375oC下双金属几乎完全转化为双金属氧化物。

Claims (8)

1.一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法,包括如下步骤:
A、碳纳米管表面预处理,将碳纳米管分散于浓硝酸,在140℃条件下回流1-2h;
B、以金属硝酸盐为原料,分别称取不同的金属硝酸盐溶解于无水乙醇;将步骤A得到的表面预处理过的碳纳米管分散于乙醇溶液,超声、分散、搅拌,直至溶剂完全挥发得到干燥固体; 
C、将步骤B得到的干燥固体在氮气氛围下预热处理;然后升温,切换至纯氢气还原,得到碳纳米管负载双金属纳米颗粒;自然冷却至室温;
D、对步骤C得到的材料在空气氛围下进行氧化,即可得到碳纳米管负载的不同双金属氧化物的空心纳米颗粒。
2.根据权利要求1所述的碳纳米管负载双金属氧化物空心纳米颗粒的制备方法,其特征在于:步骤B中所述金属硝酸盐为Fe、Co、Ni的硝酸盐。
3.根据权利要求1所述的碳纳米管负载双金属氧化物空心纳米颗粒的制备方法,其特征在于:所述步骤C中预热处理温度为100-120℃,保温时间为1-2 h。
4.根据权利要求1所述的碳纳米管负载双金属氧化物空心纳米颗粒的制备方法,其特征在于:所述步骤C中氢气还原温度为650℃,升温速率为5℃/min,保温2 h。
5.根据权利要求1所述的碳纳米管负载双金属氧化物空心纳米颗粒的制备方法,其特征在于:所述步骤D中氧化温度125~400℃,升温速率为3℃/min,保温0.5h~5 h。
6.根据权利要求1所述的碳纳米管负载双金属氧化物空心纳米颗粒的制备方法,其特征在于:所述步骤A和步骤B之间还包括对碳纳米管悬浮液超声处理。
7.根据权利要求6所述的碳纳米管负载双金属氧化物空心纳米颗粒的制备方法,其特征在于:所述超声处理时间为15-30min。
8.根据权利要求1所述的碳纳米管负载的双金属氧化物空心纳米颗粒,其特征在于:所述双金属为Co-Ni、Fe-Ni、Fe-Co。
CN201410303236.2A 2014-06-30 2014-06-30 一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法 Expired - Fee Related CN104085876B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410303236.2A CN104085876B (zh) 2014-06-30 2014-06-30 一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410303236.2A CN104085876B (zh) 2014-06-30 2014-06-30 一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN104085876A true CN104085876A (zh) 2014-10-08
CN104085876B CN104085876B (zh) 2016-01-20

Family

ID=51633675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410303236.2A Expired - Fee Related CN104085876B (zh) 2014-06-30 2014-06-30 一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN104085876B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495745A (zh) * 2014-12-17 2015-04-08 北京科技大学 一种制备纳米铁碳复合粉末的方法
CN105118691A (zh) * 2015-09-14 2015-12-02 南京大学 泡沫镍担载钴酸亚铁亚微米管电极材料及其制备方法
CN108786885A (zh) * 2018-06-13 2018-11-13 北京工业大学 一种双金属氧化物/碳氮/碳纳米管复合物及应用
CN109490394A (zh) * 2018-10-24 2019-03-19 东莞理工学院 一种纳米金-碳纳米管复合材料的制备方法及其在电催化中的应用
CN113113615A (zh) * 2021-04-08 2021-07-13 浙江师范大学 一种NiFe-LDH/Co-CNTs纳米复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101269809A (zh) * 2008-04-29 2008-09-24 东华大学 一种纳米铟锡氧化物/多壁碳纳米管复合材料的制备方法
CN101800105A (zh) * 2010-03-25 2010-08-11 东华大学 一种MWCNTs/Co1-xZnxFe2O4磁性纳米复合材料的制备方法
US20110318504A1 (en) * 2010-06-23 2011-12-29 Han Jun Hyun Method for fabricating composite material comprising nano carbon and metal or ceramic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101269809A (zh) * 2008-04-29 2008-09-24 东华大学 一种纳米铟锡氧化物/多壁碳纳米管复合材料的制备方法
CN101800105A (zh) * 2010-03-25 2010-08-11 东华大学 一种MWCNTs/Co1-xZnxFe2O4磁性纳米复合材料的制备方法
US20110318504A1 (en) * 2010-06-23 2011-12-29 Han Jun Hyun Method for fabricating composite material comprising nano carbon and metal or ceramic

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C.M.WANG ET AL.: "Void formation during early stages of passivation:Initial oxidation of iron nanoparticles at room temperature", 《JOURNAL OF APPLIED PHYSICS》, vol. 98, 9 November 2005 (2005-11-09), XP012078957 *
HONG JIN FAN ET AL.: "Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes:A Review", 《SMALL》, vol. 3, no. 10, 31 December 2007 (2007-12-31), pages 1660 - 1671, XP002562563, DOI: doi:10.1002/smll.200700382 *
侯珂珂等: "碳纳米管负载纳米金属氧化物的研究进展", 《安徽化工》, vol. 33, no. 3, 30 June 2007 (2007-06-30), pages 7 - 11 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495745A (zh) * 2014-12-17 2015-04-08 北京科技大学 一种制备纳米铁碳复合粉末的方法
CN104495745B (zh) * 2014-12-17 2016-05-25 北京科技大学 一种制备纳米铁碳复合粉末的方法
CN105118691A (zh) * 2015-09-14 2015-12-02 南京大学 泡沫镍担载钴酸亚铁亚微米管电极材料及其制备方法
CN105118691B (zh) * 2015-09-14 2018-01-23 南京大学 泡沫镍担载钴酸亚铁亚微米管电极材料及其制备方法
CN108786885A (zh) * 2018-06-13 2018-11-13 北京工业大学 一种双金属氧化物/碳氮/碳纳米管复合物及应用
CN108786885B (zh) * 2018-06-13 2021-03-30 北京工业大学 一种双金属氧化物/碳氮/碳纳米管复合物及应用
CN109490394A (zh) * 2018-10-24 2019-03-19 东莞理工学院 一种纳米金-碳纳米管复合材料的制备方法及其在电催化中的应用
CN113113615A (zh) * 2021-04-08 2021-07-13 浙江师范大学 一种NiFe-LDH/Co-CNTs纳米复合材料及其制备方法和应用
CN113113615B (zh) * 2021-04-08 2022-08-05 浙江师范大学 一种NiFe-LDH/Co-CNTs纳米复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN104085876B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
Xiao et al. The excellent catalytic activity for thermal decomposition of ammonium perchlorate using porous CuCo2O4 synthesized by template-free solution combustion method
Zhang et al. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100
Wang et al. Synergistic effects between Cu metal–organic framework (Cu-MOF) and carbon nanomaterials for the catalyzation of the thermal decomposition of ammonium perchlorate (AP)
Chen et al. Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate
Chen et al. Catalytic activities of two different morphological nano-MnO2 on the thermal decomposition of ammonium perchlorate
CN104085876A (zh) 一种碳纳米管负载双金属氧化物空心纳米颗粒的制备方法
Jiang et al. Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method
CN108097255B (zh) 一种用于二氧化碳重整反应的多孔碳框架镍基催化剂及其制备方法和使用方法
CN106345469B (zh) 一种树枝状Cu/C-CuSiO3纳米结构加氢催化剂制备方法
CN107983329A (zh) 一种以金属有机骨架为模板的铈基复合氧化物VOCs燃烧催化剂及其制备方法
CN104307530B (zh) 一种氧化石墨烯基稀土复合物催化材料及其制备方法
CN110128671B (zh) 一种棒状的铈掺杂MIL-53(Fe)材料的制备方法
CN103934003A (zh) 一种催化氨基硼烷水解的纳米银催化剂及其制备方法
CN108126695A (zh) 一种功能化碳纳米管负载钯纳米催化剂及其制备和应用
Gong et al. Facile synthesis of porous α-Fe2O3 nanostructures from MIL-100 (Fe) via sacrificial templating method, as efficient catalysts for NH3-SCR reaction
Zheng et al. Formation of Co3O4 hollow polyhedrons from metal-organic frameworks and their catalytic activity for CO oxidation
Yang et al. Study of reaction mechanism based on further promotion of low temperature degradation of toluene using nano-CeO2/Co3O4 under microwave radiation for cleaner production in spraying processing
CN101417243B (zh) 高比表面积碳化钨微球与负载型催化剂及它们的制备方法
Chen et al. The construction of hierarchical hollow Double-Shelled Co3O4 for the enhanced thermal decomposition of Ammonium perchlorate
CN107413362A (zh) 一种超高活性的费托合成工艺
CN107442147A (zh) 一种高铁含量石墨层包裹的碳化铁催化剂及其合成方法与应用
Feng et al. Synthesis of rattle-structured CuCo2O4 nanospheres with tunable sizes based on heterogeneous contraction and their ultrahigh performance toward ammonia borane hydrolysis
Yin et al. The facet-regulated oxidative dehydrogenation of lactic acid to pyruvic acid on α-Fe 2 O 3
Zhao et al. Multiple Au cores in CeO2 hollow spheres for the superior catalytic reduction of p-nitrophenol
Fang et al. The thermal catalytic effects of CoFe-Layered double hydroxide derivative on the molecular perovskite energetic material (DAP-4)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20180630

CF01 Termination of patent right due to non-payment of annual fee