CN104072138A - 一种碳化钨-立方氮化硼复合材料及其制备方法 - Google Patents

一种碳化钨-立方氮化硼复合材料及其制备方法 Download PDF

Info

Publication number
CN104072138A
CN104072138A CN201410271242.4A CN201410271242A CN104072138A CN 104072138 A CN104072138 A CN 104072138A CN 201410271242 A CN201410271242 A CN 201410271242A CN 104072138 A CN104072138 A CN 104072138A
Authority
CN
China
Prior art keywords
boron nitride
cbn
coated
cubic boron
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410271242.4A
Other languages
English (en)
Other versions
CN104072138B (zh
Inventor
张建峰
吴玉萍
洪晟
李改叶
郭文敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201410271242.4A priority Critical patent/CN104072138B/zh
Publication of CN104072138A publication Critical patent/CN104072138A/zh
Priority to NZ727432A priority patent/NZ727432A/en
Priority to US15/318,379 priority patent/US10259751B2/en
Priority to PCT/CN2015/082923 priority patent/WO2015192815A1/zh
Priority to AU2015276668A priority patent/AU2015276668B2/en
Priority to SG11201610563PA priority patent/SG11201610563PA/en
Application granted granted Critical
Publication of CN104072138B publication Critical patent/CN104072138B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62842Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

一种碳化钨-立方氮化硼复合材料及其制备方法,涉及材料工程领域,其中碳化钨-立方氮化硼复合材料主要成分包括WC和cBN,在WC表面包覆有Co纳米粒子层,在cBN粉体表面包覆有SiO2纳米层,通过包覆纳米层提高复合材料的硬度、韧性等性能。一种碳化钨-立方氮化硼复合材料的制备方法,采用化学气相沉积法和高温烧结法,首先分别在WC和cBN表面包覆纳米粒子层,然后再高温烧结获得块状材料,制成的碳化钨-立方氮化硼复合材料具有结构热稳定性高,硬度高等特点,可作为高速切削刀具材料或作为钛合金、冷硬铸铁等传统刀具难以处理的特殊材料的加工成型领域,且本发明提供的制备方法简易,成本较低,可实现大规模商业化生产。

Description

一种碳化钨-立方氮化硼复合材料及其制备方法
技术领域
本发明属于材料工程领域,特别涉及一种高致密度、高性能的高速切削刀具材料以及其粉体的表面处理和制备方法。
背景技术
在机械加工中,切削或磨削加工目前仍是零件最终形成的主要工艺手段。切削加工的主要发展方向之一是高速切削(包括高速软切削、高速硬切削、高速干切削、大进给量切削等)。经历了理论探索、应用探索、初步应用和较成熟应用等四个阶段,高速切削技术已在生产中得到了一定的推广,加工钢件时切削速度最高已达到2000m·min-1,加工铸铁时达到3000m·min-1,加工铝合金则达到7000m·min-1,为普通切削速度的5~10倍。高速切削之所以得到工业界越来越广泛的关注,是因为它相对传统加工具有显著的优越性,如加工时间短(效率高、成本低)、工件表面质量好(表面精度高)、不需要冷却液(绿色加工、不污染环境)并且可以加工淬硬钢等传统加工手段难以处理的特殊材料。
