CN104069839A - 一种有序介孔核壳结构硅胶色谱填料及其制备和应用 - Google Patents

一种有序介孔核壳结构硅胶色谱填料及其制备和应用 Download PDF

Info

Publication number
CN104069839A
CN104069839A CN201310106742.8A CN201310106742A CN104069839A CN 104069839 A CN104069839 A CN 104069839A CN 201310106742 A CN201310106742 A CN 201310106742A CN 104069839 A CN104069839 A CN 104069839A
Authority
CN
China
Prior art keywords
silica gel
water
preparation
add
gel microball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310106742.8A
Other languages
English (en)
Other versions
CN104069839B (zh
Inventor
张丽华
闵一
杨开广
张玉奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201310106742.8A priority Critical patent/CN104069839B/zh
Publication of CN104069839A publication Critical patent/CN104069839A/zh
Application granted granted Critical
Publication of CN104069839B publication Critical patent/CN104069839B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及一种适于超快速分离的新型核壳结构硅胶色谱填料及其制备和应用。本发明合成的硅胶微球具有清晰核壳结构,其核为无孔硅胶,壳层存在介孔。第一步采用程序控温方式合成不同粒径无孔硅胶,此无孔硅胶具有很好的单分散性且粒径分布较窄,然后在氨水溶液中选用多种阳离子表面活性剂,及有机胺或长链烷烃为扩孔辅助剂,在此无孔硅胶上制备出厚度可以调节的介孔壳层,控制在100-360nm范围内,第三步对介孔壳层孔径进行扩孔优化,根据分离样品需要,分别调节孔径为9nm,15nm,或更大,最后对此硅胶微球进行衍生化制备成色谱固定相,应用于快速分离中,其柱效在20万以上,可在短时间内对多肽及整体蛋白样品实现快速高效分离。

Description

一种有序介孔核壳结构硅胶色谱填料及其制备和应用
技术领域
本发明属于分析化学技术领域,具体涉及一种制备介孔核壳结构硅胶色谱填料的工艺。
技术背景
快速和高效是色谱分离的发展方向,核壳结构硅胶色谱填料具有粒径分布窄、传质速度快等优势,因此近年来成为快速色谱分离的首选填料。而目前在色谱中已经应用的核壳结构色谱填料的制备方法有层层生长法Joseph J.Kirkland,Timothy J.Langlois,US Patent,2007/0189944A1,凝聚法Wu Chen,Ta-Chen Wei,US Patent,2011/0031179A1和硅球叠加生长法Adham Ahmed,Walid Abdelmagid,Harald Ritchie,Peter Myers,Haifei Zhang,J.Chromatogr.A,2012,1270,194–203等,层层生长法其合成过程较为繁琐,合成周期较长,且容易导致硅球团聚,凝聚法其反应条件较难控制,而其他方法则很难控制合成的硅球的粒径分布情况,其中一些方法所制备出的微球并不能直接用作色谱分离,必须经过粒径筛分过程。另一方面,核壳结构硅胶微球的孔径大小和孔径分布情况直接影响着色谱分离效果。应用阳离子表面活性剂为模板,可以在传统的体系中合成出核壳硅胶微球Suk Bon Yoon,Jong-Yun Kim,Jung Ho Kim,Yong Joon Park,Kuk Ro Yoon,Seung-Kyu Park and Jong-Sung Yu,J.Mater.Chem.,2007,17,1758–1761,也可以在此体系中加入刻蚀剂利用硅胶先溶解再沉积的方式制备核壳结构硅胶颗粒Hanjiang Dong and John D.Brennan,J.Mater.Chem.,2012,22,13197–13203,其孔道结构能够垂直于硅球表面,但从色谱分离的角度出发,此类微球粒径或者孔径大小往往难以满足色谱分离的需要。
发明内容
本发明的目的在于提供一种有序介孔核壳结构硅胶色谱填料及其制备和应用。
为实现上述目的,本发明采用的技术方案为:
有序介孔核壳结构硅胶微球粒径在1μm-2μm之间,其核是无孔的,具有的壳层厚度在100-360nm之间,壳层具有有序的多孔结构,其孔道方向垂直于硅球表面,其孔径大小在5nm-30nm之间,其孔容量在0.1和0.5之间,比表面积在100到200m2/g之间。
一种有序介孔核壳结构硅胶色谱填料的制备方法,该方法步骤如下:
(1)采用程序升温的方式以间歇加入法合成无孔硅胶微球
首先配制水解液,其组成为氨水(4-9wt.%),水(3-8wt.%)和无水乙醇,在低温水浴(0-22℃)条件下机械搅拌;快速向水解液中加入正硅酸乙酯(2-6wt.%),反应完后,将水浴温度升至较高的温度(40-60℃),加入水和正硅酸乙酯,正硅酸乙酯须提前预热至反应温度。1-7次后,再次加入水解液,继续加入水和正硅酸乙酯生长至目标粒径。对合成的无孔硅胶进行离心清洗,依次用95%乙醇洗3次、水洗2次。
经过上面操作,可以获得粒径在1.5μm以内的无孔硅胶微球,若要制备更大粒径的无孔硅胶,如1.7μm,则需要进一步生长。将所得到的无孔硅胶再次分散于水解液中,进行生长,通过控制加入硅源的次数来控制最终的粒径大小,待反应完后进行离心洗涤,依次用95%乙醇洗3次、水洗7次。
(2)刻蚀法合成核壳结构硅胶微球
取步骤(1)中合成的无孔硅胶(2-10wt.%)微球分散于水中超声分散;另取阳离子表面活性剂(0.5-1wt.%)加入水中超声溶解,加入有机胺(0.7-5wt.%)或者直链烷烃,然后将其与无孔硅胶分散液混合,超声分散。在油浴中加热,磁子搅拌,加入氨水(4-5wt.%),氟化铵(0.02-0.03wt.%)反应。待反应结束后离心洗涤,依次用95%乙醇洗3次、水洗2次,然后用甲醇抽滤过夜,于65℃烘干。接着在马弗炉中进行模板烧结(550-600℃),控制升温速率(1-10℃/min),烧结完成后自然冷却至室温。
(3)采用水热法和稀氨水刻蚀两种扩孔方法
水热扩孔法:在水热釜密闭条件下,取1,3,5-三甲苯(1-7wt.%)或者有机胺(0.4-5wt.%)加入分散有(2)中合成的未进行烧结的硅胶微球的水中,转入水热釜中,120℃条件下反应数小时或者数天。依次用工业乙醇、水洗数次,然后用甲醇抽滤过夜,烘干。接着在马弗炉中进行模板烧结,控制升温速率,烧结完成后自然冷却至室温。
稀氨水扩孔法:取经过烧结的核壳结构硅胶微球分散于特定pH(10-11)的氨水溶液中,在加热(50-85℃)搅拌的条件下反应数小时(0.5-5h)。反应完后水离心洗三次。
所合成的微球可以通过表面化学衍生制备成不同模式的色谱填料,如离子交换色谱填料,亲水色谱填料或者亲和色谱填料。
所合成的微球作为色谱填料使用可以用于生物大分子的固相萃取。
本发明具有以下优点:
1合成的核壳型硅胶色谱填料单分散性好,粒径均一;
2合成的核壳型硅胶色谱填料孔径分布窄,其孔道排列有序,其方向垂直于硅球表面,孔径大小可以调节,便于样品分子的快速扩散传质;独特的核壳结构异于其他核壳色谱填料;
3将这种填料应用于小分子分离,色谱柱效高,塔板数可以达到20万/米以上,性能完全优于传统色谱填料;
4将这种色谱填料用于生物分子的分离,可以实现样品的快速,高效分离;
5.本色谱填料的合成工艺步骤少,重现性好,产率高,具有放大生产的潜力。
本发明提出了一种制备新型核壳结构硅胶色谱填料的工艺,所提出的合成路线简便,易操作同时重现性好,色谱分离柱效高;其特征不同于传统的核壳结构色谱填料和全多孔色谱填料,特点在于粒径大小可控、均一,具有规整的球形外貌,清晰的核壳结构,具有很好的刚性结构,能够耐受高压,壳层上有序而规整地排布着分布较窄的介孔,孔道垂直于硅球表面,孔径大小可以调节,将此填料应用于色谱分离中,柱效达到20万/米以上,相当或者优于其他色谱填料。同时这种填料可以实现多肽和蛋白样品的高效快速分离。
附图说明
图1合成的无孔硅胶粒径分布图
图2合成的核壳结构硅胶微球透射电镜图片
图3合成的核壳结构硅胶微球透射电镜图片
图4合成的核壳结构硅胶微球等温吸附线和孔径分布图
图5色谱分离图,A图为小分子分离图,B图为五种标准肽段分离图,C图为五种整体蛋白分离图。
具体实施方式
实施例
无孔硅胶合成
首先配制水解液,6.70ml氨水(28-30wt.%,Sigma-Aldrich),5.13ml水,69.55ml无水乙醇,在22℃水浴条件下机械搅拌;快速向水解液中加入4ml正硅酸乙酯(98%,Sigma-Aldrich),开始反应,40min后,将水浴温度升至55℃,加入0.64ml水和4ml正硅酸乙酯,正硅酸乙酯须提前在55℃预热,反应40min。重复加入0.64ml水和4ml正硅酸乙酯3次后,再次加入水解液(6.7ml氨水(28-30wt.%,Sigma-Aldrich),5.13ml水,69.55ml无水乙醇),继续加入0.64ml水和4ml正硅酸乙酯生长至目标粒径。生长7层后,对合成的无孔硅胶进行离心清洗,离心条件为3000rpm,5min,用乙醇洗三次,水洗两次。然后将所得到的无孔硅胶再次分散于水解液中,进行生长,通过控制加入硅源的次数来控制最终的粒径大小,待反应完后进行离心洗涤,2500rpm,3min,乙醇洗3次,水洗7次。其粒径分布通过微米激光粒度仪(Mastersizer2000)测定,如图1所示。
核壳结构硅胶微球的合成
取3g合成的无孔硅胶分散于40ml水中超声分散30min;另取1g十六烷基三甲基氯化铵(CTAC,99%,百灵威)加入60ml水中超声30min溶解,加入5.8ml十三烷(≥99%,Sigma-Aldrich)或者有机胺试剂,然后将其与NPS分散液混合,超声50min。90℃油浴,磁子搅拌,加入6ml氨水,28mg氟化铵(≥98%,Sigma-Aldrich)反应24h。实验中可以将CTAC换为十六烷基三甲基溴化铵(CTAB)或者十八烷基三甲基溴化铵(OTAB)。待反应结束后离心洗涤,95%乙醇洗三次,水洗两次,每次离心条件设置3000rpm,5min,然后用甲醇抽滤过夜70℃烘干。接着进行模板烧结,升温速率1℃/min,550℃保持6h,自然冷却至室温。最后用5mol/L盐酸溶液回流12h活化硅胶,用大量水清洗,直至中性,烘干待用。其核壳结构通过透射电子显微镜(JEM-2000EX)表征,如图2所示。
将扩孔辅助剂烷烃换为有机胺,十六烷基二甲基叔胺(≥95%,Sigma-Aldrich)的加入量为5.8ml或者3ml,其他条件不变。其透射电镜图片如图3所示。
扩孔实验
(1)水热扩孔法。
在水热条件下进行扩孔实验,扩孔剂采用三甲苯或者有机胺,如N,N-二甲基癸胺(DMDA,>93.0%,百灵威)。具体步骤如下:取0.5mL三甲苯加入分散有1g硅胶的30g水中,转入水热釜中,105℃条件下反应4小时。
取0.8g硅胶微球加入30g水中超声分散1h;另取30g水,加入1g(1.28mL)DMDA,搅拌均匀10min,然后将分散好的硅胶加入,搅拌1小时,转入水热反应釜在120℃条件下保持3天。反应完后95%乙醇离心洗3次,水洗2次,每次离心条件设置为3000rpm,5min。65℃过夜烘干,然后550℃烧结6小时,升温速率为1℃/min。
实验中通过改变DMDA的加入量来优化条件,如0.3g,1g,1.25g,1.5g。
(2)稀氨水扩孔法。
平行各取1g经过烧结的核壳结构硅胶微球分散于100mL,pH为10.20的氨水溶液中,分别在50℃和85℃下反应30min,1h,1.5h,3h和5h。反应完后水离心洗三次。比表面积和孔径分布通过中孔分析物理吸附仪(QuadraSorb SI4)进行分析,其结果如图4所示。
键合C18固定相
将活化后的硅胶取1g在120℃烘干6h,无水甲苯超声分散,加入0.4ml十八烷基三氯硅烷,搅拌回流6h。待反应完后依次用甲苯,丙酮,甲醇,丙酮抽滤洗涤;接着放入烘箱80℃烘干2h,再次用甲苯分散,加入三甲基氯硅烷封尾,回流2h;待反应完后依次用甲苯,丙酮,甲醇抽滤洗涤,然后65℃烘干待用。
色谱实验
色谱柱(50×2.1mmi.d.)装填反相C18核壳结构硅胶色谱填料。所用色谱仪(安捷伦1290)最大压力可到120MPa,柱温控制可以到100℃。等度条件下流动相A为纯水,流动相B为乙腈,测试用小分子样品为尿嘧啶,苯,甲苯和萘,初始浓度分别为0.09,7.0,6.5,0.5mg/mL,各取100μL混合后加入600μL水稀释10倍后进样;柱效测试条件为:流速0.3ml/min,30%乙腈,进样量0.3μL,25℃,254nm检测;梯度条件下流动相A为水加入0.1%三氟乙酸,流动相B为乙腈加入0.1%三氟乙酸。五种多肽混合物初始浓度为1mg/mL,配制时各取10μL混合后加入200μL水稀释,然后直接进样,流速1.2mL/min,18-30%B,梯度时间1min,40℃,其检测波长为214nm。整体蛋白色谱分离条件:1mL/min,29-65%B,梯度时间1min,50℃,检测波长214nm。其分离色谱图如图5所示。

Claims (10)

1.一种有序介孔核壳结构硅胶色谱填料,其特征在于:
所述的有序介孔核壳结构硅胶微球粒径在1μm-2μm之间,其核是无孔的,具有的壳层厚度在100-360nm之间,壳层具有有序的多孔结构,其孔道方向垂直于硅球表面,其孔径大小在5nm-30nm之间,其孔容量在0.1和0.5之间,比表面积在100到200m2/g之间。
2.一种权利要求1所述有序介孔核壳结构硅胶色谱填料的制备方法,其特征在于:
(1)采用低温下成核,高温下生长的方式以间歇加入法合成无孔硅胶微球;
(2)采用刻蚀法合成核壳结构硅胶微球,同时加入阳离子表面活性剂和有机胺或者烷烃;
(3)采用水热法和稀氨水刻蚀两种方法进行硅胶微球扩孔。
3.按照权利要求2所述的制备方法,其特征在于:
步骤(1)中:合成微球的硅源可以是原硅酸四乙酯或者原硅酸四甲酯,采用氨水调节反应pH值;
具体过程:首先配制水解液,其组成为4-10wt.%氨水(采用氨水浓度28-30wt.%配制)、3-8wt.%水、余量为无水乙醇,在0-22℃低温水浴条件下机械搅拌时间大于等于10分钟;
以100g水解液计,向水解液中加入2-6g正硅酸乙酯,反应时间大于等于40分钟,将水浴温度升至40-60℃,反应时间大于等于40分钟;然后加入0.4-1g水和2-6g正硅酸乙酯,正硅酸乙酯须提前预热至反应温度40-60℃,反应时间大于等于40分钟,重复此加入步骤1-7次;再次加入100g水解液,继续加入0.4-1g水和2-6g正硅酸乙酯40-60℃生长至目标粒径;对合成的无孔硅胶微球进行离心清洗,清洗依次用乙醇、水进行;经过上面操作,可以获得粒径在0.5-1.5μm的无孔硅胶微球;
若要制备粒径大于1.5至小于等于2μm的无孔硅胶微球,将所得到的无孔硅胶微球再次分散于水解液中,以100g水解液计,向其中加入1-10g的粒径0.5-1.5μm无孔硅胶微球,水解液组成为4-10wt.%氨水(采用氨水浓度28-30wt.%配制)、3-8wt.%水、余量为无水乙醇;以100g水解液计,加入0.4-1g水和2-6g正硅酸乙酯,正硅酸乙酯须提前预热至反应温度40-60℃,于40-60℃进行生长,反应时间大于等于40分钟,通过控制加入硅源的次数来控制最终的粒径大小,通常硅源和水的加入次数为1-3次,待反应后进行离心洗涤,依次用乙醇洗2-4次、水洗5-10次。
4.按照权利要求2所述的制备方法,其特征在于:
步骤(2)中:阳离子表面活性剂为十六烷基三甲基溴化铵,十六烷基三甲基氯化铵,十八烷基三甲基溴化铵或者其他阳离子表面活性剂中的一种或二种以上组合;
微球的孔径可以通过加入有机胺或者烷烃的方式来优化孔径,其作用为扩孔剂,加入的有机胺试剂是N,N-二甲基癸胺或者十六烷基二甲基叔胺;烷烃为直链饱和烷烃,其碳数介于十三和二十二碳之间;此类试剂(有机胺或者烷烃)的加入一般会形成油水两相体系;
阳离子表面活性剂和有机胺或者烷烃可以形成混合胶束,混合胶束组成可以是上述任意一种或多种阳离子表面活性剂和上述的任何一种或多种有机胺试剂,如十六烷基三甲基氯化铵和十六烷基二甲基叔胺可以形成混合胶束。
5.按照权利要求2或3所述的制备方法,其特征在于:
步骤(2)中:刻蚀法合成核壳结构硅胶微球,
取步骤(1)中合成的无孔硅胶微球1-10g微球分散于30-35g水中超声分散;另取阳离子表面活性剂0.5-10g加入50-55g水中超声溶解,加入有机胺0.5-10g或者直链烷烃0.5-10g,然后将其与无孔硅胶微球分散液混合,超声分散1-2h;
在油浴中加热(80-100℃),磁子搅拌5-10min后,加入28-30wt.%氨水2-10g,氟化铵0.01-0.05g反应;
控制以上反应液总质量为100-130g;
反应10-30h结束后离心洗涤,依次用乙醇、水洗涤,然后用甲醇抽滤过夜,烘干。
6.按照权利要求5所述的制备方法,其特征在于:
烘干后的微球接着在马弗炉中550-600℃进行模板烧结,烧结时间为6小时,控制升温速率1-10℃/min,烧结完成后自然冷却至室温。
7.按照权利要求2、5或6所述的制备方法,其特征在于:
水热扩孔法:在水热釜密闭条件下,取1,3,5-三甲苯或者有机胺加入分散有步骤(2)中合成的未进行烧结的硅胶微球的水中,其中1,3,5-三甲苯终浓度为1-7wt.%或有机胺终浓度为0.4-5wt.%,硅胶微球终浓度为1-10wt.%;转入水热釜中,100-120℃条件下反应时间为1-3天;依次用乙醇、水洗,然后用甲醇抽滤过夜,烘干;
接着转入马弗炉中,控制升温速率1-10℃/min从室温升温至550-600℃,然后在马弗炉中550-600℃进行模板烧结,烧结时间为6-12小时,烧结完成后自然冷却至室温;
稀氨水扩孔法:取经过烧结的核壳结构硅胶微球分散于pH=10-11的氨水溶液中,硅胶微球终浓度为1-10wt.%,在50-85℃的加热搅拌的条件下反应0.5-5h;反应完后水离心洗涤。
8.按照权利要求3、5或7所述的制备方法,其特征在于:
微球离心洗涤时转速可以为2500-3000转每分钟,离心时间可以是3-5分钟。
9.一种权利要求1所述有序介孔核壳结构硅胶色谱填料的应用,其特征在于:
所合成的微球可以通过表面化学衍生制备成不同模式的色谱填料。
10.按照权利要求9所述的应用,其特征在于:所合成的微球作为色谱填料使用可以用于生物分子的固相萃取。
CN201310106742.8A 2013-03-29 2013-03-29 一种有序介孔核壳结构硅胶色谱填料及其制备和应用 Active CN104069839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310106742.8A CN104069839B (zh) 2013-03-29 2013-03-29 一种有序介孔核壳结构硅胶色谱填料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310106742.8A CN104069839B (zh) 2013-03-29 2013-03-29 一种有序介孔核壳结构硅胶色谱填料及其制备和应用

Publications (2)

Publication Number Publication Date
CN104069839A true CN104069839A (zh) 2014-10-01
CN104069839B CN104069839B (zh) 2016-08-03

Family

ID=51591677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310106742.8A Active CN104069839B (zh) 2013-03-29 2013-03-29 一种有序介孔核壳结构硅胶色谱填料及其制备和应用

Country Status (1)

Country Link
CN (1) CN104069839B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860321A (zh) * 2015-04-30 2015-08-26 天津大学 多孔有机-无机杂化硅胶微球的制备方法
CN105107475A (zh) * 2015-08-21 2015-12-02 天津博纳艾杰尔科技有限公司 一种核壳型多孔二氧化锆材料及其制备方法
CN106944022A (zh) * 2017-03-23 2017-07-14 上海理工大学 基于模板法制备大孔硅胶微球的方法及其应用
CN106955679A (zh) * 2017-03-15 2017-07-18 华东理工大学 应用于液相色谱分离分析的核壳型填料及其制备方法
CN107790075A (zh) * 2016-09-06 2018-03-13 南京理工大学 一种核‑壳‑壳结构的磁性介孔SiO2纳米粒子的制备方法
CN108079957A (zh) * 2016-11-21 2018-05-29 中国科学院大连化学物理研究所 一种n-磷酸化肽段和蛋白质富集材料及其制备和应用
CN112585089A (zh) * 2018-08-28 2021-03-30 国立大学法人东北大学 核壳型多孔质二氧化硅粒子的制造方法
CN113237969A (zh) * 2021-04-21 2021-08-10 南京大学 具有中心通透且辐射状孔径的单分散介孔硅纳米色谱填料的制备及其在色谱分离中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101745369A (zh) * 2008-12-19 2010-06-23 中国科学院兰州化学物理研究所 超高效液相色谱用球形硅胶填料的制备方法
CN102091606A (zh) * 2010-12-08 2011-06-15 苏州环球色谱有限责任公司 核壳型液相色谱填料的合成方法
CN102272239A (zh) * 2008-11-26 2011-12-07 爱尔兰国家大学科克学院 制备二氧化硅微粒的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272239A (zh) * 2008-11-26 2011-12-07 爱尔兰国家大学科克学院 制备二氧化硅微粒的方法
CN101745369A (zh) * 2008-12-19 2010-06-23 中国科学院兰州化学物理研究所 超高效液相色谱用球形硅胶填料的制备方法
CN102091606A (zh) * 2010-12-08 2011-06-15 苏州环球色谱有限责任公司 核壳型液相色谱填料的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANJIANG DONG ET AL.: "One-pot synthesis of silica core–shell particles with double shells and different pore orientations from their nonporous counterparts", 《JOURNAL OF MATERIALS CHEMISTRY》 *
JESSE O. OMAMOGHO ET AL.: "Structural variation of solid core and thickness of porous shell of 1.7μm core–shell silica particles on chromatographic performance: Narrow bore columns", 《JOURNAL OF CHROMATOGRAPHY A》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860321A (zh) * 2015-04-30 2015-08-26 天津大学 多孔有机-无机杂化硅胶微球的制备方法
CN104860321B (zh) * 2015-04-30 2017-05-10 天津大学 多孔有机‑无机杂化硅胶微球的制备方法
CN105107475A (zh) * 2015-08-21 2015-12-02 天津博纳艾杰尔科技有限公司 一种核壳型多孔二氧化锆材料及其制备方法
CN105107475B (zh) * 2015-08-21 2017-11-14 天津博纳艾杰尔科技有限公司 一种核壳型多孔二氧化锆材料及其制备方法
CN107790075B (zh) * 2016-09-06 2020-12-11 南京理工大学 一种核-壳-壳结构的磁性介孔SiO2纳米粒子的制备方法
CN107790075A (zh) * 2016-09-06 2018-03-13 南京理工大学 一种核‑壳‑壳结构的磁性介孔SiO2纳米粒子的制备方法
CN108079957B (zh) * 2016-11-21 2020-08-11 中国科学院大连化学物理研究所 一种n-磷酸化肽段和蛋白质富集材料及其制备和应用
CN108079957A (zh) * 2016-11-21 2018-05-29 中国科学院大连化学物理研究所 一种n-磷酸化肽段和蛋白质富集材料及其制备和应用
CN106955679B (zh) * 2017-03-15 2020-01-14 华东理工大学 应用于液相色谱分离分析的核壳型填料及其制备方法
CN106955679A (zh) * 2017-03-15 2017-07-18 华东理工大学 应用于液相色谱分离分析的核壳型填料及其制备方法
CN106944022B (zh) * 2017-03-23 2019-06-28 上海理工大学 基于模板法制备大孔硅胶微球的方法及其应用
CN106944022A (zh) * 2017-03-23 2017-07-14 上海理工大学 基于模板法制备大孔硅胶微球的方法及其应用
CN112585089A (zh) * 2018-08-28 2021-03-30 国立大学法人东北大学 核壳型多孔质二氧化硅粒子的制造方法
CN112585089B (zh) * 2018-08-28 2023-06-20 国立大学法人东北大学 核壳型多孔质二氧化硅粒子的制造方法
CN113237969A (zh) * 2021-04-21 2021-08-10 南京大学 具有中心通透且辐射状孔径的单分散介孔硅纳米色谱填料的制备及其在色谱分离中的应用

Also Published As

Publication number Publication date
CN104069839B (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
CN104069839A (zh) 一种有序介孔核壳结构硅胶色谱填料及其制备和应用
Shi et al. Dextran-grafted cation exchanger based on superporous agarose gel: adsorption isotherms, uptake kinetics and dynamic protein adsorption performance
Qiu et al. Development of silica-based stationary phases for high-performance liquid chromatography
JP5596560B2 (ja) 分離媒体の製造方法
CN104667876A (zh) 系列MOF型多级孔材料IPD-mesoMOF-1~8及其制备方法,以及介孔大小的调节方法
CN104014320B (zh) 一种富集痕量速灭威的水相金属有机框架分子印迹材料
CN106276925A (zh) 一种制备介孔二氧化硅核壳微球的方法
CN109399648A (zh) 微米级单分散多孔二氧化硅微球及其制备方法
Aydoğan Boronic acid-fumed silica nanoparticles incorporated large surface area monoliths for protein separation by nano-liquid chromatography
CN104495869B (zh) 一种小晶粒zsm-35分子筛的制备方法
CN106944022B (zh) 基于模板法制备大孔硅胶微球的方法及其应用
Nordborg et al. Monolithic phases for ion chromatography
EP2785641B1 (en) Porous particles for liquid chromatography and processes for the preparation thereof
CN105645427B (zh) 具有介孔‑微孔分等级结构的zsm‑22分子筛的制备方法
Qiao et al. High-surface-area interconnected macroporous nanofibrous cellulose microspheres: a versatile platform for large capacity and high-throughput protein separation
Liu et al. Preparation of silica-based superficially porous silica and its application in enantiomer separations: a review
Wu et al. Monodisperse core–shell silica particles as a high-performance liquid chromatography packing material: Facile in situ silica sol-gel synthesis
Zhao et al. A facile strategy to synthesize spherical SBA-15 silicas by the addition of poly (vinyl alcohol)
CN102091606A (zh) 核壳型液相色谱填料的合成方法
CN104671256B (zh) 一种用于制备有机含氧化合物制低碳烯烃的催化剂的sapo-5/sapo-34复合分子筛的制备方法
Wan et al. Synthesis of SiO2@ SiO2 core-shell microspheres using urea-formaldehyde polymers as the templates for fast separation of small solutes and proteins
CN104557718B (zh) 一种rho沸石型2-乙基咪唑锌多孔材料的制备方法及其应用
Luo et al. Fundamental to achieving fast separations with high efficiency: A review of chromatography with superficially porous particles
He et al. Copper ion based metal–organic framework nanomaterials with roughness enhanced protein adhesion for high-efficiency hemoglobin separation
CN108467046B (zh) 一种单分散多孔硅胶微球的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant