CN104039343A - 基于he4治疗恶性疾病 - Google Patents

基于he4治疗恶性疾病 Download PDF

Info

Publication number
CN104039343A
CN104039343A CN201280037754.3A CN201280037754A CN104039343A CN 104039343 A CN104039343 A CN 104039343A CN 201280037754 A CN201280037754 A CN 201280037754A CN 104039343 A CN104039343 A CN 104039343A
Authority
CN
China
Prior art keywords
cell
seq
tumor
carcinoma
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280037754.3A
Other languages
English (en)
Inventor
R·G·穆尔
R·K·思恩赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Women and Infants Hospital of Rhode Island
Original Assignee
Women and Infants Hospital of Rhode Island
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Women and Infants Hospital of Rhode Island filed Critical Women and Infants Hospital of Rhode Island
Publication of CN104039343A publication Critical patent/CN104039343A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • A61K31/568Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/59Compounds containing 9, 10- seco- cyclopenta[a]hydrophenanthrene ring systems
    • A61K31/5929,10-Secoergostane derivatives, e.g. ergocalciferol, i.e. vitamin D2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57496Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving intracellular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/81Protease inhibitors
    • G01N2333/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • G01N2333/811Serine protease (E.C. 3.4.21) inhibitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Abstract

本发明提供了癌症和其他人类疾病的预防和治疗中利用人类附睾分泌蛋白E4(HE4)的组合物和方法。

Description

基于HE4治疗恶性疾病
相关申请
本申请根据35U.S.C.§119(e)要求了提交于2011年6月6日的美国临时申请No.61/493,881和提交于2011年9月30日的美国临时申请No.61/541,663的优先权,其中每一个的全部内容通过引用并入本文中。
引入以供参考
2012年6月6日创建的文本文件名为“35947007001WO_ST25.txt”的内容,文件大小为9KB,通过引用全部内容并入本文。
发明领域
本发明一般涉及癌症治疗策略领域。
发明背景
癌症是美国40至79岁之间的人死亡的首要原因。每天在美国就有大约1,500人死于癌症。因此,迫切需要开发提高治疗效果和患者总生存率的新的治疗策略和早期检测和预后。
发明内容
本发明是基于以下发现:人类附睾分泌蛋白E4(HE4)抑制和/或治疗癌症的调制。任选地,HE4在与其他化学治疗剂、手术或放射治疗联合的组合疗法中给药。本文描述的方法在哺乳动物癌症的治疗是有效的。所述哺乳动物可以是,例如,任何哺乳动物,例如人类、灵长类动物、小鼠、大鼠、狗、猫、马,以及用于食物消费的家畜或动物,例如,牛、羊、猪、鸡和山羊。在一个优选的实施方案中,哺乳动物是人。
本发明提供了抑制受试者肿瘤细胞生长的方法,用至少一个肿瘤细胞(例如,至少2个,至少10个,至少100个,或至少1,000个肿瘤细胞)鉴别受试者。优选地,所述肿瘤细胞是一种实体肿瘤块或微观肿块,其在原发肿瘤肿块切除后可能存在。举例来说,外科医生从卵巢摘除肿块,有时会留下单个细胞或微观肿块。对人类附睾分泌蛋白E4(HE4)在肿瘤细胞中的水平进行调制。举例来说,要治疗的受试者被诊断患有癌症,例如,肿瘤细胞是恶性肿瘤细胞。适宜类型的肿瘤细胞包括癌症祖细胞和癌症干细胞。在优选的实施方案中,治疗的肿瘤包括卵巢癌、子宫内膜癌、肺癌和乳腺癌(例如,腺癌(adenocarcenoma)、鳞状细胞癌或小细胞癌)。
在一个方面中,HE4在肿瘤细胞中的水平是通过施用HE4抑制剂对肿瘤细胞进行调制。优选地,HE4抑制剂是一种中和抗HE4抗体、反义大分子、小干扰核糖核酸(siRNA)、小发夹RNA(shRNA),或小分子抑制剂。任选地,睾酮化合物联合用药。
举例来说,反义分子或HE4调制磷酰寡核苷酸序列包括SEQID NOs:1、2、3,、4、或5的核苷酸序列。
5′G*A*C*A*C*C*T*T*C*C*C*A*C*A*G*C*C*A*T*T3′(SEQ ID NO:1)
5′G*A*C*A*C*C*T*T*C*C*C*A*C*A*G*C*C*A*T*T*G3′(SEQ ID NO:2)
5′G*A*C*A*C*C*T*T*C*C*C*A*C*A*G*C*C*A*T3′(SEQ ID NO:3)
5′A*C*A*C*C*T*T*C*C*C*A*C*A*G*C*C*A*T*T*G3′(SEQ ID NO:4)
5′A*C*A*C*C*T*T*C*C*C*A*C*A*G*C*C*A*T*T3′(SEQ ID NO:5)
*表示硫代磷酸酯核苷酸间连键。硫代磷酸酯(或S-寡核苷酸)是正常DNA的变异体,其中,非桥氧中的一个被替换为硫。该核苷酸间连键的硫化大大降低内切作用和5'端至3'端的内切酶2和包括和3'端至5'端DNA POL的外切核酸酶1、核酸酶S1和P1、核糖核酸酶、血清核酸酶与蛇毒磷酸二酯酶。
用于抑制受试者肿瘤生长或减小肿瘤负荷的药物组合物包括一种或多种上述的寡核苷酸,例如,SEQ ID NO:4或SEQ IDNO:2。在另一个实施例中,用于抑制肿瘤生长的药物组合物包括选自由HE-4特异性寡核苷酸(例如,SEQ ID NO:1、SEQ IDNO:2、SEQ ID NO:3、SEQ ID NO:4或SEQ ID NO:5)、HE4特异性抗体或其抗原结合片段,和睾酮化合物组成的组中的至少两种化合物的组合。
或者,HE4在肿瘤细胞的水平由肿瘤细胞中HE4过表达来调制。在HE4启动子对肿瘤细胞的控制下施用HE4基因,HE4在肿瘤细胞中过表达。本发明还提供了通过给肿瘤细胞施用合成HE4、重组HE4,或其片段来调节肿瘤细胞中HE4水平的方法。或者,采用MT19c或PT19c调节肿瘤细胞中HE4水平。
任选地,HE4调节子与化疗剂联合施用。适宜的给药方法包括口服、鞘内注射、静脉注射、腹腔注射(即,6个月以上整6个周期)、肌注或皮下给药,或按照流行的需求和技术给药。优选地,所述化疗剂选自由烷化剂、抗代谢药、蒽环类抗生素、抗肿瘤抗生素、单克隆抗体、铂剂、植物生物碱、拓扑异构酶抑制剂、长春花生物碱、紫杉烷和表鬼臼毒素组成的组。具体地,所述化疗剂选自由铂基化疗剂(例如,顺铂和卡铂)、紫杉烷类(例如,紫杉醇和多西他赛)、阿霉素、喜树碱、依托泊苷、和维生素D类似物或衍生物组成的组,维生素D类似物或衍生物,如维生素D2的非高钙血症杂环类似物,例如,MT19C;或U.S.S.N.12/096,857中讨论的其他化疗剂(美国公开号.US2009-0221529A1),其通过引述合并于此。在某些情况下,治疗性基因在HE4启动子控制下进行给药。举例来说,在HE4启动子控制下TP53基因(编码P53)施药给肿瘤细胞。举例来说,HE4调节子在化疗剂之前、之后或同时给药,化疗剂如烷基化剂(例如,苯丁酸氮芥、环磷酰胺、ccnu、美法仑、丙卡巴肼、塞替派、氮芥、和白消安)、抗代谢药(例如,6-巯基嘌呤和5-氟尿嘧啶)、蒽环类抗生素(如红霉素、多柔比星、伊达比星、表柔比星和米托蒽醌)、抗肿瘤抗生素(如博来霉素)、单克隆抗体(如阿仑单抗、贝伐单抗、西妥昔单抗、吉妥珠单抗、替伊莫单抗、帕尼单抗、利妥昔单抗、托西莫单抗、和曲妥珠单抗)、铂类(例如,顺铂、奥沙利铂、卡铂)、植物生物碱(例如,长春新碱)、拓扑异构酶I或II抑制剂(例如,伊立替康、拓扑替康、安吖啶、依托泊苷、磷酸依托泊苷、替尼泊苷)、长春碱类(如,长春新碱、长春碱、长春瑞滨、和长春地辛)、紫杉烷类(例如,紫杉醇和多西他赛)、表鬼臼毒素(如依托泊苷和替尼泊苷)、核苷类似物,和血管发生抑制剂(例如,阿瓦斯丁(beracizumab),VEGF特异性的人源化单克隆抗体-A)。
本发明还提供了治疗利用重组HE4基活性抗肿瘤免疫疫苗抗癌的治疗方法,癌症,例如,卵巢癌、子宫内膜癌、乳腺癌、肺癌或前列腺癌。本发明的一部分,包括谷胱甘肽s-转移酶(GST)-HE4的设计和生产,并涉及利用HE4或GST-HE4启动或脉冲树突状细胞。这些HE4-引物树突状细胞被用来在动物体内产生免疫对抗表达HE4的肿瘤,或对抗受到HE4诱导信号影响的肿瘤。
通过重组HE4抗原免疫接种诱发基于HE4疫苗的免疫,施药给诊断患有病毒感染、真菌感染、细菌感染、自身免疫性疾病、免疫缺陷疾病、炎性疾病和遗传疾病的患者个体。治疗也对疼痛控制非常有效。此类抗原可包括全长HE4氨基酸序列或部分肽长度的已知HE4氨基酸序列。举例来说,该序列在UniProtKB/Swiss-Prot,Q14508(WFDC2_HUMAN;2012年4月18日最后修改。第117版,整个列表包括可变剪接变异体和异构体,通过引用并入本文)中进行了描述。
MPACRLGPLA AALLLSLLLF GFTLVSGTGA EKTGVCPELQ ADQNCTQECVSDSECADNLk
CCSAGCATFC SLPNDKEGSC PQVNINFPQL GLCRDQCQVD SQCPGQMKCCRNGCGKVSCV
TPNF(SEQ ID NO:6,被称为“亚型1”或“标准序列”;残基1-30对应信号序列;31-124代表成熟蛋白;WAP1区域对应残基31-73,WAP2区域对应残基74-123)。
核酸序列(mRNA、cDNA)在GENBANK登录号No.X63187.1GI:32050(通过引用并入本文)中进行了描述。五种亚型由选择性剪接产生。在亚型2中,序列不同于标准序列,如下:SEQ ID NO:6的2-23:PACRLGPLAAALLLSLLLFGFT(SEQ ID NO:11)→LQVQVNLPVSPLPTYPYSFFYP(SEQ IDNO:7),SEQ ID NO:6的24-74缺失。亚型3不同于标准序列,如下:SEQ ID NO:6的27-74缺失。亚型4不同于标准序列,如下所示:SEQ ID NO:6的71-79SLPNDKEGS(SEQ IDNO:12)→LLCPNGQLAE(SEQ ID NO:8),SEQ ID NO:7的80-124缺失。亚型5不同于标准序列,如下:SEQ ID NO:6的75-102DKEGSCPQVNINFPQLGLCRDQCQVDSQ(SEQ IDNO:13)→ALFHWHLKTRRLWEISGPRPRRPTWDSS(SEQ IDNO:9),SEQ ID NO:7的103-124缺失。
关于亚型1,有一个残基44糖基化位点,二硫键发生在下列残基之间:(坐标基于SEQ ID NO:6的序列)
有用抗体的特征在于具有特异性结合上面描述的抗原表位序列(例如,SEQ ID NO:6的10、20、30、40、50、60、70、80、90或所有94个氨基酸),以及HE4序列的完整序列或其任何部分例如:
MLQVQVNLPVSPLPTYPYSFFYPDKEGSCPQVNINFPQLGLCRDQCQVDSQCPGQMKCCRNGCGKVSCVTPNF(SEQ ID NO:10),例如MLQVQVNLPVSPLPTYPYSFFYPDKEGSCPQVNINFPQLGLCRDQCQVDSQCPGQMKCCR(SEQ ID NO:10)(SEQ ID NO:14),或MPACRLGPLA(SEQ ID NO:6)(SEQ ID NO:15),AALLLSLLLF(SEQID NO:6)(SEQ ID NO:16),GFTLVSGTGA(SEQ ID NO:6)(SEQID NO:17),EKTGVCPELQ(SEQ ID NO:6)(SEQ ID NO:18),ADQNCTQECV(SEQ ID NO:6)(SEQ ID NO:19)SDSECADNLK(SEQID NO:6)(SEQ ID NO:20),CCSAGCATFC(SEQ ID NO:6)(SEQ IDNO:21),SLPNDKEGSC(SEQ ID NO:6)(SEQ ID NO:22),PQVNINFPQL(SEQ ID NO:6)(SEQ ID NO:23),GLCRDQCQVD(SEQID NO:6)(SEQ ID NO:24),SQCPGQMKCC(SEQ ID NO:6)(SEQID NO:25),RNGCGKVSCV(SEQ ID NO:6)(SEQ ID NO:26)或其正向和反向方向上的任何组合可以被用作抗原,以开发HE4中和抗体或疫苗。同样,不同残基的糖基化(例如,残基-44)和二硫键修饰的氨基酸残基( 或反向的),或者可选的剪接变异体,如亚型2中PACRL...LFGFT(SEQ ID NO:11)→LQVQVNLPVSPLPTYPYSFF YP(SEQ ID NO:7);亚型4中SLPNDKEGS(SEQ ID NO:12)→LLCPNGQLAE(SEQ ID NO:8);亚型5中DKEGS...QVDSQ(SEQ ID NO:13)→ALFHWHLKTRRLWEISGPRP RRPTWDSS(SEQ ID NO:9)。可供选择地,所述在其他的剪接变体缺失的氨基酸,亚型2中24-74、亚型-3中27-74、亚型-4中71-79,亚型4中80-124、亚型-5中103-124可用于生产中和抗体或疫苗。本发明包括一种药物组合物,其包括一种或多种抗体,抗体结合于HE4,例如中和成熟HE4的表位特异性的单克隆抗体。抗体是多克隆抗血清或单克隆抗体。本发明不仅包括完整的单克隆抗体,而且包括一个免疫活性的抗体片段,例如结合HE4抗原的免疫活性抗体片段,如Fab或(Fab)2片段;基因工程单链FV分子;或嵌合分子,例如,包含一个抗体的结合特异性的抗体,例如,鼠源性的,和另一抗体的剩余部分,例如,人源的。
本发明提供了i)用于改变(例如,过度表达,过度生产或抑制)肿瘤或肿瘤细胞或癌症祖细胞或癌症干细胞(肿瘤干细胞)中HE4表达水平的方法,ii)改变HE4表达在人类患者癌症和其他的病理条件治疗中的应用,iii)通过HE4子输送治疗性或功能性基因或基因成分或亚型,iv)治疗人类疾病和恶性肿瘤的HE4抗体。举例来说,HE4基因/基因产物的过表达抑制肿瘤发生和生长,诱导细胞凋亡,抑制促存活和抗凋亡基因或蛋白质,阻滞细胞周期进展、肿瘤转移、血管生成,以及纠正增殖性疾病,抑制肿瘤的生长。根据所描述的方法,治疗性HE4过表达还导致了其他治疗剂如MT19c的响应增强。举例来说,结合HE4治疗过表达时,MT19c响应增强20%、50%、2倍、4倍或更多。
本发明还涉及通过改变HE4治疗炎症和机会性感染。本发明也包括通过改变HE4或相关家族成员基因防止人体器官的细菌或真菌或病毒感染。通过各种手段获得HE4过表达,例如通过过表达载体、可诱导的或有条件载体以及由其他遗传或基因产物操作,掺入或递送战略设计的互补脱氧核糖核酸(cDNA)。此外,通过使用小分子改变HE4表达水平。应用反义大分子、小干扰核糖核酸(siRNA)、小发夹RNA(shRNA)、或通过HE4特异性抑制剂或pan乳清酸性蛋白(WAP)家族基因(例如,HE4、HE4a或Elafin)抑制剂实现HE4的抑制。HE4的抑制或过表达是短暂或永久的/稳定的。在一个方面中,间接抑制HE4或相关家族基因表达,通过强制下调多种信号转导途径中蛋白质上游至HE4。
在另一个方面中,细胞内HE4表达是通过抑制或增强HE4和其亚型的N-糖基化来改变。任选地,HE4的N-糖基化的抑制作用是通过已知的N-糖基化抑制剂(如衣霉素或安福霉素)来实现。抑制N-糖基化的其他常用方法涉及使用N-糖苷酶或使用市售的去糖基化试剂盒。HE4的增强糖基化也可以通过市售的糖基化试剂盒来实现。
本发明提供了抑制受试者肿瘤细胞生长的方法,通过诊断受试者患有HE4表达肿瘤,以及调制受试者肿瘤内或肿瘤上HE4水平。还包括抑制受试者体内肿瘤细胞的生长的方法,通过鉴别已诊断为HE4表达肿瘤的受试者,并调节受试者肿瘤内或肿瘤上HE4的水平。
还提供了鉴别响应于HE4调节的受试者的方法。首先,将HE-4调节剂施用给具有HE-4表达肿瘤的受试者或受试者体内获得的HE-4表达肿瘤细胞群接触HE-4调节剂。接着,(b)受试者HE-4水平或由肿瘤细胞表达的HE-4水平被确定,其中HE-4水平变化表明受试者响应于HE-4调节疗法。
检测HE4的适宜的方法包括免疫印迹法和酶联免疫吸附试验(ELISA)。检测HE4的示例性方法包括免疫测定试剂盒或荧光抗体。举例来说,HE4是通过一种酶免疫测定(EIA)试剂盒、放射免疫测定(RIA)试剂盒、异硫氰酸荧光素(FITC)抗狂犬病单克隆抗体,或血管紧张肽转化酶测定进行检测。
本发明还提供了一种监测HE4调节剂的治疗功效的方法。首先,将HE-4调节剂施用给诊断为包括HE4表达肿瘤的受试者。随后,从受试者体内获得的肿瘤细胞内或肿瘤细胞上或从受试者获得体液样品中检测HE4、CA125、或两者的水平,其中肿瘤细胞或体液中HE4的水平降低表明HE4调节剂抑制受试者体内肿瘤细胞生长。
本发明还提供了HE4基因调节的应用,i)增强灵敏度或重新致敏或启动化疗抗性肿瘤或化疗疗法的肿瘤细胞,ii)药物或药剂的分子靶点的致敏,或化疗耐药靶点脱敏和其功能(例如,糖蛋白-P),iii)提高手术、与HE4基因水平改变联合的化疗或放射治疗,iv)抑制化疗耐药因子,v)分析健康人受试者的HE4基因标记或基因产品以确定它们对多种病理疾病,如癌症,例如卵巢癌、子宫内膜癌和或肺癌的易感性或抗性。
然而,本发明的另一部分包括在细胞或组织或肿瘤或表现出痛苦或疾病的组织中通过HE4传送一个基因或多个基因或基因组分、基因产物、启动子、阻遏物、助促进剂、共阻遏物(例如,通过HE4启动子)。HE4可以为要传送的基因的上游或下游。包括载体、有条件载体、具有不同抗生素抗性基因的开/关载体。例如,P53或白喉毒素基因是使用HE4启动子传送。
然而,本发明公开的另一部分涉及使用重组HE4,作为单药或与化疗药物、手术或放射治疗联合使用,抑制肿瘤细胞增殖。
本发明提供了诱导HE4基因/基因产物的过表达或活化,抑制肿瘤发生和生长,诱导细胞凋亡,抑制促存活和抗凋亡基因或蛋白质的表达,阻滞细胞周期进展,降低或抑制转移和血管生成,并且通过导致癌细胞死亡或肿瘤减少或消失的多种细胞凋亡或坏死通路,纠正增生性疾病,抑制肿瘤的生长。HE4的抑制是通过HE4抑制剂、RNA干扰、或shRNA或寡核苷酸来实现。这种肿瘤是治疗初治或治疗经验性肿瘤和癌症细胞,癌细胞包括癌祖细胞或癌干细胞。包括在本发明的另一个领域涉及通过改变HE4治疗炎症和机会性感染。包括在本发明的是通过改变HE4或相关家族成员基因防备人体器官的细菌或真菌或病毒感染。
还包括通过改变体内HE4水平使用HE4治疗人类疾病(例如,癌症,尤其是卵巢癌)或通过人类患者HE4启动子传送其他治疗性基因(例如,p53基因)。本文描述的组合物和方法也可用于根据预HE4水平预测人类对疾病的易感性(如癌症、自身免疫性疾病、炎性病症、或子痫前期)。
还提供了一些方法,通过改变HE4水平提高患者的治疗或手术结果,通过改变HE4水平减少人受试者进行化疗的毒性或副作用。
还包括一些方法,通过改变HE4增强免疫反应,或纠正人类受试者的改变的免疫反应。本发明还包括免疫耗竭的人受试者或接近疾病状态的健康人受试者产生免疫力的方法,以及使用重组HE4,其片段,或中和HE4抗体来治疗人类患者的方法。
如本文所用,“分离的”或“纯化的”核苷酸或多肽(例如,HE4核苷酸或多肽)是基本上不含其它核苷酸和多肽。当化学合成时,纯化的核苷酸和多肽也可以无细胞物质或其他化学物质。纯化的化合物以化合物重量计(干重)为至少60%。优选地,该制剂以化合物重量计为至少75%、更优选至少90%、最优选至少99%。举例来说,纯化的核苷酸和多肽,例如,HE4是以预期寡糖重量计至少为90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%(w/w)的核苷酸和多肽。纯度是通过任何适宜的标准方法测定,举例来说,通过柱色谱法、薄层色谱法、或高效液相色谱(HPLC)分析。核苷酸和多肽被纯化并用在人类消费产品以及动物,例如伴侣动物(狗、猫)和家畜(牛、马、绵羊、山羊、猪,以及家禽)中。“纯化的”还定义了一定程度的不育性,安全施用于人类受试者,例如,无感染性或毒性剂。
类似地,“基本上纯的”是指被分离出天然伴随它的成分的核苷酸和多肽。通常,当核苷酸和多肽以重量计至少60%、70%、80%、90%、95%、或甚至99%时,是基本上纯的,没有与它们天然相关的蛋白质和天然存在的有机分子。
术语“表达”和“过表达”用于指示一些事实,在一些情况下,在本文所述方法有用的细胞固有表达一些因素,遗传上改变以产生,添加多核苷酸序列导致因子的过表达。也就是说,更多的因子是由改变的细胞表达,相同条件下,由野生型细胞表达。同样,如果细胞本身不表达遗传改造产生的因子,使用的术语是将仅仅“表达”野生型细胞根本不表达的因子。
如本文所用的术语“治疗”(treating)和“治疗方法”(treatment)是指试剂或制剂施药给临床症状的个体,个体患有不利病症、紊乱或疾病,以便降低严重程度和/或降低症状频率,消除症状和/或其根本原因,和/或促进改善或补救损害。术语“预防”(preventing)和“预防方法”(prevention)是指给临床无症状的个人施用药剂或组合物,这些个人容易受到特定的不利病症、紊乱或疾病的影响,从而预防症状的发生和/或者其根本原因。
术语“有效量”和的“治疗有效量”的制剂或制剂成分是指提供所需效果的足够量的所述制剂或组分。举例来说,“有效量”是指治疗癌症的HE4调节剂的量。最终,主治医师或兽医决定适宜剂量和给药方案。
过渡性术语“包括”(comprising),它的同义词是“含有”(including),“包含”(containing)或“特征在于”(characterizedby),是包括性或开放式的,并且不排除额外的、未陈述的要素或方法步骤。与此相反,过渡性短语“由......组成”(consisting of)排除了权利要求没有指定的任何元素、步骤或成分。过渡性短语“基本上由......组成”(consisting essentially of)限制了指定材料或步骤的权利要求的范围,和那些不严重影响所要求保护的发明的基本和新颖特性。
从以下描述的其优选实施方案,以及权利要求书来看,本发明的其它特征和优势将是显而易见的。除非另有定义,本文中使用的所有技术和科学术语具有与本发明所属领域的普通技术人员所理解的相同的含义。虽然类似或等同于本文描述的方法和材料可以用于本发明的实践或测试中,适宜的方法和材料如下所述。所有公布、专利申请、专利、Genbank/NCBI登录号,和本文提及的其它参考文献通过引用全部并入本文中。在冲突的情况下,以本说明书,包括定义为准。此外,材料、方法和实施例仅是说明性的,并不旨在进行限制。
附图说明
图1是一系列柱状图,演示了由卵巢癌细胞生产HE4。图1A显示出上清液中的HE4浓度,而图1B显示出细胞裂解液中HE4浓度。HE4的生产和分泌计算为pmol HE4/g总细胞蛋白。由SKOV-3和CaOV-3卵巢癌细胞、来自不同组织的多种人肿瘤细胞株,正常HK-2肾细胞和TCL-1滋养层细胞进行酶免疫测定对比分析HE4的生产和分泌。裂解液和卵巢(SKOV-3,CaOV-3)的培养基、子宫内膜(ECC-1,AN3CA)、乳腺癌(MCF-7)、神经母细胞瘤(IMR-32)、前列腺癌(PC-3)和人肾(HK2)和孕晚期滋养层(TCL-1)是由HE4夹心ELISA法进行评估。数值被归一化为单位蛋白质浓度。
图2是显微照片和条形图,演示了稳定转染WFDC2/pCMV6后HE4的表达和SKOV-3卵巢癌细胞的细胞生长。在图2A中,SKOV-3细胞用携带人HE4的编码序列的真核表达载体pCMV6转染,克隆,和通过半定量RT-PCR测定HE4的表达,GAPDH表达为对照。在图2B中,相比于亲本/野生型(WT)细胞,HE4过表达SKOV-3克隆HE4C1、HE4C3、HE4C7的生长是由MTS测定法进行测定。实验被表示为一个代表性实验中OD的三次重复测定(平均值±标准差)的平均值。OD值代表性实验设3个重复,实验得到三个重复测定值的平均值(X±SD)。
图3是一系列饼图、线图和显微照片,显示出HE4过表达SKOV-3卵巢癌细胞的细胞周期分析。相比于野生型细胞,流式细胞仪检测进行HE4过表达SKOV-3细胞克隆的细胞周期分析,标准化门控被采用,1x104个事件对每个样品进行分析。列于图3A中数据以细胞百分比计或以图3B中2维FACS谱中细胞亚群的相对荧光强度计。图3C显示了HE4过表达SKOV-3细胞克隆的细胞裂解液中细胞周期调控因子的分析。,使用一抗通过PAGE和免疫印迹分析法进行分析。作为相等载荷的内参物,印迹探测用抗-GAPDH抗体。
图4是一系列柱状图,演示由WFDC2/pCMV6转染的SKOV-3卵巢癌细胞克隆产生和分泌HE4。相比于野生型细胞,过表达SKOV-3克隆HE4C1、HE4C3、HE4C7生产和分泌HE4是由酶免疫测定比较分析确定。图4A显示出上清液中HE4的量,图4B显示在细胞裂解液中HE4的量。数据表示为pmol HE4/g总细胞蛋白。
图5是一系列曲线图,显示出HE4过表达卵巢癌细胞对化疗药物的敏感性降低。野生型SKOV-3或HE4过表达克隆HE4C1、HE4C3、HE4C7分别采用喜树碱(图5A)、紫杉醇(图5B)、顺铂(图5C)或阿霉素(图5D)处理24小时,用浓度表示,MTS测定数据评估的细胞活力表示为三次重复测定(X±SD)的平均值,相对于未经处理的细胞[=100%]的百分比。
图6是一张显微照片和条形图,演示了生物制剂或化学治疗剂对HE4过表达或细胞产生/分泌的影响。多种试剂由RT-PCR或夹心ELISA法检测。图6A显示出在无血清DMEM和HE4mRNA中,肿瘤坏死因子(10nM)、胰岛素(100nM)、EGF(10nM)、IL-6(10nM)及衣霉素(5nM)刺激SKOV-3细胞的结果。图6B显示出在无血清的DMEM培养基中,使用化疗药物处理SKOV-3细胞24小时的结果。细胞裂解液和培养基中的HE4水平,通过夹心ELISA法进行了评价。
图7是显示出HE4过表达克隆(1号、3号和7号)的一系列显微照片,显示出相比于亲本SKOV-3细胞,高活性水平的致癌表皮生长因子受体(EGFR)、胰岛素样生长因子(IGF1R)、血管内皮细胞生长因子受体(VEGFR)和磷酸化蛋白激酶B抗体(PI-3K/AKT)。
图8是一个系列的化学结构和柱状图,表明HE4过表达的影响使MT19c治疗的SKOV-3克隆显著致敏。相对于亲本SKOV-3细胞,HE4过表达子SKOV-3克隆显示MT19c治疗的4倍或更高的响应。
图9是一系列显微照片、条形图和线形图,显示出诱导HE4生产的细胞毒性特征。pCMV6-HE4过表达载体诱导HE4活化,通过RT-PCR(图9A)和夹心ELISA(图9B)进行验证。HE4的瞬态产生抑制卵巢(SKOV-3)和子宫内膜(ECC-1)细胞的增殖(图9C),但人肾细胞(HK2)并没有受到影响(图9D)。通过PARP-1裂解(图9E),随即MAP激酶激活和抑制促生存Bcl2蛋白家族蛋白(图9F),诱导HE4生产导致细胞凋亡和激活活化半胱氨酸蛋白酶-3、活化半胱氨酸蛋白酶-8和活化半胱氨酸蛋白酶-9。在SKOV-3细胞中,瞬态HE4活化产生致死水平的活性氧(绿色=对照;蓝色=pCMV6-HE4转染的SKOV-3细胞;图9G)。(LIP:脂质体)。
图10是一个线形图、条形图,演示了重组HE4对SKOV-3细胞具有细胞毒性。图10A显示出重组HE424小时内抑制SKOV-3细胞的活力。图10B显示出预处理HE4(4μg/mL)增强顺铂在SKOV-3细胞内的功效。
图11是HE4基因扩增和HE4cDNA分离的示意性设计。
图12是一系列荧光激活细胞分选(FACS)图和条形图,演示了HE4过表达导致代表性卵巢癌细胞株的细胞凋亡(SKOV-3)。
图13是一系列荧光激活细胞分选(FACS)图和条形图,演示了SKOV-3细胞中HE4过表达Sub-G1期阻滞。
图14是一系列的免疫印迹检测的显微照片,演示了HE4过表达引起促存活磷酸化蛋白激酶B抗体(PI-3k/AKT)信号下调。
图15是一个条形图,演示生长因子和细胞因子治疗影响卵巢癌细胞内的HE4水平。
图16是一系列结构,显示出维生素D衍生物。
图17是一系列原理图、照片,条形图和线形图,表明HE4激活赋予化疗耐药性。具体来说,HE4过表达使顺铂和紫杉醇的应答显著沉默。(A,B):pCMV6-HE4稳定转染的一组HE4过表达SKOV-3细胞克隆被开发。(C,D):HE4过表达(包括分泌和生产)通过夹心ELISA法确定。(E,F):HE4过表达SKOV-3克隆表明,相对于亲本SKOV-3细胞,顺铂和紫杉醇治疗的响应显著降低。
图18是一系列照片和示意图,说明HE4调节卵巢癌细胞内磷酸化蛋白激酶B抗体(PI-3k/AKT)信号。(A):相比于亲本SKOV-3细胞,HE4过表达克隆(1号、3号和7号)显示出致癌基因EGFR、PI-3K、AKT活化提高。(B)一种体外免疫脂质激酶测定表明,HE4过表达克隆产生高达1.6倍量的磷酸肌醇-3,4,5-三磷酸(PIP-3)和顺铂治疗,导致进一步增强PIP-3合成。(C)通过激活表皮生长因子受体(EGFR)和磷脂酰肌醇3激酶(PI-3K),HE4过表达诱导对顺铂化疗耐药的机理模型及其信号产品PIP-3。
图19是一系列线形图,演示HE4调节卵巢癌细胞内活性氧水平。(A)HE4++细胞显示活性氧产生升高。(B):RNA干扰HE4减少HE4过度表达卵巢癌细胞内活性氧生成。
图20是一系列照片,显示HE4促进血管生成。
(A)HE4++细胞显示活性氧产生升高。(B):RNA干扰HE4减少HE4过表达卵巢癌细胞内活性氧生成。
图21是一幅照片,显示出相对于野生型(左),HE4过表达细胞(右)呈丰富的髓鞘样结构(磷脂和脂蛋白)。通过戊二醛(EM,18000x)髓鞘样结构可能是杂乱无章的。
图22是一个示意图和柱状图,说明了MT19c是靶向HE4过表达卵巢癌细胞的潜在的先导分子。具体地,图22显示出该小分子抗癌药物的筛选,得到的MT19c作为一类抗肿瘤剂,相对于标准化疗剂如氯氨铂和紫杉醇,显示出4-8倍的更高灵敏度,而当HE4过表达时面对强烈的化疗耐药性。
图23是一个示意图、显微照片和线形图,显示稳定HE4过表达卵巢癌细胞的发展并对顺铂响应的评价。图23A是质粒图谱,显示pCMV6-HE4稳定转染的一组HE4过表达SKOV-3细胞克隆。图23B是蛋白质印迹分析的显微照片,显示出不同水平的HE4蛋白表达。图23C是一个线形图,显示相比于亲本SKOV-3或空载体构建卵巢癌细胞克隆,HE4过表达SKOV-3克隆表现出顺铂治疗响应显著减少。
图24是表示由于HE4过表达动物体内相对肿瘤负荷评估的线形图。相比于父母的野生型卵巢癌细胞(SKOV-3)(绿色)和空载体克隆(红色),HE4过表达克隆(蓝色)形成最具进行性的异种移植肿瘤。成对组间差异(turkey校正后p值)显示各组间统计显著性。
图25是显示相比于亲本SKOV-3和空载体克隆,HE4过表达克隆异种移植的动物体内HE4分泌水平的表格。顺铂治疗引起HE4水平下动物特异性改变。然而,顺铂(5mg/kg bwt)治疗组中HE4水平并没有显著不同于载体处理的动物。
图26是显示载体或顺铂处理的HE4过表达克隆与亲本卵巢癌SKOV-3细胞和空载体克隆的Kaplan-Meier分析图。在Kaplan-Meier分析显示,HE4过表达赋予对顺铂强烈的化疗耐药。
图27是一系列曲线图,显示反义HE4寡核苷酸抑制动物卵巢肿瘤生长的进展,不会导致动物的任何毒性。左:反义HE4寡核苷酸治疗(“反义HE41”对应于SEQ ID NO:2和“HE4反义2”对应于SEQ ID NO:4;分别为红色和紫色),HE4寡核苷酸(绿色)、载体、5天/周错义序列(7mg/kg bwt,IP)对卵巢癌(SKOV-3)细胞异种移植的动物体内肿瘤大小的影响。右:一天的用寡核苷酸处理过的动物体重发展,没有观察到毒性。
图28是表示免疫印迹的照片,显示在HE4过表达卵巢癌克隆和来自动物的异种移植物组织中HE4与活化的EGFR免疫共沉淀。
图29是显示HE4过表达卵巢癌克隆和来自动物的空载体异种移植物组织中HE4与缺氧诱导因子1α(HIF1α)免疫共沉淀的照片。HE4过表达克隆显示出与HIF1α的相互作用比空载体克隆显著更高。
具体实施方式
2010年,约1,500,000个新的癌症病例被确诊,不包括原位癌(非侵入性癌),以及基底细胞皮肤癌和鳞状细胞皮肤癌病例,这是不要求报告给癌症登记。因此,迫切需要开发新的治疗策略和早期检测和预后的方法,提高治疗效果和患者的总生存率。
使用Northern印迹分析和原位转录物杂交,远端附睾的上皮中确定人附睾蛋白4(HE4)(Kirchhoff et al,1991Biol Reprod,45:350-357)。利用RNA斑点印迹的随后研究中,逆转录聚合酶链反应(RT-PCR)和Northern杂交分析表明,HE4RNA表达的是普遍的(Clauss et al,2002Biochem J,368:233-242)。利用比较基因组杂交和硅片染色体聚类的先前的研究报告了,人类染色体20q12-13.2始终扩增卵巢癌和锚定可能在疾病的发病机制中发挥的关键作用的基因。这个区域包含了14个与乳清酸蛋白(WAP)同源的基因群。在这些基因中,HE4在卵巢癌和子宫内膜癌中过表达。HE4蛋白的表达在正常人体组织中被高度限制,并在很大程度上仅限于生殖道上皮和近端气道的呼吸上皮。在恶性肿瘤中,基因表达谱一致确定上调卵巢组织中的HE4(Wang et al,1999Gene,229:101-108;Hough CD et al,2000Cancer Res,60:6281-6287;Gilks CB et al,2005Gynecol Oncol,96:684-694)。
在恶性肿瘤组织中,HE4被认为是上皮性卵巢癌的生物标志物(WO/2007/081768;WO/2007/081767;Moore RG et al.,2008Gynecologic Oncology,110:196-201;Moore RG et al.,2009Gynecologic Oncology,112:40-46和其他)。同样,子宫体恶性肿瘤也呈HE4阳性。(Drapkin R et al,2005Cancer Res,65:2162-2169)。HE4也是其他苗勒源性肿瘤的标志物。在细胞株的研究中,细胞株中也观察到分泌型HE4,表达内源性HE4RNA(例如,CaOV-3和OVCAR5)。细胞内免疫荧光研究显示,HE4分布在细胞质的区域内,或内质网内和高尔基体细胞器内(Drapkin R et al,2005Cancer Res,65:2162-2169)。
HE4基因表达作为健康和疾病样品中炎症性疾病和肾脏疾病的标记物进行了描述。本文描述的表明HE4过表达导致卵巢癌和子宫内膜癌细胞中选择性细胞凋亡和细胞死亡的结果。本文中还描述的结果证实HE4表达引起人脐静脉内皮细胞(HUVEC)的显著性细胞死亡的结果,而MES13(小鼠肾小球系膜细胞)和HK2(人肾细胞)在相似的条件下不发生细胞凋亡或细胞死亡。本文描述的结果证实活化HE4诱导半胱氨酸蛋白酶(-3,-8,-9)、MAP激酶(SAP/JNK,p38)活化,随后下调促存活线粒体蛋白质如卵巢癌(SKOV-3)细胞中的BCl2、MCl-1和BCl-xL。HE4活化可在卵巢癌细胞(SKOV-3)和子宫内膜癌细胞(ECC-1)中都引起PARP-1裂解。
本发明提供了多种不同的生物或化学手段来实现HE4调节(例如,上调和下调),以影响人类和动物癌症的发展。举例来说,使用质粒pCMV-6-HE4质粒、HE4过表达诱导显著性细胞死亡,由半胱氨酸蛋白酶-3裂解测量,SAPK/JNK磷酸化和癌细胞中细胞活力损失测定。与此相反,数据显示,HE4的水平略高于基底可以引发化疗耐药。此外,通过具有序列(例如,SEQ ID NO:4或SEQ ID NO:2以及本文列出的其它序列如SEQ ID NO:1、SEQID NO:3或SEQ ID NO:5)的磷酰寡核苷酸(HE4PTOs),或通过本申请中别处所述的肽序列的中和抗体,或通过化学试剂如睾酮,或其类似物实现HE4敲低。
睾酮(上面所提供的结构)具有分子式C19H28O2.。睾酮化合物是可用于多种制剂,如丙酸睾酮(Oreton)和甲基睾酮(Oreton-M),可购自Schering公司。其它制剂包括透皮贴剂Androderm、丙酸睾丸素(Androlin)、睾丸素(Mertestate)、睾内酯(Testoderm)、睾酮、奥勒通(Oreton)、睾酮(Synandrol F)、反式-睾酮、睾酮制剂(Andronaq)。许多睾酮的合成类似物也已经被开发。一些类似物提高了生物利用度和睾酮代谢半衰期。这些类似物中的许多C-17位上引入烷基,为了防止共轭,从而提高口服生物利用度。这些是所谓的雄激素的“17-aa”(17-烷基雄激素)家族,如氟羟甲基睾丸酮和甲睾酮。
通过siRNA、HE4-PTOs、睾酮或其化学类似物或中和抗体,HE4敲低已经证明动物体内显著减少肿瘤负荷或降低癌细胞的增殖,或作为单一实体,或其组合。值得注意的是,使用多种HE4靶向制剂已经证明在培养的肿瘤细胞实验中显著降低细胞活力。
如下面详细描述的,HE4过表达载体诱导SKOV-3细胞的FACS分析表明,HE4的活化导致伴随罗丹明123群减少,碘化丙啶(PI)阳性人群(凋亡)显著增加。HE4过度表达载体诱导SKOV-3细胞的另一个荧光激活细胞分选分析表明,对比于载体或转染试剂(脂质体),HE4活化引起sub-G1/G0期细胞显著阻滞。
另外,如下面详细描述的,重组HE4治疗导致增殖性卵巢癌细胞的细胞活力的降低(SKOV-3;IC50~1-8uM)。进一步,相比于载体、HE4或顺铂,重组HE4和顺铂处理的SKOV-3细胞,同时或单独显示出协同或增强抑制细胞活力。
基于本文中描述的实验,被确定激活HE4基因呈现了基因治疗或疫苗疗法来治疗人类癌症的特征。在此描述的发明之前,HE4过表达在卵巢癌病理的影响不明。相反,本文中描述的发明之前,HE4的文献集中在努力扩大HE4作为多种癌症的生物标志物的应用。如本文所述,HE4是细胞毒性/抑制细胞生长的基因,HE4过表达体外减少卵巢癌和子宫内膜癌的生长。基于HE4的基因疗法应用于多种人类癌症,包括卵巢癌、子宫内膜癌和肺癌。本发明提供了一种单独用HE4活化治疗卵巢癌。或者,HE4活化可以用来增加癌细胞(启动)对现有治疗方法的灵敏度,以克服化疗耐药或提高治疗效果。基于HE4的基因疗法是尤其适用于卵巢癌和子宫内膜癌,因为即使在后期阶段,该疾病主要局限于腹腔(Robertson III MW et al.,1998Cancer Gene Ther,5:331-336),卵巢癌患者腹腔高度可达到的。进一步,基于HE4的基因疗法是治疗肺癌和前列腺癌的一个工具,因为它有可能实现以最小的组织分布和毒性的更高的载体浓度(Tanyi JLLR et al.,2002Gynecol Oncol,85:451-458)。
传送治疗HE4载体的优势显著减少了卵巢癌和其他癌症基因治疗的局限性,即,由于对正常组织的非特异性转导的毒性。克服这种限制的最直接的方法是利用组织和肿瘤特异性启动子。几个候选启动子(非HE4和其异构体)控制卵巢癌细胞中的治疗基因的表达。人绒毛膜促性腺激素(hCG)启动子,当逆转录病毒中子克隆白喉毒素A链基因的上游时,显示出选择性杀死卵巢癌细胞株,对正常卵巢和成纤维细胞的毒性最小(Lidor YJ et al.,1997Am J Obstet Gynecol,177:579-85)。丝氨酸性白细胞蛋白酶抑制剂-1(SLP1)启动子也已用于驱动SKOV-3细胞中的单纯疱疹病毒胸苷激酶(HSVTK)(Garver Jr RI.1994Gene Therapy,1:46–50)。此外,肿瘤特异性启动子,如端粒酶基因启动子(人端粒酶逆转录酶,hTERT)(Cong YS et al.,1999Hum Mol Genet,8:137-142)已用于检测卵巢癌的基因治疗(Bilsland AE et al.,2003Oncogene,22:370-380;Hiyama E and Hiyama K,2002Oncogene,21:643-649)。附加的方法,包括人工启动子结合高效基因转导载体,可提高治疗指数,降低毒性,但还未被测试卵巢癌的基因治疗。卵巢癌中基因频繁上调的启动子提供了指导治疗性基因尤其是在卵巢癌细胞中治疗性基因表达的一种手段。优选地,使用在美国公开No.2011/0104120A1中所述的载体,HE4不表达或过表达。
本发明涉及:i)开发改变HE4表达水平的方法,包括肿瘤或肿瘤细胞内的过表达;和 )在人类患者病理条件下治疗中改变HE4表达(如过表达)的应用。本发明提供了治疗患有疾病如癌症的哺乳动物的一种方法和一种治疗方法。受试者优选是需要这种治疗的哺乳动物,例如,已被诊断患有癌症或易患癌症的受试者。所述哺乳动物可以是,例如,任何哺乳动物,例如人类、灵长类动物、小鼠、大鼠、狗、猫、马、以及用于食物消费的家畜或动物,例如,牛、羊、猪、鸡和山羊。在一个优选的实施方案中,哺乳动物是人。
如本文中所描述的,HE4基因活化是作为治疗卵巢癌和子宫内膜癌细胞的一种有效的细胞毒性的方法,对细胞没有任何毒性。举例来说,卵巢和子宫内膜癌或其它肿瘤细胞的治疗剂的IC50值覆盖相关处理时间(1分钟~7天)的浓度范围(100μM-1pM)。传送HE4基因,或HE4基因表达,或HE4基因有条件的活化,或HE4基因表达调节,或HE4基因产物的应用(mRNA、蛋白质),单一治疗或与其他药剂组合治疗,治疗的癌症可能是初级、中级、转移、或癌症祖细胞、或癌症干细胞来源。通常,癌症,包括良性肿瘤、恶性肿瘤、实体瘤或其他癌症。实体癌的实施例可以是乳腺癌、卵巢癌、子宫内膜癌、子宫颈癌、成神经细胞瘤、肺癌、结肠癌、中枢神经癌、黑素瘤、肾癌、前列腺癌、髓母细胞瘤、头颈部癌、食道癌、胰腺癌、皮肤的任何类型或亚型癌、甲状腺癌、外周神经鞘肿瘤、室管膜瘤、颅咽管瘤、星形细胞瘤(少年毛细胞型星形细胞瘤、室管膜下巨细胞星形细胞瘤、多形性黄色星形细胞瘤、间变性星形细胞瘤或脑胶质瘤病)、脑膜瘤、生殖细胞瘤、神经胶质瘤、混合胶质瘤、脉络丛瘤、少突胶质瘤、外围神经外胚层肿瘤、中枢神经系统淋巴瘤、垂体腺瘤、或神经鞘瘤。HE4基因活化抑制肿瘤负荷也适用于非实体瘤类型或亚型如血癌或淋巴癌,例如,白血病或淋巴瘤。在另一个方面,这些方法可以作为新辅助化疗,与现有的疗法组合,或作为辅助治疗。任选地,所述方法还包括化疗、手术或放疗治疗受试者。
在一个实施方案中,本发明涉及使用重组HE4蛋白或其修饰的形式,作为一种选择性的细胞毒性剂或细胞生长抑制剂。如本文所描述的,重组HE4选择性引起卵巢癌和子宫内膜癌细胞中的细胞凋亡和细胞死亡。永生化人滋养层细胞(HTR)或小鼠肾脏细胞对HE4细胞毒作用相对较少敏感。重组HE4的多种其它的抗肿瘤特性包括:ⅰ)阻滞卵巢癌细胞的细胞周期进程; )活化细胞凋亡的生物标志物,如活化半胱氨酸蛋白酶-3、PARP-1裂解和激活促细胞分裂原活化蛋白激酶; )促进存活的标志物灭活,如促细胞分裂原活化蛋白激酶,iii)抗癌药功效的协同作用,这可能涉及细胞凋亡的协同激活,或抑制化学治疗剂耐药或化学治疗剂外排生物标志物。一个这样的实施例是可能抑制HE4诱导EGF1R或糖蛋白-1、BRCA-1/2、AKT、PI-3K表达和/或激活,导致卵巢癌细胞或肿瘤中顺铂耐药。其他熟知的化疗耐药因子包括多药耐药基因-1、谷胱甘肽硫转移酶Pi(GSTP1),O(6)-甲基鸟嘌呤-DNA甲基转移酶(MGMT)和突变p53(Kern DH.,1998Cancer J Sci Am.,4:41-45)。相当比例的与药物抗性相关的肿瘤过表达生物标志物,包括MGMT(67%)、GSTP1(49%)、和突变p53(41%)(Parker RJ et al.,2004J Neurooncol,66:365-375)。
在另一个实施方案中,本发明涉及诱导HE4基因和/或蛋白过度表达,抑制癌细胞和肿瘤生长的增殖。癌细胞是或源自人体器官,如卵巢癌、乳腺癌、神经系统(中枢神经系统和外周神经系统)、血、肺、骨、肝、肾、胰腺、结肠直肠、排泄系统、皮肤、子宫内膜、食道,并且可能为同一受试者的多个器官内扩散的一部分转移性癌。在一个方面,使用文献中已知的多种方法,例如使用转染化学物质(脂质体、surefect等)、热休克、电穿孔或脂质体,癌细胞中HE4的过表达通过传递HE4载体来实现(cDNA或HE4启动子)。任选地,所述载体进一步与其他自杀基因、凋亡基因、细胞周期调控基因或促细胞分裂原活化蛋白激酶或基因耦合,能够抑制癌细胞中的化疗耐药因子,并使其对化疗更加敏感。该载体可以共同传送其他诊断基因,例如,萤光素酶、CA125、间皮素,可以提高HE4在多种癌症细胞类型的诊断和化学治疗效率。
本发明还包括监测癌症家族史、或病毒或自身免疫性疾病的健康者/受试者血清或组织中的预HE4蛋白水平,尤其是女性的水平。使用生物信息学方法,对比家族史受试者/全球数据/癌症患者数据库pre-HE4的遗传指纹/构型,确定受试者卵巢癌、子宫内膜癌、乳腺癌或肺癌或其他癌症或疾病如囊性纤维化的预可处理的程度,显著提高pre-HE4表达和定位。
本发明还涉及诱导HE4基因和/或蛋白质表达,抑制肿瘤细胞从始发源转移到其他器官。本技术的一个实施例是HE4诱导抑制卵巢癌转移到邻近器官,肝脏,肺,结肠(>50%),或淋巴结。本文还描述了通过调节HE4基因或基因产物的表达来抑制肿瘤中血管生成。本发明提供了抑制哺乳动物,优选人受试者中血管生成的方法。该方法包括传送HE4基因,HE4基因表达、HE4基因有条件的激活,肿瘤或包括受试者的癌症干细胞的癌症细胞中传送HE4基因产物,抑制血管生成和继发性病理结果。血管生成,从先前存在的血管上形成新的血管,是卵巢或其他人类癌症肿瘤生存、生长和转移的关键。正常的血管生成过程失调发生癌症的分泌促血管生成因子能力。内源性血管激发剂和血管抑制剂局部不平衡促进血管生成和血管渗漏,供给曾经饿死的肿瘤。
受试者可能患有癌症、眼部疾病(如,黄斑变性、黄斑病变,糖尿病视网膜病变或早产儿视网膜病(晶状体后纤维增生症))、皮肤病(例如,婴儿血管瘤、寻常疣、银屑病、神经纤维瘤病,或大疱性表皮松解)、自身免疫性疾病(如类风湿性关节炎)、妇科疾病(如子宫内膜息肉、子宫内膜异位、卵巢过度刺激综合征、多囊卵巢综合征(PCO)、或先兆子痫)、或心血管病(例如,冠状动脉疾病、缺血性心肌病、心肌缺血、动脉硬化、动脉粥样硬化、动脉粥样硬化斑块、新血管生成,动脉阻塞性疾病,局部缺血,缺血性或交心肌缺血血管再生,周围血管疾病或间歇性跛行),或胃肠道疾病(如克罗恩氏病和溃疡性结肠炎、伯格氏病、血栓闭塞性脉管炎、动脉硬化性闭塞症、缺血性溃疡、多发性硬化、特发性肺纤维化、HIV感染、足底筋膜炎、冯·希佩尔朗道疾病、中枢神经系统血管母细胞瘤、视网膜母细胞瘤、甲状腺炎、良性前列腺增生、肾小球肾炎、异位妊娠和异位骨形成或瘢痕疙瘩)。在一个方面中,所述癌症是胆道癌、膀胱癌、骨癌、脑癌、绒毛膜癌、乳腺癌、宫颈癌、结肠和直肠癌、结缔组织癌症、消化系统癌症、子宫内膜癌、食管癌、眼癌、fibromael、头颈部癌、胃癌、上皮内瘤变、肾癌、喉癌、白血病、包括急性髓细胞性白血病、急性淋巴性白血病、慢性淋巴性白血病、肝癌、肺癌(例如,小细胞肺癌和非小细胞肺癌)、淋巴瘤(包括何杰金氏淋巴瘤和非霍奇金淋巴瘤)、黑色素瘤、口腔癌(唇、舌、口和咽)、卵巢癌、胰腺癌、前列腺癌、视网膜母细胞瘤、横纹肌肉瘤、直肠癌、肾癌和呼吸道癌症、肉瘤、皮肤癌、胃癌、睾丸癌、甲状腺癌、子宫癌、泌尿系统癌、肉瘤或癌。所述癌症可以是转移性癌症。该方法可另外包括利用额外的手术、化疗或放疗治疗受试者。在另一个实施方案中,本发明涉及通过使用N-糖基化抑制剂,抑制肿瘤细胞中HE4N-糖基化。这种抑制剂的适宜的实施例是衣霉素和安福霉素。HE4在血清中分泌,作为N-糖基化蛋白质后内质网(ER)或癌细胞内高尔基器处理。这种细胞处理降低了HE4细胞水平。衣霉素或安福霉素可以通过阻断其N-糖基化,提高细胞内HE4半衰期,抑制HE4分泌。由于抑制HE4排出,增加细胞内滞留(例如,作为N-糖基化HE4)能诱导癌细胞内各层的细胞毒性或细胞生长抑制。
被处理的示例性的肿瘤包括所有HE4表达或过表达的肿瘤,例如卵巢癌(举例来说,生殖细胞癌、间质细胞癌、上皮细胞癌)和子宫内膜癌(举例来说,子宫内膜癌和透明细胞癌)。约80%的浆液性肿瘤细胞、100%的子宫内膜癌细胞、50%的透明细胞癌、和30-40%的粘液性肿瘤细胞表达HE4。
本发明还提供了调节HE4基因或基因产物表达来抑制肿瘤细胞增殖。癌细胞中HE4表达的改变,通过改变细胞中细胞周期调控机制,阻滞细胞周期不同阶段的细胞周期进程。细胞周期或细胞分裂周期是发生导致细胞分裂和复制的一系列事件。该控制细胞周期的分子事件是有序的和有方向性的,即,每个过程以一种连续的方式地发生,是不可能“反向”周期。细胞周期阻滞可以有针对性地抑制癌细胞增殖。细胞周期进程或细胞周期调控因子(例如细胞周期蛋白、细胞周期蛋白依赖性激酶)的抑制,也可以是针对性的。
在一个方面,HE4表达靶向抑制人体内其他过度增殖性疾病。HE4过表达/表达不足靶向增殖性疾病包括牛皮癣、肾脏、肝脏和甲状腺功能亢进症。是由cDNA、特异性或非特异性过表达载体、诱导型或有条件的载体,和由基因或基因产物操作,或使用小分子来实现HE4过表达。适宜的诱导因子包括四环素(tet)、多西环素、和嘌呤霉素。在另一个方面,本发明提供了一种用于前述疾病、病症或病症治疗的药物组合物。所述组合物包括结合HE4表达调节,传送本公开提到的一个或多个配体。适宜的载体被用来传递HE4,而另一种药物载体被用于传递配体或化学治疗剂。举例来说,化合物(顺铂)中的一个可与批准的药物载体进行配制,而四环素诱导型HE4载体是通过脂质体、电穿孔或氯化钙或通过多种转染试剂(例如脂质体、surefect、其他阳离子转染脂质:DOTMA、DOTAP、DMRIE、DCRIE、DOSPA、DMDHP或DOGS;DharmaFECT、HiPERfect)传递来治疗妇科癌症,如乳腺癌、卵巢癌或子宫内膜癌或折磨男性和女性的非妇科癌症。单位剂量优选为具有适宜的药物载体的1毫微克/千克体重~10克/千克体重的药物。在另一个方面,本发明所述的HE4基因表达载体是利用流行的各种运载平台与其它药物共同配制。这些制剂被配制用于口服、鞘内注射、静脉注射、腹腔注射(即,6个月以上整6个周期)、肌注或皮下给药,或按照流行的需求和技术给药。
癌症是上皮来源的癌症。使用本发明的方法治疗的癌症包括,但不限于,腺泡癌、腺癌(acinous carcinoma)、肺泡腺癌、腺癌(carcinoma adenomatosum)、腺癌(adenocarcinoma)、肾上腺皮质癌、肺泡癌、肺泡细胞癌、基底细胞癌、基底细胞癌、基底细胞样癌、基底鳞状细胞癌、乳房癌、细支气管肺泡癌、支气管癌、脑回癌、胆管细胞癌、绒毛膜癌、胶样癌、粉刺癌、子宫体癌、筛状癌、铠甲状癌、皮肤癌、圆柱癌、圆柱细胞癌、导管癌、硬癌、胚胎癌、.髓样癌、眼球表面癌、表皮样癌、腺样上皮癌、溃疡原癌(carcinoma exulcere)、纤维癌、胶状癌(gelatinformcarcinoma)、胶质癌、巨细胞癌、巨细胞癌(gigantocellulare)、腺体癌、颗粒细胞癌、毛母癌、多血癌、肝细胞癌、嗜酸细胞癌、透明癌、肾透明细胞癌、小儿胚胎性癌、原位癌、表皮内癌、上皮内癌、克氏(Krompecher’s)癌、库尔奇茨基细胞癌、豆状癌、豆状癌(carcinoma lenticulare)、脂肪瘤癌、淋巴上皮癌、乳炎性癌(carcinoma mastotoids)、髓样癌(carcinoma medullare)、髓样癌、黑色素癌(carcinoma melanodes)、黑色素癌(melanoticcarcinoma)、粘液癌、粘液癌(carcinoma muciparum)、黏液细胞癌(carcinoma mucocullare)、粘液表皮样癌、粘液癌、粘液瘤样癌,鼻咽癌、黑色素癌、燕麦细胞癌、骨化性癌、骨化性癌(osteroidcarcinoma)、卵巢癌、乳头状癌、门静脉周围癌、浸润前癌、前列腺癌、肾癌、储备细胞癌、肉瘤样癌、施奈德癌(scheinderiancarcinoma)、硬癌、睾丸癌、印戒细胞癌、单纯癌、小细胞癌、肾细胞癌、solandoid carcinoma、球形细胞癌、梭形细胞癌、髓样癌、鳞状细胞癌、鳞状细胞癌、绳捆癌、血管扩张性癌、毛细血管性癌、移行细胞癌、块状癌(carcinoma tuberrosum)、结节性癌、疣状癌、绒毛状癌(carcinoma vilosum)。
本发明还提供了治疗肉瘤的方法和试剂。肉瘤是发生于骨和软组织间充质肿瘤。不同类型的肉瘤被确认,包括:脂肪肉瘤(包括粘液样脂肪肉瘤和多形性脂肪肉瘤)、平滑肌肉瘤、横纹肌肉瘤、神经纤维肉瘤、恶性外周神经鞘瘤、尤文氏肿瘤(包括骨、骨外或非骨尤文氏肉瘤)和原始神经外胚层肿瘤(PNET)、滑膜肉瘤、血管内皮细胞瘤、纤维肉瘤、硬纤维瘤、隆突性皮肤纤维肉瘤(DFSP)、恶性纤维组织细胞瘤、血管外皮细胞瘤、恶性间叶瘤、肺泡软组织肉瘤、上皮样肉瘤、透明细胞肉瘤、促纤维增生性小细胞肿瘤、胃肠道间质瘤(GIST)和骨肉瘤(又称成骨、骨外骨肉瘤、软骨肉瘤)。
任选地,要治疗的癌症是难治性或响应癌症。如本文所用的,难治性癌症是对一般标准的处方护理具有抗性的癌症。这些癌症,虽然最初响应于治疗、复发,和/或可以完全不响应于治疗。本发明也可用于治疗免疫原性的癌症。免疫原性的癌症的实施例包括恶性黑色素瘤和肾细胞癌、曼特尔细胞淋巴瘤、滤泡性淋巴瘤、弥漫性大B细胞淋巴瘤、T-细胞急性淋巴细胞白血病、伯基特淋巴瘤、骨髓瘤、免疫细胞瘤、急性早幼粒细胞白血病、慢性粒细胞/急性淋巴细胞白血病、急性白血病、B-细胞急性淋巴细胞白血病、间变性大细胞性白血病、骨髓增生异常综合征/急性髓细胞白血病、非霍奇金淋巴瘤、慢性淋巴细胞白血病、急性髓性白血病(AML)、普通(前B)急性淋巴细胞性白血病、恶性黑色素瘤、T细胞淋巴瘤、白血病、B细胞淋巴瘤、上皮恶性肿瘤、淋巴样恶性肿瘤、科恶性肿瘤、胆道腺癌和胰腺导管腺癌。
本发明还提供了一种抑制人类受试者血管生成的方法。血管生成,上皮细胞的迅速增殖导致形成新的血管,支持肿瘤的进展和存活。作为一个次要作用,血管生成,可能会损坏各种器官和组织、眼睛、皮肤、心脏、血管、肺、胃肠道和泌尿生殖道。多种方法或技术可用于评估血管生成,这里没有记载可用于本发明目的的方法或技术。评估血管生成的方法和技术是本领域的普通技术人员已知的。
由本发明得到的方法和药剂可以结合其它疗法组合给药,例如,举例来说,放射治疗、外科手术、常规化疗,或者与一种或多种其他疗法的组合给药。由本发明得到的药剂可在药物组合物中单独给药或者与治疗有效和生理上可接受剂量的一种或多种其他活性成分或试剂组合给药。其它活性成分,包括,但不限于,谷胱甘肽拮抗剂、血管生成抑制剂、化疗剂和抗体(例如,癌症抗体)。在本发明所述的药剂可同时或顺序给药。给药之间的时间间隔可以是几分钟、几小时、几天,或者可能更长时间。
举例来说,HE4调节剂在化疗剂之前、之后或同时给药,化疗剂如烷基化剂(例如,苯丁酸氮芥、环磷酰胺、ccnu、美法仑、丙卡巴肼、塞替派、氮芥、和白消安)、抗代谢药(例如,6-巯基嘌呤和5-氟尿嘧啶)、蒽环类抗生素(如红霉素、多柔比星、伊达比星、表柔比星和米托蒽醌)、抗肿瘤抗生素(如博来霉素)、单克隆抗体(如阿仑单抗、贝伐单抗、西妥昔单抗、吉妥珠单抗、替伊莫单抗、帕尼单抗、利妥昔单抗、托西莫单抗、和曲妥珠单抗)、铂类(例如,顺铂、奥沙利铂、卡铂)、植物生物碱(例如,长春新碱)、拓扑异构酶I或II抑制剂(例如,伊立替康、拓扑替康、安吖啶、依托泊苷、磷酸依托泊苷、替尼泊苷)、长春碱类(如,长春新碱、长春碱、长春瑞滨、和长春地辛)、紫杉烷类(例如,紫杉醇和多西他赛)、表鬼臼毒素(如依托泊苷和替尼泊苷)、核苷类似物,和血管发生抑制剂(例如,阿瓦斯丁(beracizumab),VEGF特异性的人源化单克隆抗体-A)。
谷胱甘肽拮抗剂的实施例包括,但不限于,丁硫氨酸亚砜胺、环磷酰胺、异环磷酰胺、放射菌素-d和N-(4-羟基苯基)维甲酸胺(4-HPR)。血管生成抑制剂的实施例包括,但不限于:2-甲氧基雌二醇(2-ME)、AG3340、血管抑素、抗凝血酶-III、抗VEGF抗体、巴马司他、贝伐单抗(阿瓦斯丁)、BMS-275291、CA1、血管能抑素、考布他汀、考布他汀-A4磷酸盐、CC-5013、卡托普利、塞来考昔、达肝素钠、EMD121974、内皮抑素、埃罗替尼、吉非替尼、染料木素、卤夫酮、ID1、ID3、IM862、伊马替尼甲磺酸盐、可诱导的蛋白-10、干扰素-α、白细胞介素12、薰草菌素-A、LY317615或AE-941、马立马司他、Mapsin、醋酸甲羟孕酮、冰毒-1、冰毒-2、新伐司他、骨桥蛋白裂解产物、PEX、色素上皮细胞生长因子(PEGF)、血小板生长因子-4(rPF4)、催乳素片段、增殖素-相关蛋白(PRP)、PTK787/ZK222584、重组人血小板因子-4(rPF4)、restin、角鲨胺、SU5416、SU6668、苏拉明、紫杉醇、替可加兰、沙利度胺、四硫钼酸盐(TM)、血小板反应蛋白、TNP-470、肌钙蛋白I、Vasostatin、VEGF1、VEGF-TRAP和ZD6474。在一些实施方案中,血管生成抑制剂是VEGF拮抗剂。VEGF拮抗剂可以是VEGF结合分子。VEGF结合分子包括VEGF抗体,或其抗原结合片段。VEGF拮抗剂的一个实施例是NeXstar。
可被用作附加的活性成分的化学治疗剂类别的实施例包括,但不限于,DNA损伤剂、包括拓扑异构酶抑制剂的这些(如足叶乙甙、喜树碱、拓扑替康、伊立替康、替尼泊苷、米托蒽醌)、抗微管药物(如长春新碱、长春碱)、抗代谢药物(如阿糖胞苷、甲氨蝶呤、羟基脲、5-氟尿嘧啶、flouridine、6-硫鸟嘌呤、6–嘌呤、氟达拉滨、喷司他丁、氯脱氧腺苷)、DNA烷化剂(例如,顺铂,氮芥、环磷酰胺、异环磷酰胺、美法仑、苯丁酸氮芥、白消安、噻替派、卡莫司汀、洛莫司汀、卡铂、达卡巴嗪、丙卡巴肼)和DNA链断裂诱导剂(如,博莱霉素、阿霉素、柔红霉素、伊达比星、丝裂霉素C)。化疗剂包括合成的、半合成的和天然来源的药物。重要的化学治疗剂包括,但不限于,勒木党碱、阿柔比星、阿考达唑、阿克罗宁、阿多来新、阿霉素、阿地白介素、阿利维A酸、别嘌醇钠、六甲蜜胺、安波霉素、醋酸阿美蒽醌、氨鲁米特、安吖啶、阿那曲唑、番荔枝内酯、氨茴霉素、巴婆(双呋)内酯、天冬酰胺酶、曲林菌素、阿扎胞苷、阿扎替派、阿佐霉素、巴马司他、苯佐替派、贝沙罗汀、比卡鲁胺、比生群、双奈法德、比折来新、博来霉素、布喹那、溴匹立明、布拉他辛、白消安、卡麦角林、放射菌素C、卡普睾酮、卡醋胺、卡贝替姆、卡铂、卡莫司汀、卡米诺霉素、卡折来新、西地芬戈、苯丁酸氮芥、塞来昔布、西罗霉素、顺铂、克拉屈滨、克立那托、环磷酰胺、阿糖胞苷、达卡巴嗪、DACA、更生霉素、柔红霉素、柔红霉素、地西他滨、地尼、右奥马铂、地扎胍宁、地吖醌、多西他赛、多柔比星、屈洛昔芬、Dromostalone、达佐霉素、依达曲沙、依氟鸟氨酸、依沙芦星、雌莫司汀、依他硝唑、足叶乙甙、氯苯乙嘧胺、法倔唑、法扎拉滨、4-N羟基维甲胺、氟尿苷、氟达拉滨、氟尿嘧啶、氟西他宾、5-氟脱氧脲苷-磷酸、磷喹酮、福司曲星、FK-317、FK-973、FR-66979、FR-900482、吉西他滨、吉妥单抗奥佐米星(Gemtuzumab Ozogamicin)、胶体金[198Au]、醋酸戈舍瑞林、Guanacone、羟基脲、伊达比星、伊莫福新、干扰素α和类似物、异丙铂、伊立替康、兰瑞肽、来曲唑、醋酸亮丙瑞林、利阿罗唑、洛美曲索、洛莫司汀、洛索蒽醌、马索罗酚、美登素、氮芥、甲地孕酮、美仑孕酮、美法仑、美诺立尔、氯苯氨卩定、美妥替哌、米丁度胺、米托卡星、米托洁林、佩利霉素、丝裂霉素、丝裂霉素C、米托司培、米托坦、米托蒽醌、霉酚酸、诺考达唑、诺加霉素、奥普瑞白介素、奥沙利铂、奥昔舒仑、紫杉醇、帕米膦酸、培门冬酶、培利霉素、戊氮芥、培洛霉素、培磷酰胺、哌泊溴烷、哌泊舒凡、吡罗蒽醌、普卡霉素、普洛美坦、卟吩姆、泊非霉素、泼尼莫司汀、甲基苄肼、嘌呤霉素、吡唑呋喃菌素、利波腺苷、美罗华、罗谷亚胺、罗林尼阿司他汀、沙芬戈、钐、司莫司汀、辛曲秦、磷乙酰天冬氨酸盐、稀疏霉素、锗螺胺、螺莫司汀、螺铂、多鳞番荔枝辛、Squamotacin、链黑菌素、链脲霉素、氯化锶、磺氯苯脲(Sulphofenur)、他利霉素、紫杉烷类、类毒素、Tecoglan、替加氟、替洛蒽醌、替莫泊芬、替尼泊苷、替罗昔隆、睾内酯、嘌呤、塞替派、诺拉曲特、噻唑呋林、替拉扎明、雷替曲塞、Top-53、拓扑替康、托瑞米芬、曲妥珠单抗、曲托龙、曲西立滨、曲西立滨,三甲曲沙、三甲曲沙葡萄糖醛酸、曲普瑞林、妥布氯唑、尿嘧啶氮芥、乌瑞替派、戊柔比星、伐普肽、长春碱、长春新碱、长春地辛、长春匹定、长春甘酯、环氧长春碱、长春瑞滨、长春罗定、长春利定、伏氯唑、折尼铂、净司他丁、佐柔比星、2-氯脱氧腺苷(2-cholrodeoxyrubicine)、2'-脱氧型霉素、9-氨基喜树碱、雷替曲塞、N-炔丙基-5,8-二脱氮杂叶酸(dideazafolic acid),2-氯-2'-阿糖氟(arabinofluoro)-2'脱氧腺苷,2-氯-2'-脱氧腺苷、茴香霉素、曲古霉素,hPRL-G129R、CEP-751、三羧氨基喹啉、硫芥子气、氮芥、N-甲基-N-亚硝基脲、福莫司汀、链脲佐菌素、达卡巴嗪、米托唑胺、替莫唑胺、AZQ、奥沙利铂、CI-973、DWA2114R、JM216、JM335、二铂(Bisplatinum)、雷替曲塞、阿扎胞苷、cytrabincine、吉西他滨、6-巯基嘌呤、次黄嘌呤、替尼泊苷、CPT-11、阿霉素、柔红霉素、表柔比星、依道红菌素、洛索蒽醌、安吖啶、吡唑啉吖啶、全反式视黄醇、14-羟基复古式视黄醇、全反式视黄酸、N-(4-羟基苯基)维甲酸胺、13-顺式视黄酸、3-甲基TTNEB、9-顺式维甲酸、氟达拉滨和2-氯脱氧腺苷。
其他化疗药物包括:20-epi-1,25-二羟基维生素D3、5-乙炔基尿嘧啶、阿比特龙、阿柔比星、酰基富烯、阿迪西潘诺、阿多来新、阿地白介素、ALL-TK拮抗剂、六甲蜜胺、氨莫司汀、阿米多斯、氨磷汀、氨基乙酰丙酸、阿那格雷、阿那曲唑、穿心莲内酯、血管生成抑制剂、拮抗剂D、拮抗剂D、安雷利克斯、抗背部化形态发生蛋白-1、抗雄激素、抗雌激素、抗瘤酮、反义寡核苷酸、阿非迪霉素、细胞凋亡基因调节剂、细胞凋亡调节剂、脱嘌呤酸、ara-cdp-dl-PTBA、精氨酸氨基酶、asulacrine、阿他美坦、阿莫司汀、海洋环肽1和海洋环肽2、海洋环肽3、阿扎司琼、阿扎毒素、重氮酪氨酸、浆果赤霉素Ⅲ衍生物、balanol、BCR/ABL拮抗剂、苯并二氢卟酚、苯甲酰基星形孢菌素、β-内酰胺衍生物、β-内酰胺衍生物、紫苏子醇、苯连氮霉素、乙酸苯酯、磷酸酶抑制剂、溶链菌、吡罗卡宾及其盐或其类似物、卩比喃阿霉素、吡曲克辛、placetin A、placetin B、纤溶酶原激活物抑制剂、铂络合物、苯基乙基异硫氰酸酯及其类似物、铂化合物、铂胺络合物、鬼臼毒素、卟吩姆钠、紫菜霉素、丙基双吖啶酮、前列腺素J2、蛋白激酶抑制剂、基于免疫调节剂的蛋白质A,蛋白激酶C抑制剂、微藻、蛋白酪氨酸磷酸酶抑制剂、嘌呤核苷磷酸化酶抑制剂、红紫素、吡唑啉吖啶、吡哆酰基化血红素聚氧乙烯共轭物、raf拮抗剂、雷替曲塞、雷莫司琼、ras法尼基蛋白转移酶抑制剂、ras抑制剂、ras-GAP抑制剂、脱甲基瑞提普汀,铼Re186依替膦酸钠、根霉素、核酶、RII retinide、罗谷亚胺、罗格列酮和其类似物和衍生物、罗希吐碱、罗莫肽、罗喹美克、rubiginone B1、ruboxyl、沙芬戈、saintopin、肌氨酰胺亚硝脲、sarcophytol A、沙格司亭、sdi1模拟物、司莫司汀、衰老衍生抑制剂1、正义寡核苷酸、信号转导抑制剂、信号转导调节剂、单链抗原结合蛋白、西佐喃、索布佐生、硼卡钠、钠苯醋酸、solverol、生长调节素结合蛋白、索纳明、膦门冬酸、穗霉素D、螺旋氮芥、斯耐潘定、海绵素1、角鲨胺、干细胞抑制剂、干细胞分裂抑制剂、stipiamide、基质溶素、sulfinosine、超活性血管活性肠肽拮抗剂、suradista、苏拉明、苦马豆素、合成糖胺、他莫司汀、他莫昔芬甲碘化物、牛磺莫司汀、他扎罗汀、替可加兰钠、替加氟、卩比喃硫、端粒酶抑制剂、替莫泊芬、蒂清、替尼泊苷、四氯十氧化物、四唑胺、沙利布拉司汀、沙利度胺、噻可拉林、血小板生成素(thrombopoetin)及其模拟物、胸腺法新、胸腺肽类激素受体激动剂、胸腺曲南、促甲状腺素、锡乙基初紫红素、替拉扎明、茂钛和其盐、托泊替康、托普散亭、托瑞米芬、全能干细胞因子,翻译抑制剂、维甲酸、三乙酰尿苷、曲西立宾、三甲曲沙、曲普瑞林、托烷司琼、妥罗雄脲、酪氨酸激酶抑制剂、酪氨酸磷酸化抑制剂、UBC抑制剂乌苯美司、泌尿生殖窦源性生长抑制因子、尿激酶受体拮抗剂、伐普肽、瓦里奥林B、载体系统、红细胞基因治疗、维拉雷琐、黎芦胺、维汀司、维替泊芬、长春瑞滨、温沙阿亭、维塔辛、伏罗唑、扎诺特隆、折尼铂、亚苄维C和净司他丁。
其他化疗药物包括:抗增殖剂(如,吡曲克辛异硫氰酸酯)、抗前列腺肥大剂(西托糖苷)、良性前列腺增生症的治疗药物(如tomsulosine、RBX2258)、前列腺癌生长抑制剂(喷托孟)和放射性药物:纤维蛋白原I125、氟脱氧葡萄糖F18、Flurodopa F18、胰岛素I125、碘苄胍I123、胆影钠I131、碘安替比林I131、碘胆甾醇I131、碘吡啦啥I125、盐酸放射性碘性他胺I123、I-131碘(131I)双胺喹、I-131碘(131I)双胺喹(Iomethin I131)、碘酞钠I125、碘酞酸盐I131、碘酪氨酸I131、三碘甲状腺氨酸I125、汞[179]Hg丙醇、甲基碘苯并鸟嘌呤(Methyl ioodobenzo guanine)(MIBG-I131或MIBGI123)硒代蛋氨酸SE75、锝99mTc呋膦、锝99mTc葡庚糖酸盐、99mTc Biscisate、99mTc地索苯宁、99mTC葡庚糖酸盐、99mTc利多苯宁、99mTc甲溴苯宁、99mTc亚甲基二膦酸钠和其钠盐、99mTc巯替肽、99mTc轻亚甲基二膦酸盐、99mTc喷替酸盐和其盐,99mTc司他比、99mTc、西硼肟锝、99mTc二巯丁二酸,99mTc硫胶体,99mTc替月亏、99mTc m替曲膦、99mTc Tiatide、甲状腺素I125、甲状腺素I131、托泊酮I131、三油精I125和Treoline I125、和Treoline131、MIBG-I123和MIBGI131是尤其优选的化疗剂,共同施用含有本发明的药物组合物的硝基呋喃。
化疗药物另一类是抗癌辅助增强剂,如抗抑郁药(丙咪嗪、去甲丙咪嗪、阿米替林、氯丙咪嗪、三甲丙咪嗪、多虑平、去甲替林、普罗替林、阿莫沙平、和马普替林),或非三环抗抑郁药(舍曲林、曲唑酮和西酞普兰),钙离子拮抗剂(维拉帕米、硝苯地平、尼群地平和卡罗维林),钙调节抑制剂(普尼拉明、三氟拉嗪和氯米帕明),两性霉素B,三苯乙醇类似物(如他莫昔芬),抗心律失常药物(如奎尼丁),抗高血压药物(如,利血平)、降硫醇药(例如,丁硫氨酸和亚砜亚胺)以及多重耐药性还原剂如聚氧乙烯蓖麻油。
另一种化疗药物包括:番荔枝内酯、ascimicin、泡番蒸枝辛、guanocone、多鳞番荔枝辛、布拉他辛、squamotacin、紫杉烷类、巴卡亭。一类重要的化疗药物是紫杉烷类(紫杉醇和多西他赛)。本发明的化合物与三苯氧胺和芳香酶抑制剂阿那曲唑(例如,阿那曲唑)组合治疗癌症尤其有效。
与本发明的化合物组合用于治疗癌症的另一类重要分子,包括,但不限于,抗-CD20单克隆抗体、利妥昔单抗、利妥昔单抗、Tositumoman、托西莫单抗、抗HER2、曲妥珠单抗、曲妥珠单抗、MDX20、抗CA125单克隆抗体、抗HE4单克隆抗体、奥戈伏单抗、B43.13单克隆抗体、Ovarex、Breva-REX、AR54、GivaRex、ProstaRex单克隆抗体、MDX447、gemtuzumab ozoggamycin(GO)、吉姆单抗、CMA-676、抗-CD33单克隆抗体、抗组织因子蛋白、苏尼奥尔、IOR-C5、C5、抗-EGFR单克隆抗体、抗-IFR1R单克隆抗体,MDX-447、抗-17-1A单克隆抗体、依决洛单抗单克隆抗体、依决可单抗(Panorex)、抗-CD20单克隆抗体、(Y-90lebelled)、替伊莫单抗(IDEC-Y2B8)、替伊莫单抗(Zevalin)、抗独特型单克隆抗体。
实施例1:He4过表达促进卵巢癌细胞化疗耐药
如下面详细描述的,上皮性卵巢癌患者具有生物标记HE4(WFDC2)升高的血清水平。本文描述的是测量卵巢癌细胞株生产HE4,建立稳定转染HE4过表达的卵巢癌细胞克隆,以推测该蛋白的细胞功能的实验。HE4的产生和分泌是由非竞争性EIA法测定。SKOV-3细胞用WFDC2/pCMV6转染并克隆。HE4表达进行定量,当采用化疗剂治疗时伴随细胞活力分析生长和细胞周期进程。如下面详细描述的,HE4过表达的细胞克隆显示略高的增长率,HE4超过其亲本细胞株表达的7到16倍的高表达。与亲本细胞株相比,细胞周期进程(通过S和G2/M期)和调节因子表达(cdc25、cdc2、CyclinB)存在差异。HE4过表达卵巢癌细胞显示出顺铂、紫杉醇、阿霉素和喜树碱化疗耐药。本研究表明,生物标志物HE4细胞功能与妇科肿瘤细胞对化疗药物耐药有联系。
人附睾分泌蛋白E4(HE4),也称为乳清酸性蛋白(WAP)、四二硫化物核心域蛋白2(WFDC2)、或推定蛋白酶抑制剂WAP5,最初被发现表达于附睾。HE4也表达于数目有限的其他器官,包括女性生殖道、乳房组织、肾脏、呼吸道和鼻咽区域。HE4的选择性剪接可能导致这种蛋白的5种推定亚型。人卵巢癌细胞HE4产生为一种~13kD的蛋白质,并转换为一种~25KD分泌的糖基化蛋白。注意到,一群肺肿瘤细胞株和浆液性和子宫内膜样卵巢癌内发现HE4表达就产生HE4的推定功能。HE4位于染色体区域20q13.12-13.1,染色体区域经常在这些妇科癌症中扩增,并成为卵巢癌和子宫内膜癌的检测和控制的生物标志物。
大多数卵巢上皮癌(EOC)妇女被诊断出患有晚期疾病,患有对铂化疗初步敏感的肿瘤。然而,约20%的EOC肿瘤是铂耐药的疾病,大多数肿瘤最终会发展化疗耐药的细胞。使用肿瘤抗细胞毒素剂治疗患者提供了一个治疗性的挑战,需要进一步理解耐药性的生物化学背景和改进化疗方案。EOC肿瘤标志物HE4的分子结构表明了此蛋白质的生物功能。因此,对卵巢癌细胞体外HE4表达的推定作用进行了研究。HE4表达整合型表达载体稳定转染SKOV-3细胞,确定是否HE4过表达调节细胞生长和对化疗药物的响应。
细胞培养
人类细胞株SKOV-3和CaOV-3(卵巢上皮腺癌)、ECC-1和AN3CA(子宫内膜样腺癌)、PC-3(前列腺癌)、MCF-7(乳腺腺癌)、IMR-32(神经母细胞瘤)和HK-2(近端肾小管肾细胞)购自American-Type-Culture-Collection(弗吉尼亚州马纳萨斯),TCL-1(永生滋养细胞)由同事提供。根据供应商的建议,细胞培养在T75细胞培养烧瓶内完全培养基中(康宁,纽约,纽约州)。
细胞HE4生产的计算
细胞在100毫米细胞培养皿中生长24小时(康宁,纽约,纽约州),收集上清,并按照先前所述制备洗涤的和刮下的细胞裂解物(Lange TS et al.,2007Chem Biol Drug Design,70:302-10)。裂解液的总蛋白进行定量(BioRad蛋白质估测试剂盒,赫拉克勒斯,加利福尼亚州),使用2个小鼠单克隆抗体,针对C-WFDC域中的两个表位,HE4EIA法(富吉瑞必欧诊断公司,马尔文,宾西法尼亚州)和固相、非竞争性免疫测定法测定HE4水平。校准曲线被用来衡量细胞裂解液和培养基内HE4浓度,以pmol/g总细胞蛋白质计,计算HE4的生产和分泌。
细胞转染
HE4基因扩增和HE4cDNA的分离的原理设计如图11所示。通过将人WAP四二硫化物核心域2(WFDC2)cDNA的编码序列插入到真核表达载体,pCMV6-entry(马里兰州洛克维尔傲锐东源公司)的多克隆位点对稳定表达的HE4过表达载体进行基因工程化。使用Lipofectamine2000(Invitrogen公司,卡尔斯巴德,加利福尼亚州),按照制造商的说明,进行SKOV-3细胞的构建体转染。G-418抗性的稳定转染的细胞被选定(500μg/ml)(Research Products公司,国际展望山,伊利诺伊州),使用转染48h后采用,并在细胞培养期间继续进行。抗G-418的细胞再悬浮(密度5cells/ml)在完全培养基/G-418中,并在96孔细胞培养板内接种为200μl/孔(康宁,纽约,纽约州)。细胞从单菌落成长中分离得到(克隆;稳定转染)。
RT-PCR法
根据制造商的方案,使用SuperScript III反转录酶,使用Trizol和逆转录3微克RNA,从细胞中提取总RNA(Invitrogen公司,卡尔斯巴德,加利福尼亚州),然后使用下述引物进行30轮PCR:HE4正义,5'-AGG AGC AGA GAA TGG GAC-3'(SEQ ID NO:27);HE4反义,5'-TTA TCA TTG GGC AGA GAG-3'(SEQ IDNO:28);GAPDH正义,5'-AAT CCC ATCACC ATC TTC C-3'(SEQ ID NO:29);GAPDH反义,5'-GTC CTT CCA CGA TACCAA AG-3'(SEQ ID NO:30)。循环条件:94℃/1min,55℃/2min,72℃/2min。在含有0.4mg/ml溴化乙锭的2%琼脂糖凝胶上分离PCR产物。
MTS方法
细胞生长和细胞株的存活率(完全培养基,孵育24小时)通过水性单溶液测定(Promega公司,麦迪逊,威斯康星州),按照制造商的建议进行了修改(Lange TS et al.,2008PLOS One,3(5):e2303)。OD值(细胞生长)代表性实验设3个重复,实验得到三个重复测定值的平均值(X±SD),或药物处理与未处理的细胞[=100%](细胞存活率)的%吸光度。顺氯(CDDP)、紫杉醇、阿霉素和喜树碱(CPT)是从(西格玛奥德里奇公司,圣路易斯,密苏里州)购得。
细胞周期分析
如先前所述,通过流式细胞术进行细胞周期分析(Lange TS etal.,2008PLOS One,3(5):e2303),使用CellQuest软件,从BDFACSort流式细胞仪获得数据(BD免疫流式细胞术系统,新圣何塞,加利福尼亚州),并通过使用ModFit LT软件(VeritySoftware House公司,托普瑟姆,缅因州)进行分析。应用标准化门控选通;对每个样品分析1x104个事件。
蛋白质印迹分析
细胞裂解液的制备、PAGE和免疫印迹法按照先前描述的在附加蛋白酶抑制剂混合物和苯甲基磺酰氟(Sigma-Aldrich公司,圣路易斯,密苏里州)的细胞提取缓冲液(BioSource International公司,加利福尼亚州)中进行(Lange TS et al.,2007Chem BiolDrug Design,70:302-10)in Cell Extraction Buffer(BioSourceInternational,Inc.,CA)。使用XCELL SureLockTM小细胞电泳系统(Invitrogen公司,卡尔斯巴德,加利福尼亚州),MES SDS运行缓冲液中,4-12%Tris-双凝胶上分离样品(50μg/样品),转移至PVDF膜上,用含5%脱脂奶粉的PBS-吐温阻断,和以多种一抗为探针(一抗cdc2#9112、cyclinB1#4138、cdk6#3136-以1:1000比例稀释的来自兔抗体,CellSignaling Technologies公司,丹弗斯,马萨诸塞州;或兔一抗cdc25sc#6946,以1:3000比例稀释的山羊GAPDH#sc-47724,圣克鲁斯生物技术公司,圣克鲁斯,加利福尼亚州)。条带采用辣根过氧化物酶偶联二抗(Amersham-Pharmacia Biotech公司,皮斯卡塔韦,新泽西州)进行可视化,随即增强化学发光(Upstate公司,沃尔瑟姆,马萨诸塞州)并用放射自显影记录(F-Bx810胶片,Phenix公司,海沃德,加利福尼亚州)。
比较分析多种妇科肿瘤细胞株HE4的产生和分泌
为确定相对于其他癌细胞以及已知表达HE4正常细胞(HK-2,正常肾)或非恶性永生化细胞(TCL-1,滋养层细胞),妇科肿瘤细胞株产生和分泌HE4的量,进行酶联免疫法分析。图1描述了分泌HE4的量(图1A)及在的完全培养基中(W/O型FCS)培养24小时的细胞的细胞裂解液中分泌HE4的量,以HE4摩尔/g计,计算总细胞蛋白(图1B)。PC-3(前列腺癌)、MCF-7(乳腺癌)、IMR-32(神经母细胞瘤)和AN3CA(低分化、类固醇受体缺陷浆液性2型子宫内膜癌)没有产生检测量的HE4。ECC-1子宫内膜癌细胞(分化、激素敏感型)表达和分泌较高量的HE4(溶解物:1818pmol HE4/g蛋白质,分泌:187187pmol/g蛋白质)。共检测到卵巢癌细胞株SKOV-3显著量的HE4(裂解液:2pmol HE4/g蛋白质,分泌:53pmol/g蛋白质)和CAOV-3较高量的HE4(裂解液:69pmol HE4/g蛋白质,分泌:870pmol/g蛋白质)。HK-2细胞生产HE4是显著性的(裂解液:8.1pmol HE4/g蛋白质,分泌:113pmol HE4/g蛋白质)并且TCL-1细胞产生显著高的HE4水平(裂解液:57pmol HE4/g蛋白质,分泌:438438pmol/g蛋白质)。
WFDC2/pCMV6转染(HE4过表达)的SKOV-3细胞的克隆、 生长和细胞周期进程
携带人HE4的编码序列的表达载体pCMV6转染SKOV-3细胞,选择性抗生素压力下培养并克隆。GAPDH表达作为对照,半定量RT-PCR方法确定HE4表达,克隆的面板(图2A)。建立PCR反应条件,揭示在克隆之间的HE4表达水平的差异。对呈现了高水平(HE4C1)、中等水平(HE4C3)和低水平(HE4C7)的HE4过表达的这三个克隆进行进一步评估。
通过MTS存活率检测和流式细胞术分析对比HE4过表达与亲本SKOV-3细胞的细胞生长。播种相等数量的细胞,并培养24h之后(图2B),更高的光密度反映,相比于亲本细胞,HE4C1、HE4C-3和HE4C-7以及其它克隆始终呈现稍高的生长率。HE4过表达的增长改变和水平之间无相关性。举例来说,HE4C1显示了类似的生长,相比于亲本/野生型SKOV-3细胞时,仍有最高水平的HE4表达。类似地,流式细胞术分析显示,定亚群中细胞百分比(框图,图3A)或相对荧光强度(2维FACS谱,图3B)给出了克隆和亲本细胞的细胞周期阶段的对比谱图。S期(计数少于亲本SKOV-3的4.9%~6.0%)和G2/M期(4.6-8.6%计数)克隆进展有些差异。通过免疫印迹分析,对HE4过表达SKOV-3细胞克隆的细胞裂解液中的细胞周期调控因子进行了分析。CDK6表达的克隆与亲本细胞之间未观察到显著差异,细胞周期蛋白依赖性蛋白激酶(CDK)家族的一个成员是G1期进程和G1/S期转换必不可少的。与此相反,观察到cdc2、cdc25B和细胞周期素B1和细胞周期素B3表达的改变,它们是G2期进程和G2/M期转换必不可少的。在所有分析的三个克隆中,Cdc25B被下调和cdc2蛋白被上调。相比于亲本SKOV-3细胞的表达(图3C),所有克隆中细胞周期素B1强烈下调和细胞周期素B3略微下调。细胞周期调控因子cdc2、cdc25B、细胞周期素B1和细胞周期素B2观察到的效果,与HE4C3和HE4C7相比时,对于具有最高水平的HE4表达的HE4C1不太显著。综上所述,WFDC2/pCMV6稳定转染SKOV-3细胞导致略高的增长速率和G2/M期转换细胞周期调控因子表达的变化。
稳定转染的SKOV-3细胞克隆显示HE4产生增加以及对顺 铂、紫杉醇、阿霉素和喜树碱敏感性降低
SKOV-3克隆HE4C1、HE4C3、HE4C7生产和分泌HE4通过酶联免疫法对比分析测定。基于克隆研究,24小时分泌HE4的量为7~16倍(图4A),对比于亲本细胞株,HE4的细胞量提高6至12倍(图4B)。野生型细胞产生共55pmol HE4和HE4C1细胞895pmol HE4/g总细胞蛋白(He4C3:510pmol HE4/g蛋白质;HE4C7pmol HE4/g蛋白质)。
为了分析卵巢癌细胞的HE4产量提高的潜在生物相关性,活力检测试验检查常用抗癌药的功效(图5)。按照所示的和细胞毒性评价,用不同浓度的顺铂、紫杉醇、阿霉素、喜树碱治疗SKOV-3克隆或亲本细胞24小时。所有测试浓度(0.625μM、1.25μM、2.5μM)的喜树碱,野生型细胞始终显示比HE4C1、HE4C3和HE4C7低的存活率,即使观察到的最大差异(浓度1.2μM)不超过21%(图5A)。6.25nM、12.5nM或25nM的紫杉醇或40μM或80μM顺铂治疗,减少野生型SKOV-3细胞的存活率急剧下降。与此相反,紫杉醇治疗后,3个HE4过表达克隆没有表现出显著改变存活率(图5B)。同样,两个克隆没有响应于顺铂治疗,一个克隆(HE4C1)显示出仅在一个较高的药物浓度下(80μM)对顺铂轻微的敏感性(图5C)。20μM阿霉素治疗之后,观察到亲本SKOV-3与HE4过表达克隆的响应的差别(野生型:58%,HE4C170%,HE4C384%,HE4C791%存活率)(图5D)。对于顺铂,具有最高HE4产量(HE4C1)的克隆显示比其他两个进行测试的克隆对阿霉素具有更大的响应(浓度20μM)。因此,没有观察到药物脱敏程度与绝对水平的HE4生产之间有明显的相关性。然而,所有测试的克隆产生比亲本细胞系和所有测试克隆高至少7倍量的HE4,显示出所有测试药物的敏感性降低。
本报告描述了卵巢癌细胞人附睾分泌蛋白4(HE4)的过表达与化疗药物的抗性增加的相关性。为建立过表达HE4的稳定转染卵巢癌细胞株,由酶联免疫法分析确定(本报告),卵巢癌细胞株面板上RT-PCR分析表明,铂耐药SKOV-3细胞被用作模型系统,因为其本底表达水平是适度的。为了检查HE4过表达SKOV-3克隆对抗癌药物的响应,采用了顺铂、紫杉醇、阿霉素和喜树碱。这些常见的抗癌药物是用来治疗各种恶性肿瘤,包括卵巢癌和子宫内膜癌。
相比于亲代细胞株的药物细胞毒性,顺铂和紫杉醇在HE4过表达的卵巢癌细胞中的功效降低。在较小的程度下和取决于药物浓度,HE4过表达SKOV-3克隆也显示出对阿霉素和喜树碱的应答降低。发生在所有克隆中的所有测试的药物脱敏产生比亲本细胞株高至少7倍量的HE4。一类子宫内膜癌、在一个显著数量的乳腺癌,和大多数卵巢癌患者中观察到HE4高血清水平(>150pM),水平往往超过500pM(Moore RG et al.,2009Gynecol Oncol,112:40-6;Moore RG et al.,2008Gynecol Oncol;110:196-201)。对于子宫内膜癌,已经表明,高HE4水平与侵袭表型疾病有关联(Bignotti E et al.,2011Br J Cancer,104:1418-25)。
本报告还揭示,HE4过表达SKOV-3细胞克隆显示在S期和G2/M期细胞周期进程中的差异。观察到细胞周期蛋白B1、-B3、cdc25B和cdc2表达中的变化。通过CDK和cdc活化,Cdc25蛋白控制在S期和主要G2期的进展。下面进入有丝分裂的时间取决于细胞周期蛋白B/cdc2的调节。观察到SKOV-3癌细胞中HE4过表达影响细胞周期活动的调节剂可能对治疗方案的具有显著性意义。一般情况下,细胞周期调控中癌细胞功能改变,并且靶向检测点已被建议作为抗癌疗法的一种补充的方法(Kristjánsdóttir K,et al.,2004Chem Biol,11:1043-51;HartwellLH and Kastan MB,1994Science,266:1821-8)。举例来说,卵巢组织的分析揭示了肿瘤和肿瘤发生卵巢癌细胞株中cdc25和cdc2的高表达(D'Andrilli G et al.,2004Clin Cancer Res,10:8132-41)。此外,cdc25表达与大量卵巢癌患者的预后较差有关联(Broggini M et al.,2000Anticancer Res,20:4835-40),并作为治疗分子靶点的候选者。总之,这些观察和研究表明,靶向细胞周期进程的关键调节因子可能在高HE4产生的肿瘤治疗中尤其受益。
生长因子如表皮生长因子(EGF)、胰岛素生长因子(IGF)、血管内皮生长因子(VEGF)构成主要的卵巢癌细胞促生长信号,靶向其信号是一个有前途的治疗卵巢癌的方法。表皮生长因子受体(EGFR)过度表达与化疗耐药相关联,在临床前模型中,并且临床试验中表皮生长因子受体抑制剂尤其显示出在铂耐药设置中的效果。在初步的研究中,观察到HE4过表达卵巢癌细胞克隆中多种细胞信号因子表达的变化,如表皮生长因子(EGF)、胰岛素生长因子(IGF)组成型上调,观察到血管内皮生长因子(VEGF)受体活化/磷酸化的某些细胞克隆中的变化。如果卵巢癌细胞中HE4生产和生长信号是双侧链接的,生长因子受体靶向是一种很有前途的补充治疗方案,尤其是高HE4生产率的癌症患者。三个乳清酸性蛋白基因产物(HE4、SLPI、Elafin)过表达,卵巢肿瘤分泌的,最近的一项研究表明,Elafin生产率不仅与低生存率相关,而且可以通过通过激活核因子κB通路的细胞因子活性提高Elafin生产率(Clauss A,et al.,2010Neoplasia,12:161-72)。
根据本文所描述的数据,乳清酸性蛋白如HE4描述了在癌症的发展和耐药中起到显著作用的生物学功能。目前的研究表明,HE4的细胞功能与妇科肿瘤细胞对化疗药物的耐药有关联。当这种蛋白的细胞靶点被确定和功能可以被阻断时,呈现高浓度的HE4的妇科癌症患者的治疗进行了优化。
实施例2:动物模型和人类患者HE4过表达在上皮性卵巢癌 (EOC)的发生和化疗耐药中的成因和影响
生物标志物HE4(WFDC2)在上皮性卵巢癌(EOC)中高度过表达。血清HE4水平表现为从良性肿瘤鉴别盆腔恶性肿块的一个敏感指标。近日,FDA批准HE4作为卵巢癌早期诊断和监测的生物标志物。在此描述的发明之前,所述HE4过表达对卵巢癌的发展、化疗耐药和总生存率(OS)或无病生存(DSF)率的生物效应是未知的。
如本文中所描述的,为研究EOC中HE4过表达的功能性影响,差异HE4分泌和细胞的产量水平克隆稳定HE4过表达卵巢癌细胞株。HE4过表达克隆显示出体外显著降低对紫杉醇、顺铂、阿霉素和喜树碱的药效响应,表明卵巢癌细胞中HE4过表达能促进化疗对药物靶向DNA螯合、微管蛋白和拓扑异构酶靶标的耐药性。此外,HE4过表达克隆显示具有活化增强的表皮生长因子受体(EGFR)、胰岛素样生长因子受体(IGF1R)、磷酸肌醇3激酶(PI-3K)/AKT和Bcl2家族癌基因的高侵袭性表型的卵巢癌,促进卵巢癌细胞的化疗耐药。在另一方面,通过pCMV6-HE4载体致死水平的HE4产生抑制卵巢和子宫内膜癌细胞增殖并引起强烈的细胞凋亡、MAP激酶的活化和SKOV-3细胞中细胞周期阻滞,并发现致癌Bcl2、EGFR/PI-3K/AKT致癌蛋白。类似地,外源重组HE4引起SKOV-3细胞的细胞毒性,并增强顺铂响应。HE4的二元双重功能提供了独特的机会来解开受到HE4表达影响的卵巢癌的发病机制,通过识别药理抑制剂并中和HE4抗体或靶向HE4基因组激活,优化单独或与标准化疗或者多模态治疗组合的卵巢癌化疗结果。
每年在美国大约22,000名妇女被诊断患有卵巢上皮性癌(EOC),导致每年超过15,000例死亡。本文所述的发明之前,没有有效的筛查策略检测早期阶段的卵巢上皮性癌,没有症状导致广大女性被诊断出患有晚期疾病,这是根本无法治愈的。虽然目前的化疗方案提高了5年存活率,40%~50%的总治愈率保持不变。在此描述的发明之前,监测患有卵巢上皮性癌的妇女,以检测疾病的早期复发,包括常见的临床检查、监测生物标志物如CA125和HE4和成像。诊断为复发性疾病的女性在前六个月内完成先期化疗,呈现铂耐药疾病,并降低进一步化疗的响应。最终,大多数卵巢上皮性癌患者会发展化学耐药性疾病,并最终屈服于他们的疾病。因此,目前迫切需要开发新的治疗剂,药物响应分子靶点,生物标志物,提高卵巢上皮性癌患者的治疗结果和总生存率的基因治疗方法。
HE4是早期和晚期卵巢上皮性癌中过表达的生物标志物
卵巢的正常表面上皮细胞不表达HE4蛋白质,但在卵巢上皮性癌的多种组织学亚型中大量表达,包括93%的浆液,100%的子宫内膜样和50%的透明细胞肿瘤。患有卵巢上皮性癌的妇女的血清中已检测出水平升高的HE4蛋白质。最近,HE4和CA125的组合已被证明从具有较高的敏感性和特异性的恶性肿瘤中分化良性卵巢囊肿或盆腔肿块。相比于血清CA125,HE4在良性妇科肿瘤中往往不升高,可以从恶性卵巢肿瘤分化子宫内膜异位囊肿。患有子宫内膜恶性肿瘤的患者中,与恶性肿瘤和不良预后相关的HE4过表达也被证明与淋巴结转移、乳腺癌和肺癌患者降低的无病生存率有关联。
HE4表达富集在人体炎症或易损伤组织中
相比于卵巢癌中的HE4过表达,HE4在正常卵巢表面上皮细胞,早期或晚期黄体和输卵管上皮细胞中不表达。值得注意的是,HE4表达于许多正常人体组织,包括男性附睾、肺、呼吸道、鼻腔和口腔上皮细胞,并且在唾液中高度富集。HE4在伤口和炎症性疾病保护中升高。在呼吸道宿主防御机制中的HE4功能和HE4表达改变可能会影响卵巢表面上皮细胞的宿主防御能力,周期性损伤和炎症的常见部位直接与卵巢癌病因相关。几种炎症响应元件包括HE4启动子区中的NFkB、Ikaros和LYF-1,卵巢癌中NFkB上调及其耐药细胞中的作用支持HE4在卵巢癌发病中的潜在影响。
HE4过表达与高表达患者的存活率降低有关联
HE4表达升高是与子宫内膜癌、乳腺癌和肺癌患者存活率降低有关。在HE4阳性乳腺癌患者的五年无病生存率显著低于(58.6%)HE4阴性组(85.6%,P=0.04),HE4过表达患者表现为显著更高的速率的肿瘤转移。同样,HE4表达与肺腺癌的预后更差有关,其中在HE4阳性组中的五年无病生存率显著低于(44.6%)HE4阴性组(82.3%,P=0.001)。HE4阳性组中五年总生存率为60.1%,HE4阴性组为90.8%(P=0.001)。即使HE4过度表达于93%的浆液、100%的子宫内膜样卵巢癌、50%的透明细胞(非粘液)卵巢癌,HE4过表达体与HE4非表达子卵巢癌人群的无病或总体生存率是未知的。
靶向HE4优化卵巢癌化疗反应的合理性
在美国,70名妇女中就有一名可能被诊断为卵巢上皮性癌。卵巢上皮性癌是所有妇科恶性肿瘤中死亡率最高,五年存活率低于50%。不幸的是,大多数患有卵巢上皮性癌妇女最终将发展成化疗耐药肿瘤,并最终屈服于他们的疾病。由于这些原因,迫切需要开展有靶向药物治疗和新型生物制剂治疗该疾病。
HE4是一种潜在的免疫治疗或药物靶点
探讨卵巢肿瘤的基因表达谱芯片的研究确定HE4为一个潜在的免疫治疗或药物靶点。靶向HE4或者通过靶点免疫疗法或通过特异性药理学HE4抑制剂显著增强化疗的疗效,是一种针对卵巢癌患者的有效的治疗剂。这种免疫疗法或HE4药理抑制剂/调节剂可从头设计或从现有的库中筛查确定。鉴于此,针对HE4过表达体卵巢癌细胞,基于有限的体外细胞活力筛选抗癌剂文库,确定MT19c和PT19c为HE4抑制剂。而7个标准抗癌剂,包括顺铂、紫杉醇、阿霉素、依托泊苷和喜树碱,由于SKOV-3细胞中HE4过表达,失去功效高达4-8倍(图2、图4和图5),可以观察到,HE4过表达细胞显示提高MT19c和PT19c治疗响应(<4-8倍)(图8)。在此描述的发明之前,HE4过表达体卵巢癌细胞对新的维生素-D衍生物(HE4)的响应增强的原因是未知的。与亲本细胞相比,HE4过表达克隆显示细胞毒性药物的沉默应答。本文所描述的实验的目的是确定是否MT19c或PT19c是卵巢癌细胞中HE4或相关的信号级联的特异性抑制剂或调节剂。基于该数据,MT19c治疗HE4过表达卵巢上皮性癌肿瘤,作为一个通路调节剂加强临床上使用的药物治疗卵巢上皮性癌的功效(顺铂、紫杉醇、多柔比星或喜树碱和依托泊甙),通过对抗HE4诱导耐药和卵巢上皮性癌的发展,提高卵巢癌患者生存率。
HE4与卵巢癌侵略性表型相关并促进化疗耐药
本文描述的揭示HE4过表达如何有助于卵巢上皮性癌的侵袭表型,并促进卵巢癌化疗耐药。HE4过表达对卵巢癌肿瘤发生的生物学功能和影响,信号通路和化疗耐药至今还没有被研究。如本文所述,HE4过表达发展了对顺铂、紫杉醇、阿霉素和喜树碱治疗高度化疗耐药的卵巢癌细胞多的高度侵袭表型。不幸的是,目前的化疗方案围绕着这些药物,这些药物靶向微管蛋白、拓扑异构酶酶或引起DNA损伤或螯合,HE4过表达使这些治疗靶点沉默。如本文所述,对比于亲本卵巢癌细胞,HE4诱导化疗耐药增强,部分是由于癌基因或生长因子受体如表皮生长因子受体、IGF1R、PI3K/AKT、BCl2家族蛋白的更高组成性激活。单独或连同DNA修复基因,多药耐药(MDR)蛋白质、EGFR/PI-3K通路、p53状态和NFκB调控促使卵巢癌化疗耐药尤其是顺铂。在HE4启动子中的一些炎症反应元件(NF-KB、Ikaros、LYF-1),和NF-κB参与了铂化疗耐药表明HE4在化疗耐药和卵巢癌的发展中起到的复杂作用。
HE4是卵巢癌治疗的一种潜在的基因治疗工具
基于高组成性和局部HE4转录活性,HE4启动子(例如,pHE4-652)在卵巢癌特异性方式选择性地激活具有最小载体浓度和毒性的报告基因表达。几个候选启动子已被用来控制卵巢癌细胞中的治疗基因表达。人绒毛膜促性腺激素(hCG)启动子亚克隆逆转录病毒白喉毒素A链基因上游,显示出选择性杀死对正常卵巢和成纤维细胞毒性最小的卵巢癌细胞株。同样地,启动子驱使SKOV-3细胞内的单纯疱疹病毒胸苷激酶(HSVTK)的丝氨酸性白细胞蛋白酶抑制剂-1(SLP1)和癌特异性端粒酶基因启动子(人端粒酶逆转录酶,hTERT)已被研究作为卵巢癌症的基因疗法。
高浓度的HE4产生导致卵巢癌细胞选择性细胞死亡和细胞 凋亡
在抗生素控制下,通过过表达载体(pCMV6-HE4,Origene公司)或诱导型载体(pTRE-hyg-HE4)瞬时转染,卵巢癌的细胞可以被诱导产生致命剂量的HE4,致命剂量超过HE4水平阈值。值得注意的是,HE4水平的耐受阈值细胞表型和细胞的来源之间显著变化。举例来说,在类似的条件下,相比于亲本对照,通过pCMV6-HE4过表达载体诱导致死水平的HE4产生,卵巢上皮性癌SKOV-3细胞和子宫内膜(ECC-1细胞)表现出显著性的细胞死亡、细胞凋亡,抑制细胞周期阻滞和激活MAP激酶,并在24小时内下调BCl2家族蛋白的表达,非转化细胞(HK-2)没有受到影响。此外,外源重组HE4也表现出对卵巢癌细胞株的显著性细胞毒性。通过在动物中产生致死细胞水平的HE4测试基因组活化的潜力,诱导型载体(pTRE-hyg)在多克隆位点掺入HE4基因,根据多西环素负调控已在SKOV-3细胞内连接。这表明,在pTRE-hyg-HE4与pTRE-hyg或父母对照中的肿瘤进展抑制。
基于该HE4过表达引起对顺铂、紫杉醇、多柔比星或喜树碱的耐药,本文所描述的发明对培养细胞、动物或人类患者模型的卵巢上皮性癌进展和耐药谱中HE4的影响进行定量。如本文所述,生物制剂或免疫治疗HE4调节剂(例如,抑制剂),其可以自身或作为敏化剂,提高卵巢上皮性癌患者的细胞毒性化学治疗剂的功效。
本文所述的数据提供了初级机理证据,表明HE4表达授予化疗耐药,使SKOV-3细胞株中顺铂、紫杉醇、阿霉素、喜树碱的细胞毒性作用显著性沉默。根据研究,创新性生物制剂(小分子、药物抑制剂、免疫治疗剂或中和抗体)现在可以设计/开发,以抑制卵巢上皮性癌患者HE4诱导的化疗耐药。作为一个例子,它表明了与亲本SKOV-3对比,该分子MT19c在HE4过表达细胞株克隆中的细胞毒性增加4-8倍(图3)。此外,基因组分析和稳定过表达HE4克隆的异种移植与亲本细胞株对顺铂的响应揭示了新型分子靶标和卵巢癌肿瘤耐药中的作用或贡献。
此外,本研究探讨了卵巢癌治疗的基因组治疗方案。如本文所述,诱导更高水平的HE4产量引起体外卵巢癌细胞的细胞毒性。为了测试诱导HE4生产抑制动物模型中卵巢癌进展的功效,在多西环素负调控(关)下,诱导型载体(pTRE-hyg)在多克隆位点掺入HE4基因已掺入到SKOV-3细胞内。提出的动物模型将对比HE4高生产者组与空载体组和或亲代组中的肿瘤进展。肿瘤生长的量将决定了这种方法的有效性。
上皮性卵巢癌部分因为缺乏有效的早期检测方法而成为的妇科癌症主要死亡原因。虽然几种基因的改变,例如,c-erb-B2、c-myc和p53,已经在显著部分的卵巢癌中被确定,这些突变没有诊断恶性肿瘤或预测肿瘤行为。HE4过表达与子宫内膜癌、乳腺癌和肺癌患者生存率负相关。在卵巢癌中,对HE4过表达上皮性卵巢癌的多种病理参数,如肿瘤转移、化疗、生存率的生物学作用和影响以及二级临床表现仍有待确定。HE4是一种早期诊断和监测患者上皮性卵巢癌的生物标志物。血清HE4水平显示作为一个从良性肿瘤中分化诊断恶性盆腔肿块的敏感指标。与血清CA125相比,HE4在良性妇科肿瘤中往往不升高,可以从恶性卵巢肿瘤中鉴别子宫内膜异位症。
本文描述的是卵巢癌细胞和上皮性卵巢癌患者HE4网络基因和信号转导的关联作用,以促进卵巢癌的肿瘤发病和进展。此外,本文所述的是改善EOC治疗结果无论是作为单一试剂或作为与其他药剂组合的敏化剂的生物制剂,。
HE4乳清酸性(WAP)蛋白质在上皮性卵巢癌肿瘤中高度过度表达。在此描述的发明之前,HE4过表达对上皮性卵巢癌的发病机制的生物影响是未知的。在子宫内膜癌、乳腺癌和肺癌患者中,HE4过表达与显著性降低存活率相关联。相比之下,HE4表达高度富集在人类epidydemic、唾液、气管、鼻腔和肺组织和炎症部位中。HE4的二元双重功能已经在卵巢癌细胞中被观察到,其中一方面,HE4过表达促进了强烈的化疗耐药,并且另一方面诱导的更高水平的HE4生产对增殖癌细胞是高度致命的。
癌症细胞株和正常人细胞株组中相对的HE4产生和分泌水 平的测定
HE4在多种肿瘤组织类型中的表达已通过基因表达图谱和免疫组织化学被证明。但在多种癌症细胞类型或正常细胞中的细胞HE4产生和分泌的水平在本文所描述的本发明之前还没有被证明。ELISA表明,细胞HE4的产生和分泌水平是细胞类型特异性的,但不是组织类型特异性的。癌细胞和正常细胞产生/分泌不同水平的HE4。举例来说,CaOV-3,卵巢癌细胞株显示出培养基中产生和分泌的HE4高于SKOV-3细胞。同样,孕晚期绒毛外滋养层(TCL-1)细胞显示HE4的产生和分泌的水平高于其更具侵入性对应的HTR-8细胞。非恶性人肾细胞(HK2)也表现出HE4产生/分泌。乳腺癌(MCF-7)、前列腺癌(PC-3)和神经母细胞瘤(IMR-32)的细胞没有显示出较低水平的HE4生产或分泌。
影响卵巢癌细胞中HE4水平的因子的识别
影响/调节卵巢癌细胞中HE4表达的分子因素(产量+分泌)在本文描述的本发明之前尚未确定。刺激生长因子(胰岛素样生长因子:胰岛素样生长因子、表皮生长因子、转化生长因子、胰岛素)、细胞因子(IL-6和TNF-α)不影响HE4在SKOV-3细胞中的mRNA表达(图6)。这些因素都促成炎症、卵巢癌的进展和化疗耐药。细胞毒性剂:紫杉醇、顺铂、放线菌素易瑞沙-D与衣霉素、N-糖苷酶抑制剂,抑制SKOV-3中HE4水平在,表明HE4是候选促存活因子或癌基因。对比于未经处理的对照组,钙三醇治疗上调了HE4表达。
HE4过表达增强化疗耐药并发展了卵巢癌的高侵袭性表型
通过pCMV6-HE4载体,开发了稳定的高HE4过表达SKOV-3细胞克隆(SKOV-HE4C1、SKOV-3HE4C3、SKOV-3HE4C7)。半定量PCR法检测不同的HE4mRNA水平,而夹心ELISA(Fujirebio Diagnostics公司)用于估计细胞HE4生产(细胞裂解液中)和HE4的分泌水平(培养基中)。10个高表达体克隆,具有HE4生产/分泌水平梯度增加的3个克隆(1号克隆>3号克隆>7号克隆)被选定为研究模型和亲本SKOV-3细胞株平行试验(图2、图4和图5)。由细胞活力测定法测定HE4过表达对顺铂、紫杉醇、阿霉素和喜树碱的响应的影响。HE4过表达使顺铂、紫杉醇、阿霉素、喜树碱的响应显著沉默。对比于亲本SKOV-3细胞,SKOV-3细胞的HE4过表达体克隆显示出对顺铂、紫杉醇、阿霉素和喜树碱治疗的响应低~4-8倍。
HE4过表达提高致癌基因/生长因子受体活性
以确定HE4过表达卵巢癌细胞中化疗耐药增强的原因,确证相比于亲本SKOV-3细胞,高表达体克隆携带更高组成性活化/磷酸化的EGFR、IGF1R、PI-3K/AKT、BCl2蛋白家族蛋白(图7)。值得注意的是,这些致癌基因/生长因子与卵巢癌的发病机制和卵巢癌化疗耐药表型的发展密切相关。针对这些分子靶点的靶向药物治疗,目前正在进行上皮性卵巢癌(EOC)治疗的临床试验。
与亲本细胞相比HE4过表达SKOV3克隆细胞显示较快的进 入G2/M期和增殖率
CDC25B是用于卵巢癌细胞中G1/S期进展的关键调节剂。HE4克隆显示出更高的G2/M期和较低的G1期细胞群体。探查野生型SKOV-3、HE4C1、C3和C7克隆的细胞裂解液细胞周期G1/S期或G2/M期关键调节剂的表达(图3)。相比于亲本SKOV-3细胞,HE4过表现显示出较高的增殖率,快速进入G2/M期与增强CDC2和抑制细胞周期蛋白B1和CDC25B一致(图3)。
与亲本细胞相比,MT19c表现出对HE4过表达SKOV3克隆 细胞的灵敏度增强
SKOV-3细胞中HE4过表达,多种抗癌剂显示强烈的化疗耐药性(图8)。相比之下,化合物文库的细胞活力筛选显示,HE4过表达克隆对MT19c和PT19c2种生物制剂敏感度达到8倍以上。而HE4过表达克隆对MT19c和PT19c的灵敏度增强的机制仍有待确定,如本文所述,MT19c被用于治疗上皮性卵巢癌的HE4过表达亚组。
诱导更高水平的HE4生产对卵巢癌细胞产生选择性细胞毒
通过pCMV6-HE4载体(图9A-B)诱导更高的HE4细胞产生对卵巢癌和子宫内膜癌细胞(C)具有剧毒,但对人类肾细胞(HK2)(D)、小鼠肾细胞(MES13)和滋养层细胞无细胞毒性。致死水平的HE4产生引起凋亡事件例如DNA片段化、染色质浓缩,胱天蛋白酶和MAP激酶活化,随后SKOV-3细胞中BCl2家族蛋白表达下调(图9E-G)。诱发HE4活化使SKOV-3细胞聚集在G0/G1期,并产生致命的活性氧(ROS)(图9H)。为了进一步探讨诱发致命剂量的HE4靶向动物模型卵巢癌细胞死亡,多西环素(-ve)调控下开发可诱导载体pTRE-hyg-HE4-SKOV。
重组HE4对癌细胞具有选择性细胞毒性并协同顺铂响应
外源重组HE4治疗选择性抑制卵巢癌的活力(SKOV-3、CaOV-3)(图10)。子宫内膜癌细胞株(ECC-1)观察到类似的效果。人肾(HK2)的活力在测试剂量范围内没有受到影响。也被观察到,外源重组HE4预处理增强顺铂在SKOV-3细胞中的功效。
实施例3:HE4过表达卵巢癌的功能影响
在此描述的发明之前,所述卵巢癌中HE4过表达的原因和生物学影响是未知的。在子宫内膜癌、乳腺癌和肺癌中,HE4过表达与显著性较低的活力和预后更差相关联。在卵巢癌模型中,如本文所述,组成型HE4过表达使顺铂、紫杉醇、阿霉素和喜树碱的响应沉默(图2、图4和图5),并显示祝福化疗的更高水平的活化和致癌效应蛋白/基因组高度侵袭性的表型和因子(EGFR,IGF1R和VEGFR),PI-3K/AKT或Bcl2蛋白家族蛋白相比亲本SKOV-3细胞。
过表达HE4对卵巢癌的发病机制及繁殖生物学的影响
稳定HE4过表达的化疗耐药和致癌作用在卵巢癌的动物模型中进行验证。为了实现这一目标,与亲本SKOV-3细胞株相比,一组具有不同更高HE4产生和分泌水平的HE4过表达SKOV-3克隆(pCMV6-HE4+)已经产生。从这些克隆与亲本系衍生的异种移植物的治疗响应突出HE4水平与化疗响应的相关性。
通过pCMV6-HE4载体的一组稳定的HE4过表达SKOV-3细胞克隆被开发。相比于亲本SKOV-3,这些克隆表现出强烈的紫杉醇、顺铂、阿霉素治疗的化疗耐药性。为了验证HE4过表达在化疗耐药和卵巢癌进展中的作用,在动物中发展SKOV-3/WT和SKOV-3HE4+克隆的异种移植物,然后用不同的化疗方案治疗。类似地,开发荧光素酶+-SKOV3-HE4++克隆,以探讨HE4过表达对腹水、肿瘤转移、血管生成、卵巢癌和浸润特性的影响。分析亲本与SKOV-3HE4+组的全基因组mRNA,以确定顺铂耐药靶点。HE4药物抑制剂是通过文库筛选确定以打击卵巢癌进展和化疗耐药中的HE4作用。
在此描述的发明之前,HE4过表达在卵巢癌患者的生物学影响是未知的。HE4在上皮性卵巢癌中过表达。同样,本文中描述的发明之前,卵巢癌中HE4过表达在培养细胞或体内模型中的影响是未知的。HE4过表达与子宫内膜癌、乳腺癌和肺癌患者显著性降低存活率呈负相关。在卵巢癌的细胞模型中,据观察,HE4过表达SKOV-3细胞克隆表现出对细胞毒性化学治疗剂包括紫杉醇,顺铂,阿霉素和喜树碱治疗的耐药性提高20倍。与亲本SKOV-3细胞相比,稳定的HE4过表达卵巢癌细胞(SKOV-3)克隆显示出高度侵袭性表型具有更高活化水平的化疗耐药和致癌效应蛋白/基因组因子(EGFR、IGF1R和VEGFR)、PI-3K/AKT或Bcl2蛋白家族蛋白。
为了研究HE4过表达在化疗耐药和卵巢癌进展中的作用,在动物体中发展HE4过表达SKOV-3克隆和亲本SKOV-3细胞的异种移植物并用顺铂治疗。肿瘤体积的测量和动物受试者存活率的Kaplan-Meier分析界定了由于HE4过表达产生耐药的程度。全基因组mRNA的基因组富集分析(GSEA)标识基因并确定HE4在卵巢癌化疗耐药和肿瘤发生中的作用,全基因组mRNA从HE4+克隆分离出来,亲本细胞来自采用顺铂治疗的皮下卵巢癌裸鼠移植瘤。
为确定HE4在卵巢癌转移和扩散中的作用,Luc+-SKOV-3细胞被稳定地转化为HE4过表达克隆。Luc-SKOV-3-HE4+细胞与载体对照Luc-SKOV-3细胞的皮下异种移植物在小鼠体内生长并采用顺铂治疗。研究目的是通过体内成像系统对HE4过表达相关的转移促进的程度进行定量。HE4过表达克隆与空载体Luc-SKOV-3细胞的迁移特性由QCM-I型胶原定量细胞迁移检测试剂盒(Chemicon公司,蒂梅丘拉,加利福尼亚州)评估。插入膜的底部的迁移细胞被离解,收集并用CyQuant GR染料(Chemicon公司)在80nm通过荧光酶标仪检测。两个组的迁移细胞被计算为由亲代细胞获得的对照值的百分比。实验重复三次,适当的统计门控用于评估实验的重要性。同样,HE4过表达克隆与空载体SKOV-3细胞浸润特性通过涂有基质胶(BDBiosciences公司,贝德福德,马萨诸塞州)的Boyden小室(孔径8μm)进行定量。通过膜迁移到下表面上的细胞被固定,用苏木精染色,在光学显微镜下4个象限计数。进行至少三次独立实验,结果表示为在+/-SD平均值。组均值采用双边双样本学生t检验进行比较。
HE4过表达在化疗耐药、肿瘤转移、血管生成和动物模型中卵巢癌细胞的浸润/迁移特性的作用第一次被揭示。全基因组mRNA的基因集富集分析(GSEA)揭示了由于HE4表达的化疗耐药的演变和卵巢癌转移的促进中关键基因及其功能作用。基于基因及其功能的鉴定,新的治疗策略/药剂被开发,以应对卵巢癌的影响并提高治疗结果。
卵巢癌模型中HE4基因活化的细胞毒性效应的评价
下面详细的是动物模型中(-ve)多西环素调控下通过诱导型载体(pTRE-hyg-HE4)的基因组HE4活化的结果。据观察,通过pCMV6-HE4载体激活HE4基因组的体外培养的卵巢癌细胞抑制卵巢癌细胞活力和存活率,造成细胞凋亡和细胞周期阻滞。
癌细胞中通过pCMV6-HE4载体,卵巢和子宫内膜癌细胞增殖、细胞凋亡和细胞死亡的抑制作用是通过诱导毒性水平的HE4产生来实现的。具有相似增殖率的正常细胞(例如,HK2、人肾细胞)并没有受到影响。为靶向由HE基因组活化4导致的卵巢癌的细胞死亡,诱导型载体(pTRE-hyg)将在多克隆位点掺入HE4基因,在多西环素抗生素负调控下(关)被连接在SKOV-3细胞上。pTRE-hyg-HE4的异体移植和pTRE-hygSKOV-3(空载体)和SKOV-3(野生型)细胞被开发,运用多西环素剥夺。动物研究的一个单独组中,肿瘤大小、腹水、转移特性确定了单独或与顺铂联合的基因组HE4激活的结果。
卵巢癌通常被限制在腹部和骨盆腔的腹膜表面。HE4过表达局部富集在腹膜表面,靶向HE4激活,有可能是一种治疗卵巢癌的有效基因治疗方法。通过pCMV6-HE4载体HE4基因组活化的体外培养的卵巢癌细胞抑制卵巢癌细胞活力并引起细胞凋亡,阻滞细胞周期进程于G0/G1期,并且下调EGFR/PI-3k/akt表达和pros-survival Bcl2家族蛋白的表达。下面详细说明的是动物模型中(-ve)多西环素调控下通过诱导型载体(pTRE-hyg-HE4)的基因组HE4活化的结果。
在多西环素(-ve)调控下,诱导型载体(pTRE-hyg-HE4)注入到SKOV-3细胞中并有条件激活HE4。为研究卵巢癌进展中诱导HE4活化的结果,在动物体内开展pTRE-hyg-HE4+SKOV-3克隆异种移植和亲本细胞株或空载体(pTRE-hyg-SKOV-3)细胞克隆,运用多西环素剥夺。肿瘤、重量和其他物理参数的测量确定了该方法的结果。
在一个单独组中,异种移植肿瘤也采用顺铂治疗,以检查联合基因组HE4活化的组合疗法的治疗潜力。肿瘤体积测量和动物受试者存活率的Kaplan-Meier分析揭示诱导HE4活化在卵巢癌基因疗法中的潜力。
全基因组mRNA的基因组富集分析(GSEA)标识基因并确定在卵巢癌的治疗中应用HE4基因组活化的作用,全基因组mRNA从HE4++克隆分离出来,亲本细胞/空载体来自皮下卵巢癌裸鼠移植瘤,而皮下卵巢癌裸鼠移植瘤和载体采用顺铂和紫杉醇治疗。基因组HE4活化对(pTRE-hyg-HE4)克隆的迁移特性的影响,在多西环素(-ve)与空载体对照下,SKOV-3细胞是由QCM-I型胶原定量细胞迁移检测试剂盒评估(Chemicon公司,蒂梅丘拉,加利福尼亚州)。插入膜的底部的迁移细胞被离解,收集并用CyQuant GR染料(Chemicon公司)在80nm通过荧光酶标仪检测。两个组的迁移细胞被计算为由亲代细胞获得的对照值的百分比。实验重复三次,适当的统计门控用于评估实验的重要性。同样,(-ve)多西环素调控下pTRE-hyg-HE4与空载体SKOV-3细胞的浸润特性通过涂有基质胶(BD Biosciences公司,贝德福德,马萨诸塞州)的Boyden小室(孔径8μm)进行定量。通过膜迁移到下表面上的细胞被固定,用苏木精染色,在光学显微镜下4个象限计数。进行至少三次独立实验,结果表示为在+/-SD平均值。组均值采用双边双样本学生t检验进行比较。
本研究揭示了作为一个独立的基因疗法或与细胞毒性剂如顺铂的组合,HE4基因组活化靶向卵巢癌的治疗潜力。这两组中肿瘤的全基因组mRNA的基因集富集分析(GSEA)揭示了多种基因及其在抑制由诱导HE4活化导致顺铂化疗耐药、肿瘤转移、血管生成和卵巢癌浸润/迁移特性中的推定作用。基于基因及其功能的鉴别,新的治疗策略/药剂被开发,以优化卵巢癌患者的治疗结果。
HE4作为上皮性卵巢癌患者化疗耐药和不良预后的标志物
下面详细描述的是HE4过表达对“无病生存率”(DSF)/'总生存率'(OS)和人类上皮性卵巢癌患者化疗耐药状况的影响的实验。通过ELISA、免疫组织化学、RT-PCR评估EOC患者的不同阶段的体液和肿瘤样品,几轮化疗过程中,HE4过表达在诊断、手术中的关系,化学后状态直至死亡是统计相关性找出HE4在患者上皮性卵巢癌发病中的作用。
目的是评价上皮性卵巢癌患者标本中HE4表达水平,找出其与化疗耐药与其对生存(OS)率的影响之间的关联。在体外培养的卵巢癌细胞中,HE4过表达显示出对化疗方案的强烈的化疗耐药性。前瞻性采集体液(血清、血浆、尿液)和上皮性卵巢癌患者的新鲜/冷冻组织通过ELISA法、免疫组织化学和RT-PCR技术进行分析,定量为HE4水平。术前、手术、第一次化疗、第二次化疗和第三次化疗之前和期间采集上皮性卵巢癌患者的体液/肿瘤标本,每三个月进行一次,直到病人死亡。从组织中分离出原代细胞,采用细胞活力测定法评估化学敏感性,通过RT-PCR或免疫印迹法评估癌基因和化疗耐药性标志物的表达。检查是否由于患者基因突变HE4蛋白的过表达导致细胞恶性转化,上皮性卵巢癌患者肿瘤/体液样本进行测序,检测突变HE4基因的编码序列/高度保守的区域中的突变。
HE4过表达及其与化疗耐药和无病生存率(DFS)和上皮性卵巢癌患者的总生存率(OS)的关系和作用进行审查。如上所述,在体外培养的卵巢癌细胞中HE4过表达作为潜在的化学耐药标志物。在子宫内膜癌、乳腺癌和肺癌的患者中,HE4过表达与显著性更低的生存率有关联。
前瞻性采集体液(血清、血浆、尿液)和上皮性卵巢癌患者的新鲜/冷冻组织分析并将通过ELISA法、免疫组织化学和RT-PCR技术进行分析和定量为HE4水平。术前、手术、第一次化疗、第二次化疗和第三次化疗之前和期间采集上皮性卵巢癌患者的体液/肿瘤标本,每三个月进行一次,直到病人死亡。从组织中分离出原代细胞,采用细胞活力测定法评估化学敏感性,通过RT-PCR或免疫印迹法评估癌基因和化疗耐药性标志物的表达。检查是否HE4蛋白的过表达导致细胞恶性转化,上皮性卵巢癌患者肿瘤/体液样本进行测序,检测突变HE4基因的编码序列/高度保守的区域中的突变。
患者的生存率采用Kaplan-Meier分析来确定。对肿瘤的全基因组mRNA表达进行基因集富集分析(GSEA)和信号网络分析(IPA)鉴别HE4连锁分子靶点/因子及其在上皮性卵巢癌患者化疗方案的化疗耐药中的作用(例如,铂和紫杉醇)。分子靶点辅助设计新型HE4抑制剂打击HE4在卵巢癌患者进展和化疗耐药中的作用,优化上皮性卵巢癌患者化疗响应。
这项研究揭示了HE4过表达对上皮性卵巢癌患者化疗响应,无病生存率(DSF)或总生存率(OS)的影响。对HE4过表达导致人类患者顺铂、紫杉醇、阿霉素和喜树碱化疗耐药的观察进行了验证。基因集富集分析(GSEA)和信号网络分析(IPA)从肿瘤和其他生物样本得到的全基因组mRNA,鉴别多种化疗耐药、肿瘤转移、血管发生和侵袭/迁移基因/蛋白及其HE4过表达影响的推定作用。基于基因和其功能的鉴别,新的治疗策略和试剂鉴定,优化HE4影响卵巢癌患者的治疗结果。
人体研究
本文描述的是一百个化疗和外科手术幼稚人类卵巢癌患者的前瞻性研究。通过ELISA法、免疫组织化学和RT-PCR技术,对前瞻性采集体液(血清、血浆、尿液)和上皮性卵巢癌患者的新鲜/冷冻组织进行分析,定量为HE4水平。术前、手术、第一次化疗、第二次化疗和第三次化疗之前和期间采集上皮性卵巢癌患者的体液/肿瘤标本,每三个月进行一次,直到病人死亡。从组织中分离出原代细胞,采用细胞活力测定法评估化学敏感性,通过RT-PCR或免疫印迹法评估癌基因和化疗耐药性标志物的表达。检查是否HE4蛋白的过表达导致细胞恶性转化,上皮性卵巢癌患者肿瘤/体液样本进行测序,检测突变HE4基因的编码序列/高度保守的区域中的突变。
图12中的结果显示,HE4过度表达导致代表性的卵巢癌细胞株(SKOV-3)的细胞凋亡。SKOV-3细胞(100万个)接种在培养皿中,并使其在无抗生素补充了10%胎牛血清(FBS)的DMEM培养基中附着过夜。在一个单独的管中,在Optimem培养基(Invitrogen公司)中,HE4cDNA与脂质体(Invitrogen公司)复合反应1分钟~2小时。溶解在Optimem培养基中的HE4cDNA-脂质体复合物加入到细胞中。对照反应中无脂质体和药物。24小时后,除去培养基,细胞用胰蛋白酶处理,离心分离后回收。细胞用PBS洗涤并再悬浮在RPMI完全培养基中。再悬浮细胞与罗丹明123染料(1μM-20μM)孵育30分钟~1小时,加入碘化丙啶(PI)溶液(1μM-20μM)并孵育30分钟。采用流式细胞仪,在适当的门控设定下对罗丹明123和碘化丙啶呈阳性的细胞群进行了分析。图12显示出HE4过表达导致碘化丙啶呈阳性细胞群增加(指示细胞凋亡)和罗丹明123呈阳性细胞群降低(早期细胞凋亡标志)。
在图13中显示的结果表明,SKOV-3细胞中HE4过表达Sub-G1期阻滞。100万个卵巢癌细胞(SKOV-3)接种在培养皿中,并使其在无抗生素补充了10%胎牛血清的DMEM培养基中附着过夜。在一个单独的管中,在Optimem培养基(Invitrogen公司)中,HE4cDNA与脂质体(lipofectamine)(Invitrogen公司)复合反应1分钟~2小时。溶解在Optimem培养基中的HE4cDNA-脂质体复合物加入到细胞中。对照反应中无脂质体和药物。以不同的时间间隔(9小时和24小时)收集细胞,并在70%乙醇中固定。将细胞离心分离,将细胞沉淀物用碘化丙啶(PI)处理,并如先前所述(SinghRK,et al,Br Journal of Cancer,2008,99:1823-1831)分析细胞群。直方图显示,脂质体诱导G2/M期阻滞,HE4过表达导致了sub-G1期阻滞(<15%)。
图14表明,HE4过表达引起促存活PI-3k/AKT信号下调。SKOV-3细胞中HE4过表达导致促存活线粒体蛋白失活。100万个卵巢癌细胞(SKOV-3)接种在培养皿中,并使其在无抗生素补充了10%胎牛血清的DMEM培养基中附着过夜。在一个单独的管中,在Optimem培养基(Invitrogen公司)中,HE4cDNA与脂质体(Invitrogen公司)复合反应1分钟~2小时。溶解在Optimem培养基中的HE4cDNA-脂质体复合物加入到细胞中。对照反应中无脂质体和药物。在不同时间点(4小时、9小时和24小时),收集细胞,并用裂解缓冲液裂解。使用Bradford测定法对蛋白浓度进行估计。如前所述,(Singh RK,et al,Br Journal of Cancer,2008,9:1823–1831)裂解液进行免疫印迹分析。用单克隆抗体或多克隆抗-BCl-xL、抗Bcl2蛋白和抗MCl-1抗体探测印迹。肌动蛋白作为内对照。HE4活化对PIP2-PIP3转换影响由脂质激酶检测(Yano N.et al.Biochem.J.
(2009)423(129–143)进行评估。
图15是一个条形图,显示用生长因子和细胞因子治疗影响卵巢癌细胞中HE4水平。100万个SKOV-3细胞接种于100mm培养皿中和保温过夜。细胞用一系列因子(IL-6、胰岛素、肿瘤坏死因子、表皮生长因子),再温育6小时。收集培养基并使用细胞裂解缓冲液裂解细胞。HE4夹心ELISA试剂盒检查培养基或细胞裂解物中的HE4含量。如图15所示,用生长因子(胰岛素和EGF)处理提高HE4水平,而采用肿瘤坏死因子治疗不改变HE4的水平,但采用IL-6治疗抑制卵巢癌细胞中HE4水平。
实施例4:HE4过表达子宫内膜癌的功能影响
子宫内膜癌是指起源于子宫内膜、或内里、子宫的几种类型恶性肿瘤。子宫内膜癌是美国最常见的妇科癌症中的一个,每年有超过35,000名妇女被诊断。最常见的亚型,子宫内膜样腺癌,通常发生在几十年的更年期中,与雌激素过多的暴露有关,往往是在子宫内膜增生中发展,最常表现为阴道出血。子宫内膜癌是妇科癌症死亡的第三大最常见的原因(仅次于卵巢癌和宫颈癌)。双侧输卵管卵巢切除术的腹式子宫切除术(手术切除子宫)是最常见的治疗方法。因此,迫切需要对子宫内膜癌的新治疗方法。
如图1,HE4是存在于ECC-1细胞的细胞上清液和细胞裂解液中,子宫内膜癌细胞株,表明这些细胞产生ECC-1。此外,如图9C所示,HE4过表达抑制了ECC-1细胞的增殖。
实施例5:HE4过表达可诱导化疗耐药的表征和靶向HE4过 表达上皮性卵巢癌(EOC)细胞的小分子的识别
生物标志物HE4(WFDC2)在上皮性卵巢癌(EOC)中高度过表达。血清HE4水平是一个从良性肿瘤鉴别诊断盆腔肿块的敏感指标。FDA批准HE4作为生物标志物和ROMA算法监测接受治疗的上皮性卵巢癌患者和疾病复发。在此描述的发明之前,HE4过表达在卵巢癌发展、化疗耐药和总生存率(OS)或无病生存率(DSF)的生物机制是未知的。
下面详细描述的是HE4生物学功能和其在人类上皮性卵巢癌发病和化疗耐药中的作用的实验。还描述了识别靶向HE4过表达卵巢癌细胞的小分子优化上皮性卵巢癌患者化疗。
掺入pCMV6-HE4载体开发一组稳定的HE4过表达卵巢癌SKOV-3细胞株。诱导型HE4过表达通过pTet-Off(VP16载体)来实现。细胞活力由MTS法测定。基底活性氧(ROS)产生通过FACS分析来测量。体外磷酸肌醇-3-激酶(PI-3K)的活性通过免疫-沉淀PIP-3测定法测量。电感耦合等离子体质谱法(IPC-MS)分析估计细胞中顺铂结合到DNA。线粒体、粗糙内质网和髓鞘样结构是通过电子显微镜(EM)检查。化合物的in-house文库的筛选工作由MTS法进行。
如在图17中描述,HE4过表达克隆(HE4+)显示出降低紫杉醇、顺铂、阿霉素和喜树碱的药效反应。HE4+克隆显示具有基底升高活性氧(ROS)产生的侵袭表型,并表现出对顺铂诱导的活性氧产生的耐药性(图19)。HE4基因的沉默表明,HE4调节活性氧的产生。HE4+克隆证实激活EGFR/PI-3K,包括画中画-3的生产和脂肪酸合成SKOV-3细胞(图18)。HE4+克隆的电感耦合等离子体质谱法(IPC-MS)分析显示顺铂与DNA结合比亲本SKOV-3细胞结合更少。本文所述的结果还表明,HE4促进血管生成(图20)。如图21,HE4过表达细胞显示大量的磷脂和脂蛋白(髓鞘样结构)。抗癌小分子的in-house文库筛选鉴定MT19c为靶向HE4过表达卵巢癌细胞的潜在的先导分子。
一并考虑,HE4过表达促进上皮性卵巢癌顺铂和紫杉醇化疗耐药性。具体地,如本文所述,HE4过表达通过加剧致癌EGFR/PI-3K/FAS途径介导顺铂、紫杉醇和阿霉素的强化疗耐药性。上皮性卵巢癌中HE4诱导化疗耐药是通过加剧EGFR/PI-3K信号介导的。HE4直接调节卵巢癌细胞内活性氧产生。因此,MT19c是可以靶向HE4表达上皮性卵巢癌细胞的小分子。此外,选择性的反义核苷酸(AONs)、中和抗体,并且HE4基因的小分子抑制剂/调节剂也靶向HE4表达。
实施例6:HE4过表达体外增强顺铂化疗耐药
如图23A所示,pCMV6-HE4稳定转染的一组HE4过表达SKOV-3细胞克隆被开发。免疫印迹(图23B)、PCR和EIA/ELISA法进行验证差分HE4表达。稳定HE4过表达SKOV-3细胞克隆(HE4C1)显示出顺铂化疗耐药性是空载体稳定转染的亲本细胞和卵巢癌细胞的>2-4倍。
HE4过表达增强卵巢癌异种移植动物模型的肿瘤负荷
为了确定HE4在卵巢癌进展中的作用,稳定HE4过表达(pCMV6-HE4)克隆的异种移植、SKOV-3(野生型)和空载体克隆(pCMV6)细胞在裸鼠移植瘤中提出(strain088,Nu/Nu)。每周测量肿瘤大小。数据显示,相比于空载体克隆和亲本SKOV-3细胞,HE4过表达在小鼠中产生最具进行性的肿瘤(图24)。
动物体内HE4过表达克隆分泌较高水平的HE4蛋白,并且 顺铂治疗HE4水平下动物具体变化
因为HE4是一种分泌蛋白,采用EIA ELISA(Fujirebio公司公司)测定动物体内HE4的分泌水平。HE4过表达克隆显示裸鼠体内显著更高水平的HE4分泌(图25)。另外,GroupWise,顺铂(5mg/kg bwt)治疗组的HE4水平没有显著区别于载体处理动物组,然而,由于顺铂,观察到HE4水平下动物具体升高或减少。
HE4过表达减少动物的存活率并促进顺铂化疗耐药
测定成活率、肿瘤大小、和采用HE4过表达1号克隆、亲本SKOV-3和空载体异种移植克隆的动物的顺铂或载体治疗响应。对动物进行Kaplan-Meier分析显示,亲本卵巢癌(SKOV-3)或空载体(pCMV6)克隆异种移植的动物在14天观察中没有达到14毫米肿瘤大小(图26)。另一方面,约60%的HE4过表达克隆异种移植的动物接受顺铂治疗达到最终肿瘤尺寸(>14mm),相反,~85%的载体治疗的HE4过表达克隆异种移植的动物在14天内没有达到终端肿瘤尺寸。因此,HE4过表达使接受顺铂治疗动物的产生化疗耐药。
HE4的反义抑制减少铂耐药的卵巢癌异种移植的动物体内 的肿瘤负荷
HE4过表达促进动物卵巢癌负荷(图24),并引起动物体内顺铂强烈的化疗耐药(图26)。因此,一组反义寡聚物被设计成抑制卵巢癌(SKOV-3)细胞异种移植的动物体内HE4的表达水平。相比于治疗28天内乱序的或正义HE4寡核苷酸和载体治疗对照,反义HE4磷酰寡核苷酸每周5天治疗抑制了动物体内肿瘤进展。
新型HE4调制磷酰寡核苷酸序列如下:
5′G*A*C*A*C*C*T*T*C*C*C*A*C*A*G*C*C*A*T*T3′(SEQ ID NO:1)
5′G*A*C*A*C*C*T*T*C*C*C*A*C*A*G*C*C*A*T*T*G3′(SEQ ID NO:2)
5′G*A*C*A*C*C*T*T*C*C*C*A*C*A*G*C*C*A*T3′(SEQ ID NO:3)
5′A*C*A*C*C*T*T*C*C*C*A*C*A*G*C*C*A*T*T*G3′(SEQ ID NO:4)
5′A*C*A*C*C*T*T*C*C*C*A*C*A*G*C*C*A*T*T3′(SEQ ID NO:5)
具有SEQ ID NO:4的序列寡核苷酸表现出强烈降低卵巢癌的两种不同表型中肿瘤负荷,随即具有SEQ ID NO:2序列的寡核苷酸。具有SEQ ID NO:1、3和5序列寡核苷酸也显示出肿瘤抑制活性。
SKOV-3异种移植和体外培养的HE4过表达克隆中HE4与活 化表皮生长因子受体(磷酸化表皮生长因子受体)的免疫共沉淀
在此描述的发明之前,HE4在卵巢癌中的分子功能是未知的。如本文所描述的,分泌的HE4与膜结合受体酪氨酸激酶(例如,表皮生长因子受体)相互作用。异种移植肿瘤组织中进行HE4与表皮生长因子受体(磷酸化表皮生长因子受体)活化形式的免疫共沉淀,空载体作为对照。在体外培养的HE4过表达卵巢癌细胞和异种移植肿瘤组织中HE4与磷酸化表皮生长因子受体共免疫沉淀,这表明HE4可与受体酪氨酸激酶相互作用以激活表皮生长因子受体(EGFR)。活化的表皮生长因子(EGFR)通过激活磷脂酰肌醇3.激酶(PI-3K)和AKT促成卵巢癌进展和顺铂化疗耐药。
HE4与HE4过表达克隆中的HIF1α免疫共沉淀。HE4是由 卵巢癌细胞高度分泌
如本文所述,HE4与HIF1α在肿瘤微环境中相互作用以促进卵巢癌的进展。HE4与HE4过表达异种移植肿瘤组织中的HIF1α免疫共沉淀,空载体作为对照。HE4与HE4过表达肿瘤组织中HIF1α选择性共免疫沉淀,表明HE4与HIF1α蛋白复合物相互作用。HIF1α通过增强血管生成和代谢重编程来支持实体瘤生存率,有助于卵巢癌的进展和顺铂化疗耐药。
其它实施方案
虽然结合其详细说明对本发明进行了描述,前述描述旨在说明而不是限制本发明,本发明由所附的权利要求的范围所定义的范围。其他方面,优点和修正在以下权利要求的范围之内。
本文提及的专利和科学文献建立了提供给本领域技术技术人员的知识。本文引用的所有美国专利和公布或未公布的美国专利申请都通过引用并入本文。本文引用的所有公开的外国专利和专利申请均通过引用并入本文。由本文引用的Genbank登录号和NCBI提交的保藏号通过引用并入本文。所有其他已发表的文献、文件、本文引用的手稿和科学文献通过引用并入本文。
虽然本发明已被具体地表示和参照其优选实施方案描述,但在不背离所附权利要求涵盖的本发明的范围的条件下,本领域技术人员可以在形式和细节上的做出不同变化。

Claims (30)

1.一种抑制受试者肿瘤细胞生长的方法,其包括:
用至少一个肿瘤细胞对受试者进行鉴别;和
对人类附睾分泌蛋白E4(HE4)在肿瘤细胞中的水平进行调制,
从而抑制所述受试者体内肿瘤细胞生长。
2.根据权利要求1所述的方法,其中所述肿瘤细胞是恶性肿瘤细胞。
3.根据权利要求1所述的方法,其中所述肿瘤细胞是癌症祖细胞和癌症干细胞。
4.根据权利要求2所述的方法,其中所述恶性肿瘤细胞是卵巢癌细胞、子宫内膜癌细胞、或乳腺癌细胞。
5.根据权利要求1所述的方法,其中在所述肿瘤细胞中所述HE4水平通过对所述肿瘤细胞施用HE4抑制剂进行调节。
6.根据权利要求5所述的方法,其中HE4抑制剂是反义大分子、中和抗-HE4抗体、小干扰核糖核酸(siRNA)、小发夹RNA(shRNA),小分子抑制剂、或睾酮。
7.根据权利要求5所述的方法,其中反义大分子选自由SEQ IDNO:4和SEQ ID NO:4所构成的组的一种寡核苷酸。
8.根据权利要求1所述的方法,其中所述肿瘤细胞中HE4水平通过所述肿瘤细胞中过表达HE4进行调节。
9.根据权利要求1所述的方法,其中所述肿瘤细胞中HE4水平通过对所述肿瘤细胞施用合成HE4、重组HE4,或其片段来进行调节。
10.根据权利要求1所述的方法,进一步包括施用一种化疗剂,该化疗剂选自由烷化剂、抗代谢药、蒽环类抗生素、抗肿瘤抗生素、单克隆抗体、铂剂、植物生物碱、拓扑异构酶抑制剂、长春花生物碱、紫杉烷和表鬼臼毒素所组成的组。
11.根据权利要求1所述的方法,进一步包括施用一种化疗剂,该化疗剂选自由顺铂、卡铂、紫杉醇、多西他赛、阿霉素、喜树碱、和依托泊苷所组成的组。
12.根据权利要求1所述的方法,进一步包括在HE4启动子控制下将TP53基因施用给所述肿瘤细胞。
13.根据权利要求1所述的方法,其中所述肿瘤细胞中HE4水平采用MT19c或PT19c进行调节。
14.一种开发和应用HE4基疫苗产生抗肿瘤、抗病毒、抗炎、或抗自体免疫疾病的方法。
15.一种抑制受试者肿瘤细胞生长的方法,其包括:
诊断所述受试者患有HE4表达肿瘤;和
调节所述受试者所述肿瘤内或肿瘤上HE4水平;
从而抑制所述受试者体内肿瘤细胞生长。
16.一种抑制受试者肿瘤细胞生长的方法,其包括:
鉴别已诊断为HE4表达肿瘤的受试者;和
调节所述受试者所述肿瘤内或肿瘤上HE4水平;
从而抑制所述受试者体内肿瘤细胞生长。
17.一种鉴别对HE4调节响应的受试者的方法,其包括:
(a)将HE-4调节剂施用给具有HE-4表达肿瘤的受试者或使用所述HE-4调节剂接触从所述受试者体内获得的HE-4表达肿瘤细胞群的受试者;和
(b)确定所述受试者HE-4水平或由肿瘤细胞表达的HE-4水平,其中所述HE-4水平变化表明受试者响应于HE-4调节疗法。
18.根据权利要求15所述的方法,其中通过免疫印迹法检测HE4水平。
19.根据权利要求15所述的方法,其中通过一种免疫测定试剂盒或一种荧光抗体检测HE4水平。
20.一种监测HE4调节剂的治疗功效的方法,其包括:
将所述HE-4调节剂施用给诊断为包括HE4表达肿瘤的受试者;
从所述受试者获得的肿瘤细胞内或肿瘤细胞上或从所述受试者获得体液样品中检测HE4、CA125、或两者的水平;
其中所述肿瘤细胞或所述体液中所述HE4水平降低表明所述HE4调节剂抑制所述受试者体内肿瘤细胞生长。
21.根据权利要求6所述的方法,其中所述反义分子选自由SEQID NO:1、SEQ ID NO:2、SEQ ID NO:3,、SEQ ID NO:4、和SEQ ID NO:5所组成的组。
22.根据权利要求15所述的方法,其中所述受试者体内的所述肿瘤细胞内或肿瘤细胞上HE4水平通过对所述肿瘤细胞施用HE4抑制剂进行调节,其中HE4抑制剂选自由SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3,、SEQ ID NO:4、和SEQ IDNO:5所组成的组。
23.根据权利要求16所述的方法,其中所述受试者体内的所述肿瘤细胞内或肿瘤细胞上HE4水平通过对所述肿瘤细胞施用HE4抑制剂进行调节,其中HE4抑制剂选自由SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3,、SEQ ID NO:4、和SEQ IDNO:5所组成的组。
24.根据权利要求17所述的方法,其中所述HE-4调节剂选自由SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3,、SEQ ID NO:4、和SEQ ID NO:5所组成的组。
25.根据权利要求20所述的方法,其中所述HE-4调节剂选自由SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3,、SEQ ID NO:4、和SEQ ID NO:5所组成的组。
26.一种用于抑制肿瘤生长的药物组合物,其包括具有选自由SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4和SEQ ID NO:5所组成的组的核酸序列的寡核苷酸。
27.一种用于抑制肿瘤生长的药物组合物,其包括具有选自由SEQ ID NO:4和SEQ ID NO:2所组成的组的核酸序列的寡核苷酸。
28.一种用于抑制肿瘤生长的药物组合物,其包括HE4特异性抗体或其抗原结合片段。
29.一种用于抑制肿瘤生长的药物组合物,其包括选自由HE-4特异性寡核苷酸、HE4特异性抗体或其抗原结合片段、和睾酮化合物所组成的组中的至少两种化合物的组合。
30.根据权利要求29所述的组合物,其中所述寡核苷酸包括SEQID NO:4或SEQ ID NO:2的核苷酸序列。
CN201280037754.3A 2011-06-06 2012-06-06 基于he4治疗恶性疾病 Pending CN104039343A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161493881P 2011-06-06 2011-06-06
US61/493,881 2011-06-06
US201161541663P 2011-09-30 2011-09-30
US61/541,663 2011-09-30
PCT/US2012/041080 WO2012170513A2 (en) 2011-06-06 2012-06-06 He4 based therapy for malignant disease

Publications (1)

Publication Number Publication Date
CN104039343A true CN104039343A (zh) 2014-09-10

Family

ID=47296711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280037754.3A Pending CN104039343A (zh) 2011-06-06 2012-06-06 基于he4治疗恶性疾病

Country Status (4)

Country Link
US (1) US9980982B2 (zh)
EP (1) EP2717901A4 (zh)
CN (1) CN104039343A (zh)
WO (1) WO2012170513A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239349A (zh) * 2018-07-25 2019-01-18 广州医科大学附属第三医院(广州重症孕产妇救治中心、广州柔济医院) 人附睾蛋白4作为类风湿关节炎诊断标志物的应用
CN109690315A (zh) * 2016-07-08 2019-04-26 豪夫迈·罗氏有限公司 人附睾蛋白4(he4)用于评估muc16阳性癌症治疗的响应性的用途
CN111033631A (zh) * 2017-06-13 2020-04-17 波士顿基因公司 用于生成分子功能谱、对其进行可视化和分类的系统和方法
US11984200B2 (en) 2018-06-12 2024-05-14 Bostongene Corporation Systems and methods for generating, visualizing and classifying molecular functional profiles

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200013118A (ko) * 2011-02-17 2020-02-05 후지레비오 다이어그노스틱스, 인코포레이티드 HE4a의 결정을 위해 사용되는 조성물들 및 방법들
CA2981068C (en) * 2015-03-26 2021-12-14 Women & Infants Hospital Of Rhode Island Therapy for malignant disease comprising the inhibition of human epididymal secretory protein e4 and immune checkpoint inhibitors
ES2863773T3 (es) * 2015-10-08 2021-10-11 Univ Utah Res Found Métodos y composiciones para prevenir o tratar el cáncer
US20190064172A1 (en) * 2016-04-20 2019-02-28 Eisai Inc. Prognosis of serous ovarian cancer using biomarkers
WO2021261483A1 (ja) * 2020-06-23 2021-12-30 三井化学株式会社 腺癌の検出方法及び検査キット
CN117940567A (zh) * 2021-09-16 2024-04-26 克迈恩有限公司 调控wfdc2的表达的反义化合物
WO2023043220A1 (ko) * 2021-09-16 2023-03-23 주식회사 큐마인 Wfdc2의 발현을 조절하는 안티센스 화합물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552390A (en) * 1993-12-09 1996-09-03 The Board Of Regents Of The University Of Nebraska Phosphorothioate inhibitors of metastatic breast cancer
CN1813188A (zh) * 2001-08-29 2006-08-02 太平洋西北研究院 癌的诊断
CN1823995A (zh) * 2005-12-19 2006-08-30 邢道明 一种治疗恶性肿瘤的新药
CN101480399A (zh) * 2008-09-25 2009-07-15 宋博 睾酮在制备治疗弱精子症的药物中的应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674872A (en) * 1993-08-20 1997-10-07 Smithkline Beecham Corporation Treatment of ovarian cancer
AU7347300A (en) 1999-09-02 2001-03-26 Gene Logic, Inc. Modulation of he4 in inflammatory and renal diseases
US20050095592A1 (en) * 2002-02-13 2005-05-05 Jazaeri Amir A. Identification of ovarian cancer tumor markers and therapeutic targets
US9024039B2 (en) 2005-12-12 2015-05-05 Women & Infants' Hospital Of Rhode Island Heterocycles and derivatives thereof and methods of manufacture and therapeutic use
WO2007081768A2 (en) 2006-01-04 2007-07-19 Fujirebio America, Inc. Use of he4 and other biochemical markers for assessment of ovarian cancers
US7811778B2 (en) 2006-09-06 2010-10-12 Vanderbilt University Methods of screening for gastrointestinal cancer
US20090192101A1 (en) * 2006-11-22 2009-07-30 Mien-Chie Hung Cancer-specific promoters
WO2008112514A1 (en) * 2007-03-09 2008-09-18 Tripath Imaging, Inc. He4 monoclonal antibodies and methods for their use
WO2009137006A2 (en) 2008-04-30 2009-11-12 The University Of North Carolina At Chapel Hill Directed evolution and in vivo panning of virus vectors
WO2010061393A1 (en) 2008-11-30 2010-06-03 Compugen Ltd. He4 variant nucleotide and amino acid sequences, and methods of use thereof
US20100144687A1 (en) 2008-12-05 2010-06-10 Glaser Rebecca L Pharmaceutical compositions containing testosterone and an aromatase inhibitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552390A (en) * 1993-12-09 1996-09-03 The Board Of Regents Of The University Of Nebraska Phosphorothioate inhibitors of metastatic breast cancer
CN1813188A (zh) * 2001-08-29 2006-08-02 太平洋西北研究院 癌的诊断
CN1823995A (zh) * 2005-12-19 2006-08-30 邢道明 一种治疗恶性肿瘤的新药
CN101480399A (zh) * 2008-09-25 2009-07-15 宋博 睾酮在制备治疗弱精子症的药物中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DRAPKIN R等: "Human Epididymis Protein 4 (HE4) Is a Secreted Glycoprotein that Is Overexpressed by Serous and Endometrioid Ovarian Carcinomas", 《CANCER RESEARCH》 *
HUANG Y H等: "Nanoparticle-Delivered Suicide Gene Therapy Effectively Reduces Ovarian Tumor Burden in Mice", 《CANCER RESEARCH》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109690315A (zh) * 2016-07-08 2019-04-26 豪夫迈·罗氏有限公司 人附睾蛋白4(he4)用于评估muc16阳性癌症治疗的响应性的用途
US11440969B2 (en) 2016-07-08 2022-09-13 Genentech, Inc. Use of human epididymis protein 4 (HE4) for assessing responsiveness of MUC 16-positive cancer treatment
CN111033631A (zh) * 2017-06-13 2020-04-17 波士顿基因公司 用于生成分子功能谱、对其进行可视化和分类的系统和方法
CN111033631B (zh) * 2017-06-13 2024-03-12 波士顿基因公司 用于生成分子功能谱、对其进行可视化和分类的系统和方法
US11984200B2 (en) 2018-06-12 2024-05-14 Bostongene Corporation Systems and methods for generating, visualizing and classifying molecular functional profiles
CN109239349A (zh) * 2018-07-25 2019-01-18 广州医科大学附属第三医院(广州重症孕产妇救治中心、广州柔济医院) 人附睾蛋白4作为类风湿关节炎诊断标志物的应用
CN109239349B (zh) * 2018-07-25 2021-08-03 广州医科大学附属第三医院(广州重症孕产妇救治中心、广州柔济医院) 人附睾蛋白4作为类风湿关节炎诊断标志物的应用

Also Published As

Publication number Publication date
US20140348854A1 (en) 2014-11-27
US9980982B2 (en) 2018-05-29
EP2717901A2 (en) 2014-04-16
WO2012170513A3 (en) 2013-01-31
WO2012170513A2 (en) 2012-12-13
EP2717901A4 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
CN104039343A (zh) 基于he4治疗恶性疾病
US20200095644A1 (en) Compositions and methods for identification, assessment, prevention, and treatment of cancer using pd-l1 isoforms
CA2983293C (en) Modulators of ror1-ror2 binding
ES2635316T3 (es) Anticuerpos contra ROR1 que pueden inducir muerte celular de LLC
CN101605560B (zh) 治疗胆管癌的药物组合物
ES2717908T3 (es) Anticuerpos S100A4 y usos terapéuticos de los mismos
EP3505182A1 (en) Methods for treating vascular leak syndrome and cancer
CN109312347A (zh) 双特异性适配子
TW201718024A (zh) 治療性細胞內化結合物
CN107249644A (zh) 针对转铁蛋白受体(TfR)的RNA适体
CN110522913A (zh) 利用netrin-1干扰药物和化疗药物的联合治疗
KR20210106531A (ko) 암 치료를 위한 조성물 및 방법
CN116018353A (zh) 抗ror-2抗体和使用方法
US10376535B2 (en) Therapy for malignant disease
US20210252036A1 (en) Methods of treating cancer by inhibiting ubiquitin conjugating enzyme e2 k (ube2k)
CN103800919B (zh) Tuft1在制备肝癌诊断和治疗制剂中的应用
US10849906B2 (en) Use of Akt2 in diagnosis and treatment of tumor
US20150037351A1 (en) Novel therapeutic target for the prevention of tumour metastasis
US20180188257A1 (en) Septin proteins as novel biomarkers for detection and treatment of müllerian cancers
US20150017091A1 (en) Detection and treatment of metastatic disease
ES2747836T3 (es) Métodos y productos para prevenir y/o tratar el cáncer metastásico
CN107106697A (zh) Pdgfr rna适体
CN106795556B (zh) VGSC β3蛋白质用于癌症预防、治疗及诊断检测的靶点
CN108456249B (zh) 变异型α-辅肌动蛋白-4的抗体
KR101525229B1 (ko) Gpr171 단백질의 발현 또는 활성 억제제를 포함하는 암 치료 또는 암 전이 억제용 약학적 조성물

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140910

WD01 Invention patent application deemed withdrawn after publication