作为高速切削刀具用材料,应具有良好的机械性能和热稳定性,即具有高硬度、抗冲击、耐磨损、抗热疲劳等特性。目前工业界采用的高速切削刀具材料主要有硬质合金、复合氮化硅陶瓷、立方氮化硼和金刚石等。WC和cBN形成的复合材料,将兼具两种材料的优点。超硬cBN相的引入不仅会显著提高WC硬质合金的硬度和耐磨损,其本身在复合材料中作为超硬粒子,引发裂纹偏转从而可以进一步提高材料的韧性,由于具有优异的硬度、耐磨损和韧性的性能组合,WC-cBN复合材料被看作是切割刀具领域最有发展潜力的新一代材料,引起了世界范围内的广泛关注。2007年,西班牙纳瓦拉国立大学的Martínez等人采用热等静压的方法,制备出了不同cBN含量的WC/Co-cBN复合材料。当cBN含量为30vol%时,复合材料硬度达到25Gpa;而当cBN提高到50vol%时,由于所需Co烧结助剂含量的增加导致了cBN向六方氮化硼(hBN)软相的相变,复合材料的硬度反而降低了4GPa(Journal of the American Ceramic Society, 2007, 90, p415-424)。2009年,土耳其Eskisehir Osmangazi大学的Yaman等人采用放电等离子体烧结方法制备了cBN体积含量为25%的WC/6wt%Co-cBN复合材料,虽然韧性最大值达到了12MPam1/2,最大硬度只有21GPa左右(Materials Letters, 2009, 63, p1041-1043),低于Martínez等人的报道值。2012年,波兰华沙工业大学的Rosinski 等人采用脉冲等离子体烧结方法制备了WC/Co-cBN复合材料,立方氮化硼的体积含量为30%,最大硬度为23GPa左右(Journal of Materials Science, 2012, 47, p7064-7071)。2007年,国内武汉理工大学材料复合新技术国家重点实验室的史晓亮等人用化学气相沉积法对cBN进行了表面镀金属钛(Ti)膜预处理后,采用热压烧结方法在温度烧结压力30MPa、1380℃保温60 min的条件下制备了cBN体积分数为30%的WC-10Co-cBN复合材料,材料的相对致密度为94.2%,强度为750MPa(机械工程材料, 2007, 31, p71-73)。除科研院所外,瑞典三特威克公司(全球领先刀具生产商)也在2012年公开了一篇关于WC-cBN复合材料的专利(Method for producing a sintered composite body, Patent WO2012038529A2, Sandvik Intellectual Property Ab.),以钴作为烧结助剂,采用无压烧结方法在1350 °C下制备了WC/Co-cBN复合材料,但得到的复合材料的最大硬度为13GPa。
总结国内外的研究现状可以看出,虽然国内外对WC-cBN复合材料进行了研究并取得了初步成果,但仍然存在复合材料致密化困难、硬度和耐磨损性能不足等问题。WC和cBN都属于难烧结材料,其复合材料通常以Co、Ni等为烧结助剂(重量含量通常为6-15wt%左右或更高)在高温下长时间无压或加压烧结才能获得。但Co、Ni等金属本身硬度低,会导致复合材料的硬度特别是红硬性的降低。另外一方面,高含量的金属烧结助剂还会加速cBN向六方氮化硼(hBN)的相变。而hBN是类石墨软相,硬度与石墨相当,因此cBN向hBN的相变也将导致复合材料硬度的降低,另外相变所带来的体积变化同时会导致材料气孔率的增加,也会引发刀具材料硬度和耐磨损性能的降低,从而导致其使用寿命进一步缩短。
发明内容
本发明解决的技术问题:针对上述问题,本发明提供了一种在WC和cBN粉体表面上分别包覆SiO2和Co纳米层以提高其烧结性能,抑制cBN的相变,提高材料硬度的碳化钨-立方氮化硼复合材料及其制备方法。
技术方案:一种碳化钨-立方氮化硼复合材料,主要成分包括WC和cBN,其中在WC表面包覆有Co纳米粒子层,其厚度为60-120 nm,在cBN粉体表面包覆有SiO2纳米层,其厚度为20-100nm,包覆有SiO2纳米层的cBN在复合材料中的体积含量为30-50vol%,WC和cBN粉体的纯度均在95%以上。
作为优选,WC粉体的平均粒径为2um。
作为优选,cBN粉体的平均粒径为3um。
一种碳化钨-立方氮化硼复合材料的制备方法,制备步骤如下:
(1)将WC粉体放入化学气相沉积反应室中,抽真空,预热至500-700℃,以二茂钴为原料,蒸发温度为120-150℃,反应室开始旋转,反应时间为18-50min,包覆结束后,停止旋转,并停止原料供应,待冷却至室温,取出;
(2)将cBN粉体放入化学气相沉积反应室中,抽真空,预热500-700℃,以正硅酸乙酯为原料,加热至80-130℃,反应室开始旋转,反应时间为15-50min,包覆结束后,停止旋转,并停止原料供应,待冷却至室温,取出;
(3)将包覆后的WC和cBN粉体混合,其中包覆后的cBN在混合粉体中的重量含量为9%-18%,然后过筛;
(4)将混合过筛好的粉体放入模具,烧结制备块体材料,即碳化钨-立方氮化硼复合材料;
其中,烧结过程中所使用的烧结温度为1200-1500℃,压力为4-8GPa,时间0.5-2h。
作为优选,WC粉体包覆过程在氩气保护气氛中进行,氩气的气体流量为20-50sccm。
作为优选,cBN粉体包覆过程在氩气保护气氛中进行,氩气的气体流量为10-30sccm。
作为优选,上述步骤(1)和步骤(2)反应室的旋转速率为30-60r/min。
作为优选,包覆后的WC和cBN粉体的采用滚筒法混合,混合时间5-10h。
作为优选,混合后的WC和cBN粉体过筛的筛孔的尺寸为100-200目,过筛次数为3次。
有益效果:本发明提供的碳化钨-立方氮化硼复合材料及其制备方法,是采用化学气相沉积法和高温烧结法,首先使用化学气相沉积法,在WC粉体表面包覆Co纳米层,在cBN表面包覆SiO2纳米层,通过在粉体表面包覆和均匀分散,减少软相粒子Co的使用量,提高复合材料的硬度;通过正硅酸乙酯的氧化分解在cBN粉体表面包覆SiO2非晶纳米层,抑制cBN在烧结过程中的相变,提高材料的硬度等力学性能,然后再高温烧结获得块状材料,制成的碳化钨-立方氮化硼复合材料具有结构热稳定性高,硬度高等特点,可作为高速切削刀具材料或作为钛合金、冷硬铸铁等传统刀具难以处理的特殊材料的加工成型领域,而且本发明提供的制备方法简易,成本较低,可实现大规模商业化生产。
附图说明
图1为本发明碳化钨-立方氮化硼复合材料中WC和cBN粉体表面包覆示意图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
根据本发明提供的碳化钨-立方氮化硼复合材料的制备方法制备型碳化钨-立方氮化硼复合材料,材料选用纯度大于95%以上粉体材料和纯度大于98%以上的金属有机原料,其中WC粉体的平均粒径为2um,cBN粉体的平均粒径为3um,所有材料在进行化学气相沉积处理之前,已在真空中除气除湿,然后按照本发明提供的制备方法进行制备。
实施例1
根据本发明提供的碳化钨-立方氮化硼复合材料的制备方法制备型碳化钨-立方氮化硼复合材料,步骤如下:
(1)将WC粉体放入化学气相沉积反应室中,抽真空至5Pa,预热至500℃,以二茂钴为原料,蒸发温度为120℃,反应室开始旋转,旋转速率为30r/min,氩气气体流量为20sccm,通过二茂钴的热分解在WC粉体表面包覆Co纳米粒子层,反应时间为20min,包覆结束后,停止旋转,并停止原料供应,待冷却至室温,取出;
(2)将cBN粉体放入化学气相沉积反应室中,抽真空至5Pa,预热500℃,以正硅酸乙酯为原料,加热至80℃,反应室开始旋转,旋转速率为30r/min,氩气气体流量为10sccm,通过正硅酸乙酯的氧化热分解在WC粉体表面包覆SiO2纳米层,反应时间为20min,包覆结束后,停止旋转,并停止原料供应,待冷却至室温,取出;
采用FESEM和TEM相结合的方法测定粉体表面纳米粒子层的粒度及厚度,SiO2纳米层的厚度为20nm,WC粉体表面Co的粒径为20nm,厚度为60nm;
(3)将9.1g包覆后的WC粉体和0.9g包覆后的cBN粉体采用滚筒法(干法)混合5h,然后过100目筛3次;
(4)将混合过筛好的粉体放入模具,烧结制备块体材料,烧结过程中所使用的烧结温度为1200℃,压力为4GPa,时间2h;
烧结后cBN相的体积含量为30%,制成的样品直径为30mm,厚度为5mm。
实施例2
根据本发明提供的碳化钨-立方氮化硼复合材料的制备方法制备型碳化钨-立方氮化硼复合材料,步骤如下:
(1)将WC粉体放入化学气相沉积反应室中,抽真空至10Pa,预热至500℃,以二茂钴为原料,蒸发温度为130℃,反应室开始旋转,旋转速率为45r/min,氩气气体流量为30sccm,通过二茂钴的热分解在WC粉体表面包覆Co纳米粒子层,反应时间为18min,包覆结束后,停止旋转,并停止原料供应,待冷却至室温,取出;
(2)将cBN粉体放入化学气相沉积反应室中,抽真空至10Pa,预热500℃,以正硅酸乙酯为原料,加热至120℃,反应室开始旋转,旋转速率为50r/min,氩气气体流量为20sccm,通过正硅酸乙酯的氧化热分解在cBN粉体表面包覆SiO2纳米层,反应时间为15min,包覆结束后,停止旋转,并停止原料供应,待冷却至室温,取出;
采用FESEM和TEM相结合的方法测定粉体表面纳米粒子层的粒度及厚度,SiO2纳米层的厚度为20nm,WC粉体表面Co的粒径为20nm,厚度为60nm;
(4)将8.9g包覆后的WC粉体和1.1g 包覆后的cBN粉体采用滚筒法(干法)混合10h,然后过200目筛3次;
(5)将混合过筛好的粉体放入模具,烧结制备块体材料,烧结过程中所使用的烧结温度为1300℃,压力为6GPa,时间1.5h;
烧结后cBN相的体积含量为35%,制成的样品直径为30mm,厚度为5mm。
实施例3
根据本发明提供的碳化钨-立方氮化硼复合材料的制备方法制备型碳化钨-立方氮化硼复合材料,步骤如下:
(1)将WC粉体放入化学气相沉积反应室中,抽真空至20Pa,预热至500℃,以二茂钴为原料,蒸发温度为140℃,反应室开始旋转,旋转速率为60r/min,氩气气体流量为40sccm,通过二茂钴的热分解在WC粉体表面包覆Co纳米粒子层,反应时间为50min,包覆结束后,停止旋转,并停止原料供应,待冷却冷至室温,取出;
(2)将cBN粉体放入化学气相沉积反应室中,抽真空至20Pa,预热500℃,以正硅酸乙酯为原料,加热至90℃,反应室开始旋转,旋转速率为40r/min,氩气气体流量为30sccm,通过正硅酸乙酯的氧化热分解在cBN粉体表面包覆SiO2纳米层,反应时间为50min,包覆结束后,停止旋转,并停止原料供应,待冷却冷至室温,取出;
采用FESEM和TEM相结合的方法测定粉体表面纳米粒子层的粒度及厚度,SiO2纳米层的厚度为50nm,WC粉体表面Co的粒径为40nm,厚度为120nm。
(4)将8.7g包覆后的WC粉体和1.3g 包覆后的cBN粉体采用滚筒法(干法)混合10h,然后过200目筛3次;
(5)将混合过筛好的粉体放入模具,烧结制备块体材料,烧结过程中所使用的烧结温度为1400℃,压力为5GPa,时间0.5h;
烧结后cBN相的体积含量为40%,制成的样品直径为30mm,厚度为5mm。
实施例4
根据本发明提供的碳化钨-立方氮化硼复合材料的制备方法制备型碳化钨-立方氮化硼复合材料,步骤如下:
(1)将WC粉体放入化学气相沉积反应室中,抽真空至15Pa,预热至500℃,以二茂钴为原料,蒸发温度为150℃,反应室开始旋转,旋转速率为35r/min,氩气气体流量为40sccm,通过二茂钴的热分解在WC粉体表面包覆Co纳米粒子层,反应时间为40min,包覆结束后,停止旋转,并停止原料供应,待冷却至室温,取出;
(2)将cBN粉体放入化学气相沉积反应室中,抽真空至15Pa,预热500℃,以正硅酸乙酯为原料,加热至130℃,反应室开始旋转,旋转速率为35r/min,氩气气体流量为25sccm,通过正硅酸乙酯的氧化热分解在WC粉体表面包覆Co纳米粒子层,反应时间为40min,包覆结束后,停止旋转,并停止原料供应,待冷却冷至室温,取出;
采用FESEM和TEM相结合的方法测定粉体表面纳米粒子层的粒度及厚度,SiO2纳米层的厚度为100nm,WC粉体表面Co的粒径为40nm,厚度为120nm。
(4)将8.5g包覆后的WC粉体和1.5g包覆后的cBN粉体采用滚筒法(干法)混合6h,然后过100目筛3次;
(5)将混合过筛好的粉体放入模具,烧结制备块体材料,烧结过程中所使用的烧结温度为1400℃,压力为5GPa,时间1.5h;
烧结后cBN相的体积含量为45%,制成的样品直径为30mm,厚度为5mm。
实施例5
根据本发明提供的碳化钨-立方氮化硼复合材料的制备方法制备型碳化钨-立方氮化硼复合材料,步骤如下:
(1)将WC粉体放入化学气相沉积反应室中,抽真空至10Pa,预热至500℃,以二茂钴为原料,蒸发温度为150℃,反应室开始旋转,旋转速率为60r/min,氩气气体流量为25sccm,通过二茂钴的热分解在WC粉体表面包覆Co纳米粒子层,反应时间为20min,包覆结束后,停止旋转,并停止原料供应,待冷却至室温,取出;
(2)将cBN粉体放入化学气相沉积反应室中,抽真空至20Pa,预热500℃,以正硅酸乙酯为原料,加热至130℃,反应室开始旋转,旋转速率为60r/min,氩气气体流量为25sccm,通过正硅酸乙酯的氧化热分解在WC粉体表面包覆Co纳米粒子层,反应时间为25min,包覆结束后,停止旋转,并停止原料供应,待冷却至室温,取出;
采用FESEM和TEM相结合的方法测定粉体表面纳米粒子层的粒度及厚度,SiO2纳米层的厚度为40nm,WC粉体表面Co的粒径为30nm,厚度为60nm。
(4)将8.2g包覆后的WC粉体和1.8g 包覆后的cBN粉体采用滚筒法(干法)混合10h,然后过100目筛3次;
(5)将混合过筛好的粉体放入模具,烧结制备块体材料,烧结过程中所使用的烧结温度为1500℃,压力为8GPa,时间0.5h;
烧结后,cBN相的体积含量为50%,制成的样品直径为30mm,厚度为5mm。
将上述具体实施方式制成的样品采用维氏硬度压痕法测试WC-cBN复合材料的硬度和断裂韧性,拉伸法测试材料的强度,结果如下:
表1  WC-cBN复合材料的致密度、硬度、韧性和强度等。
由表可知,本发明新型WC-cBN复合材料具有较高的硬度、韧性和强度,随着包覆后cBN相的体积含量由30%增加到50%,WC-cBN复合材料的致密度呈起伏变化趋势,经历两次起伏,在包覆后cBN相的体积含量达到45%时,致密度最高;复合材料的硬度指标随着包覆后cBN相的体积含量的增加呈现先上升再下降的趋势,在包覆后cBN相的体积含量达到45%时,硬度最高;复合材料的韧性与硬度指标的变化趋势相近,在包覆后cBN相的体积含量达到40%时,韧性最好;复合材料的强度指标的变化趋势与致密度呈现相同的变化趋势,在包覆后cBN相的体积含量达到45%时,强度最高。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种碳化钨-立方氮化硼复合材料,其特征在于:复合材料主要成分包括WC和cBN,其中在WC表面包覆有Co纳米粒子层,其厚度为60-120 nm,在cBN粉体表面包覆有SiO2纳米层,其厚度为20-100nm,包覆有SiO2纳米层的cBN在复合材料中的体积含量为30-50vol%,WC和cBN粉体的纯度均在95%以上。
2.根据权利要求1所述的碳化钨-立方氮化硼复合材料,其特征在于:WC粉体的平均粒径为2um。
3.根据权利要求1所述的碳化钨-立方氮化硼复合材料,其特征在于:cBN粉体的平均粒径为3um。
4.根据权利要求1所述的碳化钨-立方氮化硼复合材料的制备方法,其特征在于,制备步骤如下:
(1)将WC粉体放入化学气相沉积反应室中,抽真空,预热至500-700℃,以二茂钴为原料,蒸发温度为120-150℃,反应室开始旋转,反应时间为18-50min,包覆结束后,停止旋转,并停止原料供应,待冷却至室温,取出;
(2)将cBN粉体放入化学气相沉积反应室中,抽真空,预热500-700℃,以正硅酸乙酯为原料,加热至80-130℃,反应室开始旋转,反应时间为15-50min,包覆结束后,停止旋转,并停止原料供应,待冷却至室温,取出;
(3)将包覆后的WC和cBN粉体混合,其中包覆后的cBN在混合粉体中的重量含量为9%-18%,然后过筛;
(4)将混合过筛好的粉体放入模具,烧结制备块体材料,即碳化钨-立方氮化硼复合材料;
其中,烧结过程中所使用的烧结温度为1200-1500℃,压力为4-8GPa,时间为0.5-2h。
5.根据权利要求4所述的碳化钨-立方氮化硼复合材料的制备方法,其特征在于,WC粉体包覆过程在氩气保护气氛中进行,氩气的气体流量为20-50sccm。
6.根据权利要求4所述的碳化钨-立方氮化硼复合材料的制备方法,其特征在于,cBN粉体包覆过程在氩气保护气氛中进行,氩气的气体流量为10-30sccm。
7.根据权利要求4所述的碳化钨-立方氮化硼复合材料的制备方法,其特征在于,步骤(1)和步骤(2)反应室旋转速率为30-60r/min。
8.根据权利要求4所述的碳化钨-立方氮化硼复合材料的制备方法,其特征在于,包覆后的WC和cBN粉体的采用滚筒法混合,混合时间5-10h。
9.根据权利要求4所述的碳化钨-立方氮化硼复合材料的制备方法,其特征在于,混合后的WC和cBN粉体过筛的筛孔的尺寸为100-200目,过筛次数为3次。
CN201410271242.4A 2014-06-18 2014-06-18 一种碳化钨-立方氮化硼复合材料及其制备方法 Expired - Fee Related CN104072138B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201410271242.4A CN104072138B (zh) 2014-06-18 2014-06-18 一种碳化钨-立方氮化硼复合材料及其制备方法
NZ727432A NZ727432A (en) 2014-06-18 2015-06-30 Tungsten carbide-cubic boron nitride composite material and preparation method thereof
US15/318,379 US10259751B2 (en) 2014-06-18 2015-06-30 Tungsten carbide-cubic boron nitride composite material and preparation method thereof
PCT/CN2015/082923 WO2015192815A1 (zh) 2014-06-18 2015-06-30 一种碳化钨-立方氮化硼复合材料及其制备方法
AU2015276668A AU2015276668B2 (en) 2014-06-18 2015-06-30 Tungsten carbide-cubic boron nitride composite material and preparation method thereof
SG11201610563PA SG11201610563PA (en) 2014-06-18 2015-06-30 Tungsten carbide-cubic boron nitride composite material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410271242.4A CN104072138B (zh) 2014-06-18 2014-06-18 一种碳化钨-立方氮化硼复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104072138A true CN104072138A (zh) 2014-10-01
CN104072138B CN104072138B (zh) 2015-10-28

Family

ID=51593793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410271242.4A Expired - Fee Related CN104072138B (zh) 2014-06-18 2014-06-18 一种碳化钨-立方氮化硼复合材料及其制备方法

Country Status (6)

Country Link
US (1) US10259751B2 (zh)
CN (1) CN104072138B (zh)
AU (1) AU2015276668B2 (zh)
NZ (1) NZ727432A (zh)
SG (1) SG11201610563PA (zh)
WO (1) WO2015192815A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313445A (zh) * 2014-09-30 2015-01-28 苏州博利迈新材料科技有限公司 一种二氧化硅包覆的钨钛钽钴硬质合金及其制备方法
WO2015192815A1 (zh) * 2014-06-18 2015-12-23 河海大学 一种碳化钨-立方氮化硼复合材料及其制备方法
CN106365629A (zh) * 2014-11-10 2017-02-01 蒋春花 一种碳纳米管复合生物陶瓷的制备方法
CN106926370A (zh) * 2017-01-22 2017-07-07 博深工具股份有限公司 一种切割研磨性材料用金刚石圆锯片
CN112898038A (zh) * 2021-03-22 2021-06-04 河海大学 一种氮化硅基纤维独石陶瓷透波材料制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201614008D0 (en) 2016-08-16 2016-09-28 Seram Coatings As Thermal spraying of ceramic materials
JP7004517B2 (ja) 2017-06-21 2022-01-21 京セラ株式会社 切削インサート、切削工具及び切削加工物の製造方法
CA3168240A1 (en) * 2020-01-16 2021-07-22 Schlumberger Canada Limited Drilling tool having pre-fabricated components
CN111547752B (zh) * 2020-05-11 2023-02-24 齐鲁工业大学 一种氧化铝包覆纳米片状六方氮化硼复合粉体及其制备方法与应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2828575B2 (ja) * 1993-11-12 1998-11-25 京セラ株式会社 窒化珪素質セラミックヒータ
US6613383B1 (en) * 1999-06-21 2003-09-02 Regents Of The University Of Colorado Atomic layer controlled deposition on particle surfaces
US6713177B2 (en) * 2000-06-21 2004-03-30 Regents Of The University Of Colorado Insulating and functionalizing fine metal-containing particles with conformal ultra-thin films
US6634837B1 (en) * 2000-10-30 2003-10-21 Cerbide Corporation Ceramic cutting insert of polycrystalline tungsten carbide
US7067407B2 (en) * 2003-08-04 2006-06-27 Asm International, N.V. Method of growing electrical conductors
KR20070083557A (ko) * 2004-09-23 2007-08-24 엘리먼트 씩스 (프티) 리미티드 다결정 연마 물질 및 그 제조방법
CN100497687C (zh) 2006-09-20 2009-06-10 谭日善 一种制备超细硬质合金钨、钴混合料的方法及产品
CA2603458C (en) * 2006-09-21 2015-11-17 Smith International, Inc. Atomic layer deposition nanocoatings on cutting tool powder materials
WO2012105710A1 (ja) * 2011-02-04 2012-08-09 株式会社タンガロイ cBN焼結体工具および被覆cBN焼結体工具
US9327352B2 (en) * 2011-11-07 2016-05-03 Tungaloy Corporation Cubic boron nitride sintered body
KR102064627B1 (ko) * 2012-03-27 2020-01-09 노벨러스 시스템즈, 인코포레이티드 텅스텐 피처 충진
JP5305056B1 (ja) * 2012-05-16 2013-10-02 三菱マテリアル株式会社 立方晶窒化ほう素基焼結体製切削工具
GB201307800D0 (en) * 2013-04-30 2013-06-12 Element Six Ltd PCBN material, method for making same, tools comprising same and method of using same
CN104072138B (zh) 2014-06-18 2015-10-28 河海大学 一种碳化钨-立方氮化硼复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BO WANG ET AL.: "Pulse electric current sintering of cubic boron nitride/tungsten carbide–cobalt (cBN/WC–Co) composites: Effect of cBN particlesize and volume fraction on their microstructure and properties", 《MATERIALS SCIENCE & ENGINEERING A》, vol. 607, 13 April 2014 (2014-04-13) *
JIANFENG ZHANG ET AL.: "Densification, microstructure and mechanical properties", 《CERAMICS INTERNATIONAL》, vol. 38, 18 July 2011 (2011-07-18), XP028118640, DOI: doi:10.1016/j.ceramint.2011.07.013 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192815A1 (zh) * 2014-06-18 2015-12-23 河海大学 一种碳化钨-立方氮化硼复合材料及其制备方法
US10259751B2 (en) 2014-06-18 2019-04-16 Hohai University Tungsten carbide-cubic boron nitride composite material and preparation method thereof
CN104313445A (zh) * 2014-09-30 2015-01-28 苏州博利迈新材料科技有限公司 一种二氧化硅包覆的钨钛钽钴硬质合金及其制备方法
CN106365629A (zh) * 2014-11-10 2017-02-01 蒋春花 一种碳纳米管复合生物陶瓷的制备方法
CN106365628A (zh) * 2014-11-10 2017-02-01 蒋春花 一种碳纳米管复合生物陶瓷
CN106365627A (zh) * 2014-11-10 2017-02-01 蒋春花 一种羟基磷灰石‑碳纳米管复合生物陶瓷
CN106396666A (zh) * 2014-11-10 2017-02-15 蒋春花 羟基磷灰石‑碳纳米管复合生物陶瓷的制备方法
CN106396667A (zh) * 2014-11-10 2017-02-15 蒋春花 一种羟基磷灰石‑碳纳米管复合生物陶瓷的制备方法
CN106926370A (zh) * 2017-01-22 2017-07-07 博深工具股份有限公司 一种切割研磨性材料用金刚石圆锯片
CN106926370B (zh) * 2017-01-22 2019-05-24 博深工具股份有限公司 一种切割研磨性材料用金刚石圆锯片
CN112898038A (zh) * 2021-03-22 2021-06-04 河海大学 一种氮化硅基纤维独石陶瓷透波材料制备方法

Also Published As

Publication number Publication date
NZ727432A (en) 2017-12-22
AU2015276668A1 (en) 2017-01-05
SG11201610563PA (en) 2017-02-27
CN104072138B (zh) 2015-10-28
WO2015192815A1 (zh) 2015-12-23
AU2015276668B2 (en) 2018-02-01
US10259751B2 (en) 2019-04-16
US20170121230A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
CN104072138B (zh) 一种碳化钨-立方氮化硼复合材料及其制备方法
CN100575515C (zh) 一种超细晶WC-Co硬质合金制备方法
CN104630664B (zh) 一种碳纤维增韧的Ti(C,N)基金属陶瓷材料的制备方法
CN107794430B (zh) 一种超细晶粒金属陶瓷及其制备方法
CN101215164B (zh) 一种碳化硼复合材料的制备方法
CN104609865A (zh) 一种氮化硅基导电陶瓷的制备方法及氮化硅基导电陶瓷刀具的成型方法
CN102605230B (zh) 双相纳米颗粒增强型钛合金防护涂层及制备方法
CN111056852A (zh) 一种无粘结相wc基硬质合金刀具材料及其制备方法
CN107523710A (zh) 一种抗高温氧化的晶须改性Ti(C,N)基复合金属陶瓷制备方法
CN110257684A (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN101255512A (zh) 含硼的碳氮化钛基金属陶瓷刀具材料及其制备工艺
CN104630589B (zh) 一种碳化钨包覆的复合硬质合金材料及其制备方法
CN106498253A (zh) 一种具有高稳定耐磨性的聚晶金刚石复合材料及其制备方法
CN103626496A (zh) 一种非化学计量比碳化钛与氮化铝、氮化钛复合材料
CN104630529A (zh) B4C作为弥散强化添加剂的细晶WC-Co硬质合金及其制备方法
CN104313445A (zh) 一种二氧化硅包覆的钨钛钽钴硬质合金及其制备方法
CN106116617B (zh) 一种超细氮化硼多孔纤维增韧wc复合材料及其制备方法
CN104817326B (zh) 一种六方氮化硼‑镱硅氧‑二氧化硅复合材料及制备方法
CN109231990A (zh) 一种碳化钨-金刚石复合材料的制备方法
CN109320249A (zh) 一种含氧化硼的碳化钨复合材料及其制备方法
CN110981489B (zh) 一种TiNx-Ti3SiC2复合材料及其制备方法
CN111778436A (zh) 一种冷压-热压烧结制备wc-y2o3无粘结相硬质合金的方法
CN111393168A (zh) 一种TiCx增强Ti3SiC2复合材料及其制备方法
CN106278197A (zh) 一种复合陶瓷刀具材料及其制备方法
CN106312048A (zh) 一种金属陶瓷颗粒及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151028

Termination date: 20180618

CF01 Termination of patent right due to non-payment of annual fee