CN104052358A - 用以控制无刷电动机的电流基准的生成 - Google Patents

用以控制无刷电动机的电流基准的生成 Download PDF

Info

Publication number
CN104052358A
CN104052358A CN201410092806.8A CN201410092806A CN104052358A CN 104052358 A CN104052358 A CN 104052358A CN 201410092806 A CN201410092806 A CN 201410092806A CN 104052358 A CN104052358 A CN 104052358A
Authority
CN
China
Prior art keywords
current
motor
torque command
torque
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410092806.8A
Other languages
English (en)
Other versions
CN104052358B (zh
Inventor
S.J.科利耶-霍尔曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexteer Beijing Technology Co Ltd
Steering Solutions IP Holding Corp
Original Assignee
Nexteer Beijing Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexteer Beijing Technology Co Ltd filed Critical Nexteer Beijing Technology Co Ltd
Publication of CN104052358A publication Critical patent/CN104052358A/zh
Application granted granted Critical
Publication of CN104052358B publication Critical patent/CN104052358B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明涉及用以控制无刷电动机的电流基准的生成。提供了一种用以控制电动机控制系统中的无刷电动机的电流基准生成器。所述电流基准生成器包括定位峰值扭矩模块,其基于电动机参数、最大电压、所述无刷电动机的电动机速度、和扭矩指令的符号,来确定最大可能扭矩和与所述最大可能扭矩相对应的直轴电流。限制扭矩指令模块将所述扭矩指令限制为所述最大可能扭矩。定位最小电流模块确定导致最小电动机电流的直轴电流的值。求解电流基准模块生成基准矢量,所述基准矢量满足如由与所述最大可能扭矩相对应的直轴电流和导致所述最小电动机电流的直轴电流所限制的扭矩指令。

Description

用以控制无刷电动机的电流基准的生成
相关申请的交叉引用
本专利申请要求2013年3月13日提交的美国临时专利申请No.61/778,857的优先权,其通过引用整体并入本文。
背景技术
电子转向电动机使用电流或电压控制来获得所需的操作扭矩。为了控制电压控制表面磁体无刷电动机,通常将极坐标中的电压基准矢量生成为使得效率被最大化,直到电压的幅度接近向控制器的DC输入电压为止。然后,改变相位角度,以用有限的电压获得所需的扭矩。替代地,表面磁体无刷电动机可使用电流基准被电流控制。另一种无刷电动机是内部永久磁体同步电动机,也被称为内部磁体电动机,其通常使用相对于电流基准的电流控制来得到控制,但是也可以用相对于电压基准的电压控制来得到控制。
发明内容
提供了一种用以控制电动机控制系统中的无刷电动机的电流基准生成器。所述电流基准生成器包括定位峰值扭矩模块,其基于多个电动机参数、最大电压、所述无刷电动机的电动机速度、和扭矩指令的符号,来确定最大可能扭矩和与所述最大可能扭矩相对应的直轴电流。限制扭矩指令模块将所述扭矩指令限制为所述最大可能扭矩。定位最小电流模块确定导致最小电动机电流的直轴电流的值。求解电流基准模块生成基准矢量,所述基准矢量满足如由与所述最大可能扭矩相对应的直轴电流和导致所述最小电动机电流的直轴电流所限制的扭矩指令。
提供了一种用以生成基准矢量来控制电动机控制系统中的无刷电动机的方法。所述方法包括:基于多个电动机参数、最大电压、所述无刷电动机的电动机速度、和扭矩指令的符号,来确定最大可能扭矩和与所述最大可能扭矩相对应的直轴电流。将所述扭矩指令限制为所述最大可能扭矩。确定导致最小电动机电流的直轴电流的值。生成基准矢量,所述基准矢量满足如由与所述最大可能扭矩相对应的直轴电流和导致所述最小电动机电流的直轴电流所限制的扭矩指令。
结合附图从以下描述中,这些以及其它优点和特征将变得更加清楚明了。
附图说明
被看作本发明的主题在说明书的总结处的权利要求书中被具体指出并被清楚地要求。结合附图从以下详细描述中本发明的前述以及其它特征和优点将变得清楚明了,附图中:
图1是依据本发明一示例性实施例的电动机控制系统的框图;
图2是依据本发明一示例性实施例的电流基准生成器的框图;
图3是依据本发明一示例性实施例的用于生成基准矢量来控制电动机控制系统中的无刷电动机的工艺流程图;
图4是依据本发明一示例性实施例的定位峰值扭矩的工艺流程图;
图5是依据本发明一示例性实施例的计算等级的工艺流程图;
图6是依据本发明一示例性实施例的用以查找峰值的工艺流程图;
图7是依据本发明一示例性实施例的用以围包角度的工艺流程图;
图8是依据本发明一示例性实施例的用以内插峰值的工艺流程图;
图9是依据本发明一示例性实施例的用以定位最小电流的工艺流程图;并且
图10是依据本发明一示例性实施例的用以求解电流基准的工艺流程图。
具体实施方式
现在参考附图,其中将参考特定实施例来描述本发明,而不是限制本发明,图1是电动机控制系统10的一示例性框图。电动机控制系统10包括电流基准生成器20、d轴比例加积分增益(PI)控制器22、q轴PI控制器23、极性转换控制器24、脉冲宽度调制(PWM)逆变器控制器26、逆变器28、DC电源30、电动机32、位置传感器34、速度传感器36、变换控制器38、a轴电流放大器40、b轴电流放大器42、a轴模拟数字转换器(ADC)44、和b轴ADC 46。电动机32可以是无刷电动机,比如表面磁体无刷电动机或内部磁体电动机,受控于电流控制模式或电压控制模式。电动机控制系统10可以是电动力转向系统(未示出)的一部分。电动机32可以是被构造成基于扭矩指令提供转向协助扭矩的无刷电动机。
在如图1中示出的实施例中,逆变器28连接至DC电源30,其中DC电源30可以是例如电池。DC电源30可以通过DC输入线49连接至逆变器28。传感器(transducer)51可以被使用来监测越过DC输入线49的电桥电压Vecu。表示电桥电压Vecu的控制信号53可以被发送至电流基准生成器20和PWM逆变器控制器26。在如图所示的示例性实施例中,逆变器26通过线50、线52和线54向电动机32传输三个交流(AC)相电流(例如,ia、ib和ic),用于操作和控制电动机32。电桥电压Vecu可以表示可获得来用于控制电动机32的最大电压。替代地,最大电压可为电桥电压Vecu的百分比,比如电桥电压Vecu的90%或95%。
为了反馈控制目的,通过线50和52传输至电动机32的相电流ia和ib可以检测来确定流动至电动机32的瞬时电流。具体地,传感器56可以被使用来监测线50上的相电流ia,并且传感器58可以被使用来监测线52上的相电流ib。应当指出的是:尽管示出了传感器56和传感器58,但是可以只监测线50或52之一,来测量相电流ia或相电流ib。表示测量到的相电流ia的控制信号60可以从传感器56发送至a轴电流放大器40,并且表示测量到的相电流ib的控制信号62可以从传感器58发送至b轴电流放大器42。相电流ia的增大或放大值然后从a轴电流放大器40发送至a轴ADC 44,并且相电流ib 62的放大值从b轴电流放大器42发送至b轴ADC 46。a轴ADC 44将相电流ia的放大值转换成数字值64。数字值64表示相电流ia的幅度。b轴ADC 46将相电流ib的放大值转换成数字值66。数字值66表示相电流ib的幅度。
变换控制器38作为输入接收来自ADC 44的数字值64和来自ADC 46的数字值66。在一个实施例中,变换控制器38是三相到二相变换控制器,其中AC电流的测量值(例如,表示相电流ia的数字值64和表示相电流ib的数字值66)被转换成等价的测得DC电流分量,其是测得d轴电流Id测得和测得q轴电流Iq测得。测得d轴电流Id测得被发送至减法器70,并且测得q轴电流Iq测得被发送至减法器72。
电流基准生成器20作为输入接收扭矩指令Te、角速度ωm、和来自传感器51的表示电桥电压Vecu的控制信号53。扭矩指令Te表示所下达的扭矩值,并且可以得自另一控制器(未示出),或者可以对应于由操作者生成的扭矩值。角速度ωm由速度传感器36测量。速度传感器36可以包括例如编码器和速度计算电路,所述速度计算电路基于由编码器接收到的信号来计算电动机32的转子(未示出)的角速度。电流基准生成器20基于扭矩指令Te、电桥电压Vecu和角速度ωm来计算基准d轴电流Id_REF和基准q轴电流Iq_REF,其在以下描述。基准d轴电流Id_REF被发送至减法器70,并且基准q轴电流Iq_REF被发送至减法器72。
减法器70接收测得d轴电流Id测得和基准d轴电流Id_REF。减法器70基于测得d轴电流Id测得和基准d轴电流Id_REF来确定d轴误差信号74。d轴误差信号74表示测得d轴电流Id测得与基准d轴电流Id_REF之间的误差。减法器72接收测得q轴电流Iq测得和基准q轴电流Iq_REF。减法器72基于测得q轴电流Iq测得和基准q轴电流Iq_REF来确定q轴误差信号76。q轴误差信号76表示测得q轴电流Iq测得与基准q轴电流Iq_REF之间的误差。
d轴PI控制器22作为输入接收来自减法器70的d轴误差信号74。d轴PI控制器22计算d轴电压信号VD。d轴电压信号VD基于d轴比例增益KP和d轴积分增益Ki。同样地,q轴PI控制器23作为输入接收来自减法器72的q轴误差信号76。q轴PI控制器23计算q轴电压信号VQ。q轴电压信号VQ基于q轴比例增益KP和q轴积分增益Ki
极性转换控制器24作为输入接收来自d轴PI控制器22的d轴电压信号VD和来自q轴PI控制器23的q轴电压信号VQ。基于这些输入,极性转换控制器24确定电压指令Vcmd和相位超前角度δ。PWM逆变器控制器26作为输入接收来自极性转换控制器24的电压指令Vcmd和相位超前角度δ。PWM逆变器控制器26还接收由电动机位置传感器34测量的转子角度值θr。在一个示例性实施例中,PWM逆变器控制器26可以包括过调制空间矢量PWM单元,用以生成三个相应的占空比值Da、Db和Dc。占空比值Da、Db和Dc被使用来驱动逆变器28的门极驱动电路(未示出),其激励电动机32的相位。
图2是依据本发明一示例性实施例的电流基准生成器200的框图。电流基准生成器200是图1的电流基准生成器20的一个实施例。在一替代实施例中,电流基准生成器200被用于电压模式系统,其被构造成基于电压基准矢量进行操作,比如被控制在电压模式中的无刷电动机。如前面描述的,在电压控制电动机中,通常将极坐标中的电压基准矢量生成为使得效率被最大化,直到电压的幅度接近向控制器的DC输入电压为止。然后,改变相位角度,以用有限的电压获得所需的扭矩。然而,电动机控制系统通常不支持被控制在电压模式和电流模式两者中的电动机。相反,电流基准生成器200产生电流基准矢量和电压基准矢量两者,以支持电压或者电流控制电动机。
如本文中所使用的,术语“模块”是指处理电路,比如专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的存储器和处理器(共享、专用或组)、组合逻辑电路、和/或提供所描述功能的其它适当部件。如能够理解的,在图2中示出的模块可被组合和/或被进一步划分,以类似地生成电流基准矢量和电压基准矢量。
在图2的示例中,电流基准生成器200包括定位(locate)峰值扭矩模块202、限制扭矩指令模块204、定位最小电流模块206和求解电流基准模块208。电流基准生成器200还可以包括中间计算模块210,其基于多个电动机参数216、最大电压212和电动机速度214来确定多个中间值218。中间值218可在一个区间中被计算出,并通过定位峰值扭矩模块202在多个区间内被重复地使用。中间值218还可被提供至定位最小电流模块206和求解电流基准模块208。电流基准生成器200还接收扭矩指令220,并生成电流基准矢量222和电压基准矢量224。
最大电压212可为图1的电桥电压Vecu,或电桥电压Vecu的百分比,比如电桥电压Vecu的90%或95%。电动机速度214可以是由图1的速度传感器36测量的角速度ωm,其中图1的电动机32是由电流基准生成器200控制的无刷电动机。电动机参数216可以是对于图1的电动机32的测量值或估算值,包括例如电动机常数(Ke)、电动机电路电阻(R)、直轴电感(Ld)、交轴电感(Lq)、和多个电极(N电极)。扭矩指令220可以是图1的扭矩指令Te。电流基准矢量222可包括图1的基准d轴电流Id_REF和基准q轴电流Iq_REF。电压基准矢量224可包括基准d轴电压Vd_REF和基准q轴电压Vq_REF
定位峰值扭矩模块202基于电动机参数216、最大电压212、电动机速度214和扭矩指令220的符号(sign),来确定最大可能扭矩和与最大可能扭矩相对应的直轴电流。定位峰值扭矩模块202可以进一步被构造成用以:在一圆中旋转电压矢量有限步数,将电压矢量映射为电流矢量,基于电流矢量生成扭矩值的等级阵列(bracket array),并搜索等级阵列来获取最大可能扭矩。定位峰值扭矩模块202可进一步被构造成调节具有零角度的等级阵列中的任一个以围包(wrap)该角度,并进行迭代抛物线插值以调整最大可能扭矩的位置。
限制扭矩指令模块204将扭矩指令220限制为最大可能扭矩。定位最小电流模块206确定导致最小电动机电流的直轴电流的值。定位最小电流模块206可以进一步被构造成使用零直轴电流、与除以电动机常数的扭矩指令相等的直轴电流、和除以电动机常数的扭矩指令的一半作为用于迭代抛物线插值的初始点,来进行迭代抛物线插值。
求解电流基准模块208生成满足如由与最大可能扭矩相对应的直轴电流和导致最小电动机电流的直轴电流所限制的扭矩指令220的基准矢量。求解电流基准模块208进一步被构造成基于导致最小电动机电流的直轴电流满足扭矩指令220的确定,来进行最小值测试以将基准矢量设定为最小值。求解电流基准模块208还被构造成基于与最大可能扭矩相对应的直轴电流不满足扭矩指令220的确定,来进行最大值测试以将基准矢量设定为最大值。基于最小值测试和最大值测试未被满足的确定,来进行区间二分法搜索。求解电流基准模块208进一步被构造成计算电流基准矢量222和电压基准矢量224。求解电流基准模块208可被构造成将电流基准矢量222设定为满足扭矩指令220的基准矢量,其中无刷电动机被控制在电流模式中。替代地,求解电流基准模块208可被构造成将电压基准矢量224设定为满足扭矩指令220的基准矢量,其中无刷电动机被控制在电压模式中。
图3是依据本发明一示例性实施例的用于生成基准矢量来控制电动机控制系统中的无刷电动机的工艺流程图300。工艺300可由作为图1的电流基准生成器20的一个实施例的图2的电流基准生成器200或例如表面或内部磁体电动机控制系统中的其它构造来进行。因此,参考图1-3来描述图3。
在框302处,可由中间计算模块210来进行中间计算,以基于电动机参数216、最大电压212和电动机速度214确定多个中间值218,其中中间值218在一个区间中被计算出,并在多个区间内被重复地使用。用以确定中间值218的中间计算的示例被提供在如下公式1-11中。  
ωEM*N电极/2                                                    (公式1)
ωE_div_R=ωE/R                                                   (公式2)
Xd_除_R=ωE_除_R*Ld                                       (公式3)
Xq_除_R=ωE_除_R*Lq                                       (公式4)
电阻=1+Xd_除_R*Xq_除_R                               (公式5)
归一化BEMF=KeM                                       (公式6)
归一化BEMF2=归一化BEMF/电阻               (公式7)
归一化电压=最大电压/R                                  (公式8)
归一化电压2=归一化电压2                             (公式9)
归一化电压3=归一化电压/电阻                      (公式10)
磁阻系数=(Ld-Lq)*N电极                                     (公式11)。
在框304处,由定位峰值扭矩模块202进行的定位峰值扭矩工艺基于电动机参数216、最大电压212、无刷电动机的电动机速度214和扭矩指令220的符号,来确定最大可能扭矩和与最大可能扭矩相对应的直轴电流。中间值218可被使用来将与电动机参数216、最大电压212和电动机速度214相关联的值提供至定位峰值扭矩模块202。关于框304的定位峰值扭矩工艺的更多细节进一步在本文中参考图4-8中来描述。
在框306处,扭矩指令220被限制扭矩指令模块204限制为最大可能扭矩。
在框308处,由定位最小电流模块206进行的定位最小电流工艺确定导致最小电动机电流的直轴电流的值。关于框308的定位最小电流工艺的更多细节进一步在本文中参考图9中来描述。
在框310处,由求解电流基准模块208进行的求解电流基准工艺可生成满足如由与最大可能扭矩相对应的直轴电流和导致最小电动机电流的直轴电流所限制的扭矩指令220的基准矢量。关于框310的求解电流基准工艺的更多细节进一步在本文中参考图10来描述。
图4是依据本发明一示例性实施例的来自图3的框304的定位峰值扭矩工艺的工艺流程图。在框400处,进行计算等级工艺,如进一步在本文中参考图5描述的。在框402处,进行查找峰值工艺,如进一步在本文中参考图6描述的。在框404处,进行围包角度工艺,如进一步在本文中参考图7描述的。在框406处,进行内插峰值工艺,如进一步在本文中参考图8描述的。
图5是依据本发明一示例性实施例的来自图4的框400的计算等级工艺的工艺流程图。等级计算在一圆中旋转电压矢量有限步数,将电压矢量映射为电流矢量,并基于电流矢量生成扭矩值的等级阵列。在框500处,可读取等级表来为电压矢量的旋转限定出有限步数。在框502处,做出关于循环是否完成的确定。在框504处,基于循环未完成的确定,可根据公式12和13来进行电压矢量向电流矢量(V_Sin_Cos向Id_Iq)的映射,其中δ是角度。  
Iq=(V/(R*(1+Xd*Xq)))*(cos(δ)+Xd*sin(δ))-(Eg/(R*(1+Xd*Xq)            (公式12)
Id=Iq*Xq-sin(δ)*V/R                                                                             (公式13)。
在框506处,可根据公式14来计算扭矩值。扭矩值可形成用于搜索的等级阵列。  
扭矩=(Ke+(Ld-Lq)*N电极*Id)*Iq                                                             (公式14)。
在框508处,递增循环索引值,以用于框512处的比较,来确定循环是否完成。
图6是依据本发明一示例性实施例的来自图4的框402的查找峰值工艺的工艺流程图。查找峰值工艺搜索在图5的计算等级工艺中形成的等级阵列来获取最大可能扭矩。在框600处,使状态初始化,其中扭矩状态被设定为零,并且索引状态被设定为零。在框602处,进行检查来确定图2的扭矩指令220是否大于零。如果图2的扭矩指令220大于零并且工艺在框604处未完成,则在框606处进行检查,以确定扭矩值是否大于扭矩状态。如果扭矩值大于扭矩状态,则在框608处将扭矩状态设定为等于扭矩值,将索引状态设定为等于索引值,并在框610处递增索引值。如果在框606处扭矩值不大于扭矩状态,则在框610处递增索引值。
返回到框602,如果图2的扭矩指令220不大于零并且工艺在框612处未完成,则在框614处进行检查,以确定扭矩值是否小于扭矩状态。如果扭矩值小于扭矩状态,则在框616处将扭矩状态设定为等于扭矩值,将索引状态设定为等于索引值,并在框618处递增索引值。如果在框614处扭矩值不小于扭矩状态,则在框618处递增索引值。
图7是依据本发明一示例性实施例的来自图4的框404的围包角度工艺的工艺流程图。围包角度工艺可调节具有零角度的等级阵列中的任一个,以围包该角度。在框700处,将点B设定为{峰值扭矩索引值和峰值扭矩[峰值扭矩索引值]}。在框702处,进行检查以确定峰值扭矩索引值是否等于最大索引值。在框704处,基于峰值扭矩索引值等于最大索引值的确定,将点C设定为{Pi和峰值扭矩[0]},并且工艺继续至框706。在框708处,基于峰值扭矩索引值不等于最大索引值的确定,将点C设定为{峰值扭矩索引值+1和峰值扭矩[峰值扭矩索引值+1]},并且工艺继续至框706。
在框706处,进行检查以确定峰值扭矩索引值是否等于0。在框710处,基于峰值扭矩索引值等于0的确定,将点A设定为{负围包角,峰值扭矩[最大索引值]},并且工艺结束。在框712处,基于峰值扭矩索引值不等于0的确定,将点A设定为{峰值扭矩索引值-1和峰值扭矩[峰值扭矩索引值-1]},并且工艺结束。
图8是依据本发明一示例性实施例的来自图4的框406的内插峰值工艺的工艺流程图。内插峰值工艺可进行迭代抛物线插值,以调整最大可能扭矩的位置。在框800处,使用于插值的点初始化。在框802处,进行检查以确定工艺是否完成。基于工艺未完成的确定,在框804处,可根据公式15-21进行用于值X的抛物线插值。  
Temp1= fc – fb                                                           (公式15)
Temp2= fb – fa                                                           (公式16)
Temp3= xc – xb                                                          (公式17)
Temp4= xb – xa                                                          (公式18)
分子= Temp2*Temp3^2 + Temp1*Temp4^2             (公式19)
分母= Temp2*Temp3 – Temp1*Temp4                     (公式20)
X= xb + 分子/(2*分母)                                          (公式21)。
在框806处,可进行正弦和余弦查询操作。在框808处,可根据公式12和13进行电压矢量向电流矢量(V_Sin_Cos向Id_Iq)的映射。在框810处,可根据公式14来计算扭矩值。在框812处,可将测试值确定为X(点B)-X。在框814处,进行检查以确定测试值是否大于零。在框816处,基于测试值大于零的确定,将点A设定为等于点B,并且工艺推进至框818。在框820处,基于测试值不大于零的确定,将点C设定为等于点B,并且工艺推进至框818。在框818处,将点B设定为等于{X,扭矩值}。在框822处,进行检查以确定测试值的绝对值是否小于公差。基于测试值的绝对值不小于公差的确定,工艺返回到框802,否则,工艺结束。
图9是依据本发明一示例性实施例的来自图3的框308的定位最小电流工艺的工艺流程图。定位最小电流工艺可使用零直轴电流、与除以电动机常数Ke的图2的扭矩指令220相等的直轴电流、和除以电动机常数Ke的图2的扭矩指令220的一半作为用于迭代抛物线插值的初始点,来进行迭代抛物线插值。在框900处,将Iq最大设定为图2的扭矩指令220除以Ke,将Id上限设定为Iq最大的负绝对值,并将Id中值设定为Id上限除以2。在框902处,根据公式22为图2的扭矩指令220和Id上限计算Iq指令。此外,将Im^2设定为等于Iq指令^2+Id上限^2,并将点C设定为{Id上限和Im^2}。  
Iq= 扭矩/(Ke+(Ld-Lq)*N电极*Id)                   (公式22)。
在框904处,根据公式22为图2的扭矩指令220和Id中值计算Iq指令。此外,将Im^2设定为等于Iq指令^2+Id中值^2,并将点B设定为{Id中值和Im^2}。在框906处,将点A设定为{0和Iq最大^2}。
在框908处,进行检查以确定工艺是否完成。在框910处,基于工艺未完成的确定,可根据公式15-21进行用于值X的抛物线插值。在框912处,根据公式22为图2的扭矩指令220和X计算Iq指令。在框914处,将Im^2设定为等于Iq指令^2+X^2。在框916处,可将测试值确定为X(点B)-X。
在框918处,进行检查以确定测试值是否大于零。在框920处,基于测试值大于零的确定,将点A设定为等于点B,并且工艺推进至框922。在框924处,基于测试值不大于零的确定,将点C设定为等于点B,并且工艺推进至框922。在框922处,将点B设定为等于{X,扭矩值}。在框926处,进行检查以确定测试值的绝对值是否小于公差。基于测试值的绝对值不小于公差的确定,工艺返回到框908,否则,工艺结束。
图10是依据本发明一示例性实施例的来自图3的框310的求解电流基准工艺的工艺流程图。在框100处,基于导致最小电动机电流的直轴电流满足图2的扭矩指令220的确定,来进行最小值测试以将基准矢量设定为最小值。将Iref设定为{Id最小,Iq最小},并且可根据公式23和24进行向电压坐标的转换。将Vref设定为{Vd/R最小,Vq/R最小},并且可根据公式25进行电压测试。Iref可以是图2的电流基准矢量222,而Vref可以是图2的电压基准矢量224,其中Iref或Vref可为满足图2的扭矩指令220的基准矢量,取决于无刷电动机的控制模式。  
Vq/R = Iq + Xd*Id + Eg/R                                             (公式23)
Vd/R = Xq*Iq - Id                                                  (公式24)
测试值 = (Vq/R)^2 + (Vd/R)^2 – (V/R)^2                 (公式25)。
在框102处,进行检查以确定测试值是否大于或等于零。在框104处,基于测试值大于或等于零的确定,基于与最大可能扭矩相对应的直轴电流不满足图2的扭矩指令220的确定,来进行最大值测试以来基准矢量设定为最大值。根据公式22计算Iq指令。将Iref设定为{Id最大,Iq最大},并且可根据公式23和24进行向电压坐标的转换。将Vref设定为{Vd/R最大,Vq/R最大} 并且可根据公式25进行电压测试。
在框106处,进行检查以确定测试值是否小于或等于零。在框108处,基于测试值小于或等于零的确定,在最小值测试和最大值测试未被满足时,使区间二分法搜索初始化。将点B设定为{Id最大,Iq最大},并将点A设定为{Id最小,Iq最小}。
在框110处,进行检查以确定工艺是否完成。基于工艺未完成的确定,在框112处,确定新的估算。将Id设定为Id[点B]和Id[点A]的平均值。根据公式22计算Iq指令。将Iref设定为{Id,Iq},并且可根据公式23和24进行向电压坐标的转换。可根据公式25进行电压测试,并将Vref设定为{Vd/R,Vq/R}。
在框114处,递增循环计数器,并且使工艺返回到框110。
虽然只关联于有限数量的实施例详细描述了本发明,但是应该容易明白的是本发明并不局限于所公开的这些实施例。相反,本发明可以被改进以包含未在前面描述的任意数量的变型、变更、代替方案或者等同配置,但是它们应该与本发明的精神和范围相称。此外,虽然已经描述了本发明的多个实施例,但是应该明白的是本发明的方案可以只包括所描述实施例的一部分。因此,本发明不应看作被前面的描述所限制。

Claims (15)

1.一种用以控制电动机控制系统中的无刷电动机的电流基准生成器,所述电流基准生成器包括:
定位峰值扭矩模块,其基于多个电动机参数、最大电压、所述无刷电动机的电动机速度、和扭矩指令的符号,来确定最大可能扭矩和与所述最大可能扭矩相对应的直轴电流;
限制扭矩指令模块,其将所述扭矩指令限制为所述最大可能扭矩;
定位最小电流模块,其确定导致最小电动机电流的直轴电流的值;和
求解电流基准模块,其生成基准矢量,所述基准矢量满足如由与所述最大可能扭矩相对应的直轴电流和导致所述最小电动机电流的直轴电流所限制的扭矩指令。
2.如权利要求1所述的电流基准生成器,进一步包括:中间计算模块,其基于所述电动机参数、所述最大电压和所述电动机速度确定多个中间值,其中所述中间值在一个区间中被计算出,并被所述定位峰值扭矩模块在多个区间内被重复地使用。
3.如权利要求1所述的电流基准生成器,其中,所述定位峰值扭矩模块进一步被构造成:
在一圆中旋转电压矢量有限步数;
将所述电压矢量映射为电流矢量;
基于所述电流矢量生成扭矩值的等级阵列;和
搜索所述等级阵列以获取所述最大可能扭矩。
4.如权利要求3所述的电流基准生成器,其中,所述定位峰值扭矩模块进一步被构造成:
调节具有零角度的等级阵列中的任一个以围包所述角度;并且
进行迭代抛物线插值,以调整所述最大可能扭矩的位置。
5.如权利要求1所述的电流基准生成器,其中,所述定位最小电流模块进一步被构造成使用零直轴电流、与除以电动机常数的扭矩指令相等的直轴电流、和除以电动机常数的扭矩指令的一半作为用于迭代抛物线插值的初始点,来进行迭代抛物线插值。
6.如权利要求1所述的电流基准生成器,其中,所述求解电流基准模块进一步被构造成:
基于导致所述最小电动机电流的直轴电流满足所述扭矩指令的确定,来进行最小值测试以将所述基准矢量设定为最小值;
基于与所述最大可能扭矩相对应的直轴电流不满足所述扭矩指令的确定,来进行最大值测试以将所述基准矢量设定为最大值;并且
基于最小值测试和最大值测试未被满足的确定,来进行区间二分法搜索。
7.如权利要求6所述的电流基准生成器,其中,所述求解电流基准模块进一步被构造成计算电流基准矢量和电压基准矢量。
8.如权利要求7所述的电流基准生成器,其中,所述求解电流基准模块进一步被构造成将所述电流基准矢量设定为满足所述扭矩指令的基准矢量,其中所述无刷电动机被控制在电流模式中。
9.如权利要求7所述的电流基准生成器,其中,所述求解电流基准模块进一步被构造成将所述电压基准矢量设定为满足所述扭矩指令的基准矢量,其中所述无刷电动机被控制在电压模式中。
10.如权利要求1所述的电流基准生成器,其中,所述电动机控制系统是电动力转向系统的一部分,并且所述无刷电动机被构造成基于所述扭矩指令来提供转向协助扭矩。
11.一种用以生成基准矢量来控制电动机控制系统中的无刷电动机的方法,所述方法包括:
基于多个电动机参数、最大电压、所述无刷电动机的电动机速度、和扭矩指令的符号,来确定最大可能扭矩和与所述最大可能扭矩相对应的直轴电流;
将所述扭矩指令限制为所述最大可能扭矩;
确定导致最小电动机电流的直轴电流的值;以及
生成基准矢量,所述基准矢量满足如由与所述最大可能扭矩相对应的直轴电流和导致所述最小电动机电流的直轴电流所限制的扭矩指令。
12.如权利要求11所述的方法,进一步包括:
基于所述电动机参数、所述最大电压和所述电动机速度确定多个中间值,其中所述中间值在一个区间中被计算出,并在多个区间内被重复地使用。
13.如权利要求11所述的方法,进一步包括:
基于导致所述最小电动机电流的直轴电流满足所述扭矩指令的确定,来进行最小值测试以将所述基准矢量设定为最小值;
基于与所述最大可能扭矩相对应的直轴电流不满足所述扭矩指令的确定,来进行最大值测试以将所述基准矢量设定为最大值;以及
基于最小值测试和最大值测试未被满足的确定,来进行区间二分法搜索。
14.如权利要求13所述的方法,进一步包括:
计算电流基准矢量和电压基准矢量。
15.如权利要求14所述的方法,进一步包括:
将所述电流基准矢量设定为满足所述扭矩指令的基准矢量,其中所述无刷电动机被控制在电流模式中。
CN201410092806.8A 2013-03-13 2014-03-13 用以控制无刷电动机的电流基准的生成 Active CN104052358B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361778857P 2013-03-13 2013-03-13
US61/778857 2013-03-13
US61/778,857 2013-03-13
US14/090,484 US9531311B2 (en) 2013-03-13 2013-11-26 Generation of a current reference to control a brushless motor
US14/090484 2013-11-26
US14/090,484 2013-11-26

Publications (2)

Publication Number Publication Date
CN104052358A true CN104052358A (zh) 2014-09-17
CN104052358B CN104052358B (zh) 2017-05-31

Family

ID=50287881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410092806.8A Active CN104052358B (zh) 2013-03-13 2014-03-13 用以控制无刷电动机的电流基准的生成

Country Status (3)

Country Link
US (1) US9531311B2 (zh)
EP (1) EP2779431B1 (zh)
CN (1) CN104052358B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803853A (zh) * 2019-11-14 2021-05-14 操纵技术Ip控股公司 电动马达驱动系统中源电流的动态控制

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461574B2 (en) 2013-03-12 2016-10-04 Steering Solutions Ip Holding Corporation Motor control system for determining a reference d-axis current and a q-axis current
US9966889B2 (en) * 2013-05-12 2018-05-08 Infineon Technologies Ag Optimized control for synchronous motors
JP6597273B2 (ja) * 2015-12-17 2019-10-30 株式会社デンソー モータ制御装置
US10526008B1 (en) 2018-07-31 2020-01-07 Steering Solutions Ip Holding Corporation Machine current limiting for permanent magnet synchronous machines
US11349430B2 (en) 2019-10-15 2022-05-31 Steering Solutions Ip Holding Corporation Regenerative current limiting of synchronous motor drives
US11424706B2 (en) * 2019-11-15 2022-08-23 Steering Solutions Ip Holding Corporation Battery current limiting of permanent magnet synchronous motor drives using operation condition monitoring
CN111162963A (zh) * 2019-12-11 2020-05-15 中国电力科学研究院有限公司 一种基于二分迭代法测试网络通信设备性能的方法及系统
US11139765B1 (en) 2020-05-18 2021-10-05 Steering Solutions Ip Holding Corporation Dynamic decoupling control with active noise cancellation
DE102021131083A1 (de) * 2020-11-30 2022-06-02 Steering Solutions Ip Holding Corporation Diagnose eines zustands einer eingangsenergie für eine elektrische servolenkung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138234A (zh) * 1995-03-24 1996-12-18 精工爱普生株式会社 直流无刷电动机和控制装置
US20050057208A1 (en) * 2003-09-17 2005-03-17 Seibel Brian J. Method and apparatus to regulate loads
CN1754305A (zh) * 2003-01-29 2006-03-29 波峰实验室责任有限公司 无刷电机控制中的相位超前角优化
US20060132074A1 (en) * 2004-12-20 2006-06-22 Lg Electronics Inc. Lead-angle control method and device for operating permanent magnet synchronous motor in flux weakening regions
CN102594250A (zh) * 2012-02-17 2012-07-18 哈尔滨工业大学 无位置传感器内置式永磁同步电机最大转矩电流比矢量控制系统及控制方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530721B2 (ja) 1997-09-25 2004-05-24 三菱電機株式会社 誘導電動機のトルク制御装置
JP3637209B2 (ja) 1998-07-15 2005-04-13 株式会社東芝 速度センサレスベクトル制御を用いた電力変換装置
JP3566163B2 (ja) 2000-01-07 2004-09-15 株式会社東芝 モータ制御装置
DE10206191B4 (de) * 2001-11-27 2006-02-02 Siemens Ag Verfahren zur feldorientierten Regelung einer permanenterregten Synchronmaschine mit Reluktanzmoment
JP4110865B2 (ja) 2002-07-16 2008-07-02 日産自動車株式会社 永久磁石型電動機の制御システム
US7262536B2 (en) 2003-08-11 2007-08-28 General Motors Corporation Gearless wheel motor drive system
CN101160713B (zh) 2005-04-15 2011-07-27 株式会社日立制作所 交流电动机控制装置
JP4926492B2 (ja) 2006-02-20 2012-05-09 本田技研工業株式会社 モータ制御装置
CN100566128C (zh) 2006-05-25 2009-12-02 三菱电机株式会社 交流旋转电机的控制装置及交流旋转电机的控制方法
WO2008004294A1 (fr) 2006-07-06 2008-01-10 Mitsubishi Electric Corporation Dispositif de commande de vecteur de moteur à induction, procédé de commande de vecteur de moteur à induction, et dispositif de commande d'entraînement de moteur à induction
CA2660380C (en) 2006-09-26 2012-08-21 Mitsubishi Electric Corporation Permanent magnet synchronization motor vector control device
EP2194643B1 (en) 2007-09-25 2014-03-05 Mitsubishi Electric Corporation Controller for electric motor
JP5257365B2 (ja) 2007-11-15 2013-08-07 株式会社安川電機 モータ制御装置とその制御方法
KR101468736B1 (ko) 2007-11-22 2014-12-03 엘지전자 주식회사 모터, 세탁기 모터의 제어장치 및 세탁기 모터의 제어방법
JP4582168B2 (ja) 2008-03-21 2010-11-17 株式会社デンソー 回転機の制御装置、及び回転機の制御システム
JP5292995B2 (ja) * 2008-08-22 2013-09-18 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP5073063B2 (ja) 2008-10-29 2012-11-14 三菱電機株式会社 永久磁石同期電動機の制御装置
EP2360831B1 (en) 2008-12-15 2019-05-29 Mitsubishi Electric Corporation Power converter for driving motor
US8193747B2 (en) 2009-05-28 2012-06-05 GM Global Technology Operations LLC Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
US8154228B2 (en) 2009-06-10 2012-04-10 Kollmorgen Corporation Dynamic braking for electric motors
KR101628385B1 (ko) 2010-03-31 2016-06-08 현대자동차주식회사 영구자석 동기모터의 제어방법
US8744794B2 (en) 2011-02-28 2014-06-03 Deere & Company Method and apparatus for characterizing an interior permanent magnet machine
CN102545766B (zh) 2012-01-17 2014-12-24 河南工程学院 适用于电动汽车驱动用的新型调速系统及电流分配方法
CN102694498B (zh) 2012-05-31 2015-02-25 湖南南车时代电动汽车股份有限公司 永磁同步电机在零速或极低速下的抗转子扰动装置及方法
US9369078B2 (en) 2013-03-11 2016-06-14 Steering Solutions Ip Holding Corporation Method of current reference generation for a motor
US9461574B2 (en) 2013-03-12 2016-10-04 Steering Solutions Ip Holding Corporation Motor control system for determining a reference d-axis current and a q-axis current

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138234A (zh) * 1995-03-24 1996-12-18 精工爱普生株式会社 直流无刷电动机和控制装置
CN1754305A (zh) * 2003-01-29 2006-03-29 波峰实验室责任有限公司 无刷电机控制中的相位超前角优化
US20050057208A1 (en) * 2003-09-17 2005-03-17 Seibel Brian J. Method and apparatus to regulate loads
US20060132074A1 (en) * 2004-12-20 2006-06-22 Lg Electronics Inc. Lead-angle control method and device for operating permanent magnet synchronous motor in flux weakening regions
CN102594250A (zh) * 2012-02-17 2012-07-18 哈尔滨工业大学 无位置传感器内置式永磁同步电机最大转矩电流比矢量控制系统及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803853A (zh) * 2019-11-14 2021-05-14 操纵技术Ip控股公司 电动马达驱动系统中源电流的动态控制

Also Published As

Publication number Publication date
CN104052358B (zh) 2017-05-31
EP2779431B1 (en) 2020-09-30
US20140265953A1 (en) 2014-09-18
EP2779431A2 (en) 2014-09-17
EP2779431A3 (en) 2017-08-30
US9531311B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
CN104052358A (zh) 用以控制无刷电动机的电流基准的生成
CN103404009B (zh) 用于校准电动机的转子位置偏移量的方法和系统
CN110224648B (zh) 永磁同步电机参数辨识和无位置传感器控制方法及系统
CN103931096B (zh) 用温度补偿控制电动机的方法和系统
JP4900738B2 (ja) 電動機駆動制御装置
KR101438638B1 (ko) 모터를 구비한 차량의 제어장치 및 제어방법
JP5772843B2 (ja) 交流電動機の制御装置
CN202978807U (zh) 控制永磁铁同步电动机的d轴电流的电动机控制装置
CN105122635A (zh) 用于控制交流电机的设备
CN104052359A (zh) 马达控制系统和带宽补偿
CN103516283A (zh) 用于估算电机转子的角位置和/或角速度的方法、系统和设备
CN101981806A (zh) 电动机控制器和电动助力转向设备
CN104579083A (zh) 永磁同步电机矢量控制方法及系统
JP5839111B2 (ja) 三相交流誘導モータの制御装置及び三相交流誘導モータの制御方法
CN103475282A (zh) 一种应用单个霍尔传感器的三相直流无刷电机的控制方法
CN110581681B (zh) 永磁同步电机位置传感器的零位标定方法、装置
CN103828224B (zh) 以降噪方式确定电动马达的转子的位置的方法和系统
CN112271970A (zh) 永磁同步电机矢量控制方法、设备及存储介质
CN109391178B (zh) 旋转电机的控制装置和控制方法
KR20130110555A (ko) 모터 제어 장치와, 이를 포함하는 전기 자동차, 및 이의 모터 제어 방법
CN108199636B (zh) 一种基于矢量控制策略的电机初始角度定位方法
CN110798111B (zh) 永磁同步电机旋转变压器零位检测方法、装置
JP2009213287A (ja) 回転電機制御装置
JP2023048833A (ja) モータユニットの状態推定方法及び状態推定装置
WO2021106609A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant