CN104037159A - 一种半导体结构及其形成方法 - Google Patents

一种半导体结构及其形成方法 Download PDF

Info

Publication number
CN104037159A
CN104037159A CN201410275700.1A CN201410275700A CN104037159A CN 104037159 A CN104037159 A CN 104037159A CN 201410275700 A CN201410275700 A CN 201410275700A CN 104037159 A CN104037159 A CN 104037159A
Authority
CN
China
Prior art keywords
fin
silicon
lines
layer
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410275700.1A
Other languages
English (en)
Other versions
CN104037159B (zh
Inventor
黎明
杨远程
樊捷闻
宣浩然
张昊
黄如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201410275700.1A priority Critical patent/CN104037159B/zh
Publication of CN104037159A publication Critical patent/CN104037159A/zh
Priority to PCT/CN2015/077399 priority patent/WO2015192691A1/zh
Priority to US15/026,325 priority patent/US20160225851A1/en
Application granted granted Critical
Publication of CN104037159B publication Critical patent/CN104037159B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种半导体结构,包括:一半导体衬底,多层超细硅线条,所述的多层超细硅线条的界面形状受衬底晶向和线条轴向晶向双重控制。形成方法包括:通过刻蚀工艺形成鱼鳍状硅岛Fin及其两端的源漏区;制备硅的腐蚀掩蔽层;形成多层超细硅线条。本发明的优点:最终形成的多层超细硅线条的位置与截面形状均匀、可控;对硅的各向异性腐蚀是自停止的,工艺窗口大,可在同一硅片上实现不同直径的硅线条;ICPECVD具有较强的窄槽填充能力,淀积牺牲层和腐蚀掩蔽层材料时无空洞;结合氧化技术可以制备尺寸小于10nm的线条,满足小尺寸器件关键工艺的要求;采用自上而下的加工方法,完全和体硅平面晶体管工艺兼容,工艺成本代价小。

Description

一种半导体结构及其形成方法
技术领域
本发明属于超大规模集成电路制造技术领域,涉及一种多层超细硅线条的结构及其制备方法,尤其涉及一种结合鱼鳍状硅岛的侧壁掩膜技术与硅的各向异性腐蚀技术来制备位置与形状可控的多层超细硅线条的方法。
背景技术
随着摩尔定律推进到22nm工艺节点,传统平面器件因其短沟效应和可靠性问题愈加突出,导致器件性能严重退化,不能满足摩尔定律的要求。以鱼鳍型场效应晶体管(FinFET)为代表的三维多栅器件(Multi-gate MOSFET,MuGFET),以其出众的抑制短沟效应能力,以及集成密度高,与传统CMOS工艺兼容等优点,在22nm节点成功实现量产。
在三维多栅器件中,多层围栅纳米线场效应管(Multi-Bridge-Channel Gate-all-aroundNanowire FET,MBC GAA NWFET)具有非常突出的栅控能力,超高集成密度和驱动电流等优势,成为22nm节点后的有力竞争者。
制造多层围栅纳米线场效应管的关键技术之一是制备位置、截面形状均匀可控的多层超细硅线条。
香港科技大学的Ricky M.Y.Ng小组结合电感耦合等离子(ICP)刻蚀中的Bosch工艺与牺牲氧化,形成上下排列的多层纳米线[M.Y.Ng Ricky,et al.,EDL,2009,30(5):520~522.]。但该方法形成纳米线的位置和截面形状因工艺涨落而不可控,进而造成器件性能涨落严重。
韩国三星电子公司Sung-Young Lee等人以SiGe为牺牲层在体硅衬底上成功制备了多层沟道场效应管[Sung-Young Lee,et al.,TED,2003,2(4):253-257.]。其核心技术为在体硅上外延得到Si-SiGe的超晶格结构,通过湿法腐蚀去掉SiGe牺牲层得到多层悬空沟道。但该超晶格结构中的各层薄膜的质量与厚度受到晶格失配与应力释放等因素限制,且工艺相对复杂。
因此,业界急需一种多层超细硅线条的结构和制备方法,除了具有高的集成密度外,同时又能克服公知技术的缺点。
发明内容
本发明提供一种半导体结构及其形成方法,以改善现有的公知技术。
术语说明:根据叶良修《半导体物理》第一章中定义:(100)、(110)、(111)、(112)为晶面的密勒指数;<100>、<110>、<111>、<112>为晶向指数。
本发明提供一种半导体结构,包括:一半导体衬底,多层超细硅线条,其特征是,所述的多层超细硅线条的界面形状受衬底晶向和线条轴向晶向双重控制:
对于(100)衬底上沿<110>的多层超细硅线条,顶层线条的截面为五边形,该五边形由一个(100)晶面、二个(110)晶面和二个(111)晶面围成;以下各层线条的截面为六边形,该六边形由两个(110)晶面和四个(111)晶面围成;
对于(110)衬底上沿<110>的多层超细硅线条,顶层线条的截面为五边形,该五边形由一个(110)晶面、二个(100)晶面和二个(111)晶面围成;以下各层线条的截面为六边形,该六边形由两个(100)晶面和四个(111)晶面围成;
对于(111)衬底和上沿<110>的多层超细硅线条,所有线条的截面均为矩形,该矩形由二个(111)晶面和二个(112)晶面围成。
本发明同时提供一种半导体结构的形成方法,包括:
A.提供一半导体衬底;
B.形成鱼鳍状硅岛Fin;
为保证在步骤D1中对Fin侧壁的各向异性腐蚀能自停止在(111)晶面,从而形成悬空的截面为多边形的多层超细硅线条,衬底晶向、Fin的长度方向和侧壁晶向需满足:对于(100)衬底,Fin的长度方向及其侧壁晶向均沿<110>;对于(110)衬底,Fin的长度方向沿<110>,其侧壁晶向沿<100>;对于(111)衬底,Fin的长度方向沿<110>,其侧壁晶向沿<112>;
Fin的高宽比的选择需满足最终形成的细线条的层数的要求;
C.形成Fin的侧壁腐蚀掩蔽层(侧壁掩膜技术);
腐蚀掩蔽层的层数与位置决定细线条的层数与位置;通过牺牲层厚度定义出细线条的层间距,为保证经步骤D1后形成的多层超细硅线条上下完全分离,牺牲层厚度(H)与Fin宽度(WFin)间需满足:对于(100)衬底,H>WFin*tan54.7°;对于(110)衬底,H>WFin*cot54.7°;对于(111)衬底,H>0;其中54.7°为硅的(100)晶面与(111)晶面的夹角;
具体实现步骤如下:
C1.制备牺牲层,包括:
C101.在硅衬底上淀积牺牲层材料,所淀积的牺牲层材料厚度大于Fin高度;
C102.通过化学机械抛光(Chemical Mechanical Polishing,CMP)去除Fin顶部的牺牲层材料,露出Fin顶部;
C103.通过刻蚀定义出牺牲层厚度;
C2.制备腐蚀掩蔽层,包括:
C201.在牺牲层上淀积腐蚀掩蔽层材料,所淀积的腐蚀掩蔽层材料厚度大于Fin高度;
C202.通过CMP去除Fin顶部的腐蚀掩蔽层材料,露出Fin顶部;
C203.通过刻蚀定义出腐蚀掩蔽层厚度;
C3.交替重复步骤C1、C2,在Fin的侧壁形成周期性的“牺牲层-腐蚀掩蔽层”堆叠结构;
C4.在Fin顶部淀积腐蚀掩蔽层;
C5.通过光刻在周期性的“牺牲层-腐蚀掩蔽层”堆叠结构上定义出硅的湿法腐蚀窗口;
C6.通过各向异性刻蚀工艺,将光刻定义的图形转移到牺牲层-腐蚀掩蔽层的堆叠结构上,露出硅衬底;
C7.去除牺牲层;
D.形成多层超细硅线条,目的是从Fin的侧壁对其进行各向异性腐蚀,在侧壁腐蚀掩蔽层的保护下,腐蚀最终自停止于(111)晶面,形成多层截面为多边形的超细硅线条,具体实现步骤如下:
D1.通过各向异性腐蚀形成截面为多边形的多层超细硅线条;
D2.将多层超细硅线条去除腐蚀掩蔽层。
进一步地,步骤D2中,在去除腐蚀掩蔽层之后,通过牺牲氧化可将多层超细硅线条的截面改为圆形,并进一步缩小其半径;该牺牲氧化为干法氧化,温度为850~950℃,优选925℃;
进一步地,与经步骤B形成的Fin两端相连的微米尺度的源漏区或STI区可保证经步骤D1形成的多层超细硅线条两端有足够的硅作为支撑;
进一步地,步骤C1、C2、C4中所述淀积可选ALD(Atomic Layer Deposition,原子层淀积)、LPCVD(Low Pressure Chemical Vapor Deposition,低压化学气相淀积)、PECVD(PlasmaEnhanced Chemical Vapor Deposition,等离子体增强化学气相淀积)、ICPECVD(InductivelyCoupled Plasma Enhance Chemical Vapor Deposition,电感耦合等离子体增强化学气相淀积)或溅射等,优选ICPECVD。
进一步地,牺牲层材料可选SiO2,采用BHF(缓冲氢氟酸)溶液进行SiO2牺牲层的释放,BHF溶液浓度为HF:NH4F=1:30~1:100,优选为1:40,腐蚀温度为常温;腐蚀掩蔽层材料可选Si3N4;采用浓磷酸进行Si3N4腐蚀掩蔽层的去除;腐蚀温度为170℃。
进一步地,牺牲层与腐蚀掩蔽层的材料组合不限于SiO2与Si3N4,但二者需满足:牺牲层与光刻胶的刻蚀速率比大于5:1;腐蚀掩蔽层与光刻胶的刻蚀速率比大于5:1;牺牲层与硅的刻蚀速率比大于5:1;腐蚀掩蔽层与硅的刻蚀速率比大于5:1。
进一步地,采用TMAH(Tetramethyl Ammonium Hydroxide,四甲基氢氧化铵)溶液进行所述硅的各向异性腐蚀;TMAH溶液浓度为10~25wt%,优选25wt%;腐蚀温度为35~60℃,优选40℃。
本发明还提供一种多层围栅纳米线场效应管,使用上述半导体结构的形成方法制备出多层超细硅线条,然后经过标准CMOS工艺即可形成多层围栅纳米线场效应管。
本发明的优点和积极效果如下:
1)最终形成的多层超细硅线条的位置与截面形状均匀、可控;
2)对硅的各向异性腐蚀是自停止的,工艺窗口大,可在同一硅片上实现不同直径的硅线条;
3)ICPECVD具有较强的窄槽填充能力,淀积牺牲层和腐蚀掩蔽层材料时无空洞;
4)结合氧化技术可以制备尺寸小于10nm的线条,满足小尺寸器件关键工艺的要求;
5)采用TMAH溶液湿法腐蚀多晶硅,操作简便,安全;并且不会引入金属离子,适用于集成电路制造工艺中;
6)采用自上而下的加工方法,完全和体硅平面晶体管工艺兼容,工艺成本代价小。
附图说明
图1-14是本发明提出的基于各向异性腐蚀制备多层超细硅线条结构的工艺流程示意图。各图中,(a)为俯视图,(b)(c)分别为(a)中沿A-A’和B-B’的剖面图。
其中:
图1各向异性刻蚀形成鱼鳍状硅岛结构及与之相连的源漏区;
图2淀积牺牲层,CMP露出Fin顶部;
图3刻蚀定义牺牲层厚度;
图4淀积硅的腐蚀掩蔽层,CMP露出Fin顶部;
图5刻蚀定义腐蚀掩蔽层厚度;
图6淀积并定义第二层牺牲层厚度;
图7淀积并CMP顶部腐蚀掩蔽层;
图8定义并刻蚀出硅的各向异性腐蚀窗口;
图9释放牺牲层;
图10~图12各向异性腐蚀形成截面为多边形的多层超细硅线条;
图13超细线条的牺牲氧化,并通过湿法腐蚀去除包裹硅线条的氧化层,最终得到截面为圆形的多层超细硅线条。
图14为图例。
具体实施方式
下面结合附图和具体实例对本发明进行详细说明。
实施例1:
根据下列步骤可以实现2层直径约10nm的圆形纳米线结构:
1)在(111)体硅衬底上热生长SiO2作为硬掩膜与硅衬底间的应力缓冲层;
2)LPCVDSi3N4作为刻蚀硬掩膜;
3)通过光刻在硬掩膜上定义出Fin及与Fin两端相连的源漏区,其中Fin结构的宽度为20nm,长度为300nm,长度方向与侧壁晶向均沿<110>;
4)通过各向异性刻蚀将图形转移到硬掩膜上,露出硅衬底;
5)通过各向异性刻蚀将硬掩膜上的图形转移到硅衬底上,形成Fin及与Fin两端相连的源漏区,其中Fin结构的高度为宽度为20nm,长度为300nm,长度方向与侧壁晶向均沿<110>;
6)去除光刻胶;
7)用热(170℃)的浓磷酸去除Si3N4刻蚀硬掩膜;
8)用BHF溶液(HF:NH4F=1:40)去除SiO2应力缓冲层,如图1所示;
9)ICPECVDSiO2
10)CMP露出Fin顶部,如图2所示;
11)各向异性刻蚀去除SiO2,剩余SiO2作为第一层牺牲层,如图3所示;
12)ICPECVDSi3N4
13)CMP露出Fin顶部,如图4所示;
14)各向异性刻蚀去除Si3N4,剩余Si3N4作为第一层硅的腐蚀掩蔽层,如图5所示;
15)ICPECVDSiO2
16)CMP露出Fin顶部;
17)各向异性刻蚀去除SiO2,剩余SiO2作为第二层牺牲层,如图6所示;
18)ICPECVDSi3N4
19)CMP留下Si3N4作为顶部硅的腐蚀掩蔽层,如图7所示;
20)电子束光刻定义硅的腐蚀窗口;
21)各向异性干法刻蚀去除窗口内的SiO2-Si3N4叠层材料,露出底部的硅;
22)去除光刻胶,如图8所示;
23)用BHF溶液(HF:NH4F=1:40)去除SiO2牺牲层,如图9所示;
24)用溶液浓度为25wt%的TMAH在40℃下各向异性腐蚀硅,使上下的细线条完全分离,如图10所示;
25)用热(170℃)的浓磷酸去除Si3N4腐蚀掩蔽层;
26)在925℃下进行干氧氧化,得到截面为圆形、直径为5nm的硅纳米线;
27)用BHF溶液(HF:NH4F=1:40)去除包裹在硅纳米线周围的氧化层,如图13所示;最终得到直径约5nm的2层纳米线结构。
实施例2:
根据下列步骤可以实现2层直径约5nm的方形纳米线结构:
1)在(100)体硅衬底上热生长SiO2作为硬掩膜与硅衬底间的应力缓冲层;
2)LPCVDSi3N4作为刻蚀硬掩膜;
3)通过光刻在硬掩膜上定义出Fin及与Fin两端相连的源漏区,其中Fin结构的宽度为10nm,长度为300nm,长度方向沿<110>,侧壁晶向均沿<112>;
4)通过各向异性刻蚀将图形转移到硬掩膜上,露出硅衬底;
5)通过各向异性刻蚀将硬掩膜上的图形转移到硅衬底上,形成Fin及与Fin两端相连的源漏区,其中Fin结构的高度为宽度为10nm,长度为300nm,长度方向沿<110>,侧壁晶向均沿<112>;
6)去除光刻胶;
7)用热(170℃)的浓磷酸去除Si3N4刻蚀硬掩膜;
8)用BHF溶液(HF:NH4F=1:40)去除SiO2应力缓冲层;
9)ICPECVDSiO2
10)CMP露出Fin顶部;
11)各向异性刻蚀去除SiO2,剩余SiO2作为第一层牺牲层;
12)ICPECVDSi3N4
13)CMP露出Fin顶部;
14)各向异性刻蚀去除Si3N4,剩余Si3N4作为第一层硅的腐蚀掩蔽层;
15)ICPECVDSiO2
16)CMP露出Fin顶部;
17)各向异性刻蚀去除SiO2,剩余SiO2作为第二层牺牲层;
18)ICPECVDSi3N4
19)CMP留下Si3N4作为顶部硅的腐蚀掩蔽层,;
20)电子束光刻定义硅的腐蚀窗口;
21)各向异性干法刻蚀去除窗口内的SiO2-Si3N4叠层材料,露出底部的硅;
22)去除光刻胶;
23)用BHF溶液(HF:NH4F=1:40)去除SiO2牺牲层;
24)用溶液浓度为25wt%的TMAH在40℃下各向异性腐蚀硅,使上下的细线条完全分离,如图11所示;
25)用热(170℃)的浓磷酸去除Si3N4腐蚀掩蔽层;
最终得到直径约10nm的2层截面为方形的纳米线结构。
实施例3:
制备3层直径约10nm的纳米线结构。
1)在(110)体硅衬底上热生长SiO2作为刻蚀硬掩膜与硅衬底间的应力缓冲层;
2)LPCVDSi3N4作为硅的刻蚀硬掩膜;
3)通过光刻定义Fin及与Fin两端相连的源漏区,其中Fin结构的宽度为30纳米,长度为300纳米,长度方向沿<110>晶向,侧壁沿<100>晶向;
4)通过各向异性刻蚀将图形转移到硬掩膜上,露出硅衬底;
5)通过各向异性刻蚀将硬掩膜上的图形转移到硅衬底上,形成Fin及与Fin两端相连的源漏区,其中Fin结构的高度为宽度为30纳米,长度为300纳米,长度方向沿<110>晶向,侧壁沿<100>晶向;
6)去除光刻胶;
7)用热(170℃)的浓磷酸去除Si3N4刻蚀硬掩膜;
8)用BHF溶液(HF:NH4F=1:40)去除SiO2应力缓冲层;
9)ICPECVD多晶锗;
10)CMP露出Fin顶部;
11)各向异性刻蚀去除多晶锗,剩余多晶锗作为第一层牺牲层;
12)ICPECVDSiO2
13)CMP露出Fin顶部;
14)各向异性刻蚀去除SiO2,剩余SiO2作为第一层硅的腐蚀掩蔽层;
15)ICPECVD多晶锗;
16)CMP露出Fin顶部;
17)各向异性刻蚀去除多晶锗,剩余多晶锗作为第二层牺牲层;
18)ICPECVDSiO2
19)CMP露出Fin顶部;
20)各向异性刻蚀去除SiO2,剩余SiO2作为第二层硅的腐蚀掩蔽层;
21)ICPECVD多晶锗;
22)CMP露出Fin顶部;
23)各向异性刻蚀去除多晶锗,剩余多晶锗作为第三层牺牲层;
24)ICPECVDSiO2
25)CMP留下SiO2作为顶部硅的腐蚀掩蔽层;
26)采用193nm浸没式光刻定义硅的腐蚀窗口;
27)各向异性干法刻蚀去除窗口内的多晶锗-SiO2叠层材料,露出底部的硅;
28)去除光刻胶;
29)采用氨水与双氧水的混合液(NH4OH:H2O2:H2O=2:2:5)在室温下去除多晶锗牺牲层;
30)用溶液浓度为25wt%的TMAH在40℃下各向异性腐蚀硅,使上下的细线条完全分离,如图12所示;
31)采用BHF溶液(HF:NH4F=1:40)去除SiO2腐蚀掩蔽层;
32)在925℃下进行干氧氧化,得到截面为圆形、直径为5nm的硅纳米线;
33)用BHF溶液(HF:NH4F=1:40)去除包裹在硅纳米线周围的氧化层;
最终得到直径约10nm的3层纳米线结构。
本发明实施例并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (12)

1.一种半导体结构,包括:一半导体衬底,多层超细硅线条,其特征是,所述的多层超细硅线条的界面形状受衬底晶向和线条轴向晶向双重控制:
对于(100)衬底上沿<110>的多层超细硅线条,顶层线条的截面为五边形,该五边形由一个(100)晶面、二个(110)晶面和二个(111)晶面围成;以下各层线条的截面为六边形,该六边形由两个(110)晶面和四个(111)晶面围成;
对于(110)衬底上沿<110>的多层超细硅线条,顶层线条的截面为五边形,该五边形由一个(110)晶面、二个(100)晶面和二个(111)晶面围成;以下各层线条的截面为六边形,该六边形由两个(100)晶面和四个(111)晶面围成;
对于(111)衬底和上沿<110>的多层超细硅线条,所有线条的截面均为矩形,该矩形由二个(111)晶面和二个(112)晶面围成。
2.一种半导体结构的形成方法,其特征是,包括如下步骤:
A.提供一半导体衬底;
B.形成鱼鳍状硅岛Fin;需满足条件:对于(100)衬底,Fin的长度方向及其侧壁晶向均沿<110>;对于(110)衬底,Fin的长度方向沿<110>,其侧壁晶向沿<100>;对于(111)衬底,Fin的长度方向沿<110>,其侧壁晶向沿<112>;Fin的高宽比的选择需满足最终形成的细线条的层数的要求;
C.形成Fin的侧壁腐蚀掩蔽层;具体实现步骤如下:
C1.制备牺牲层,包括:
C101.在硅衬底上淀积牺牲层材料,所淀积的牺牲层材料厚度大于Fin高度;
C102.通过化学机械抛光去除Fin顶部的牺牲层材料,露出Fin顶部;
C103.通过刻蚀定义出牺牲层厚度;
C2.制备腐蚀掩蔽层,包括:
C201.在牺牲层上淀积腐蚀掩蔽层材料,所淀积的腐蚀掩蔽层材料厚度大于Fin高度;
C202.通过CMP去除Fin顶部的腐蚀掩蔽层材料,露出Fin顶部;
C203.通过刻蚀定义出腐蚀掩蔽层厚度;
C3.交替重复步骤C1、C2,在Fin的侧壁形成周期性的“牺牲层-腐蚀掩蔽层”堆叠结构;
C4.在Fin顶部淀积腐蚀掩蔽层;
C5.通过光刻在周期性的“牺牲层-腐蚀掩蔽层”堆叠结构上定义出硅的湿法腐蚀窗口;
C6.通过各向异性刻蚀工艺,将光刻定义的图形转移到牺牲层-腐蚀掩蔽层的堆叠结构上,露出硅衬底;
C7.去除牺牲层;
D.形成多层超细硅线条,目的是从Fin的侧壁对其进行各向异性腐蚀,在侧壁腐蚀掩蔽层的保护下,腐蚀最终自停止于(111)晶面,形成多层截面为多边形的超细硅线条,具体实现步骤如下:
D1.通过各向异性腐蚀形成截面为多边形的多层超细硅线条;
D2.将多层超细硅线条去除腐蚀掩蔽层。
3.如权利要求2所述的半导体结构的形成方法,其特征是,步骤D2中,在去除腐蚀掩蔽层之后,通过牺牲氧化将多层超细硅线条的截面改为圆形,并进一步缩小其半径。
4.如权利要求2所述的半导体结构的形成方法,其特征是,与经步骤B形成的Fin两端相连的源漏区或STI区为微米尺度。
5.如权利要求2所述的半导体结构的形成方法,其特征是,步骤C1、C2、C4中所述淀积可选ALD、LPCVD、PECVD、ICPECVD或溅射。
6.如权利要求2所述的半导体结构的形成方法,其特征是,所述牺牲层材料为SiO2,采用BHF溶液进行SiO2牺牲层的释放,BHF溶液浓度为HF:NH4F=1:30~1:100,腐蚀温度为常温;所述腐蚀掩蔽层材料选Si3N4;采用浓磷酸进行Si3N4腐蚀掩蔽层的去除;腐蚀温度为170℃。
7.如权利要求2所述的半导体结构的形成方法,其特征是,所述牺牲层与腐蚀掩蔽层的材料组合需满足:牺牲层与光刻胶的刻蚀速率比大于5:1;腐蚀掩蔽层与光刻胶的刻蚀速率比大于5:1;牺牲层与硅的刻蚀速率比大于5:1;腐蚀掩蔽层与硅的刻蚀速率比大于5:1。
8.如权利要求2所述的半导体结构的形成方法,其特征是,采用TMAH溶液进行所述硅的各向异性腐蚀;TMAH溶液浓度为10~25wt%;腐蚀温度为35~60℃。
9.如权利要求2所述的半导体结构的形成方法,其特征是,步骤C中,腐蚀掩蔽层的层数与位置决定细线条的层数与位置;通过牺牲层厚度定义出细线条的层间距,为保证经步骤D1后形成的多层超细硅线条上下完全分离,牺牲层厚度H与Fin宽度WFin间需满足:对于(100)衬底,H>WFin*tan54.7°;对于(110)衬底,H>WFin*cot54.7°;对于(111)衬底,H>0;其中54.7°为硅的(100)晶面与(111)晶面的夹角。
10.如权利要求3所述的半导体结构的形成方法,其特征是,所述牺牲氧化为干法氧化,温度为850~950℃。
11.如权利要求6所述的半导体结构的形成方法,其特征是,所述的BHF溶液浓度为HF:NH4F=1:40。
12.一种多层围栅纳米线场效应管,其特征是,用权利要求1至11中任一种半导体结构的形成方法制备出多层超细硅线条,然后经过标准CMOS工艺即可形成多层围栅纳米线场效应管。
CN201410275700.1A 2014-06-19 2014-06-19 一种半导体结构及其形成方法 Active CN104037159B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410275700.1A CN104037159B (zh) 2014-06-19 2014-06-19 一种半导体结构及其形成方法
PCT/CN2015/077399 WO2015192691A1 (zh) 2014-06-19 2015-04-24 一种半导体结构及其形成方法
US15/026,325 US20160225851A1 (en) 2014-06-19 2015-04-24 Semiconductor structure and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410275700.1A CN104037159B (zh) 2014-06-19 2014-06-19 一种半导体结构及其形成方法

Publications (2)

Publication Number Publication Date
CN104037159A true CN104037159A (zh) 2014-09-10
CN104037159B CN104037159B (zh) 2017-01-25

Family

ID=51467872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410275700.1A Active CN104037159B (zh) 2014-06-19 2014-06-19 一种半导体结构及其形成方法

Country Status (3)

Country Link
US (1) US20160225851A1 (zh)
CN (1) CN104037159B (zh)
WO (1) WO2015192691A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192691A1 (zh) * 2014-06-19 2015-12-23 北京大学 一种半导体结构及其形成方法
CN108231594A (zh) * 2017-12-21 2018-06-29 上海集成电路研发中心有限公司 一种FinFET器件的制作方法
CN109742025A (zh) * 2019-01-21 2019-05-10 中国科学院微电子研究所 一种环栅纳米线器件的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543440B2 (en) * 2014-06-20 2017-01-10 International Business Machines Corporation High density vertical nanowire stack for field effect transistor
JP7274148B2 (ja) * 2017-07-19 2023-05-16 グローバルウェーハズ・ジャパン株式会社 三次元構造体の製造方法、縦型トランジスタの製造方法、および縦型トランジスタ用基板
CN115215285B (zh) * 2021-04-21 2024-07-30 中国科学院上海微系统与信息技术研究所 基于氮化硅阳极键合的(111)硅转移工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135949A1 (en) * 2006-12-08 2008-06-12 Agency For Science, Technology And Research Stacked silicon-germanium nanowire structure and method of forming the same
US20100295021A1 (en) * 2009-05-21 2010-11-25 International Business Machines Corporation Single Gate Inverter Nanowire Mesh
CN102509698A (zh) * 2011-11-23 2012-06-20 北京大学 一种制备超细线条的方法
CN102509697A (zh) * 2011-11-01 2012-06-20 北京大学 一种制备超细线条的方法
CN103700582A (zh) * 2013-12-27 2014-04-02 中国科学院微电子研究所 一种锗纳米线叠层结构的制作方法
CN103824759A (zh) * 2014-03-17 2014-05-28 北京大学 一种制备多层超细硅线条的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661524B2 (ja) * 2011-03-22 2015-01-28 ルネサスエレクトロニクス株式会社 半導体集積回路装置の製造方法
US8796695B2 (en) * 2012-06-22 2014-08-05 United Microelectronics Corp. Multi-gate field-effect transistor and process thereof
CN104037159B (zh) * 2014-06-19 2017-01-25 北京大学 一种半导体结构及其形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135949A1 (en) * 2006-12-08 2008-06-12 Agency For Science, Technology And Research Stacked silicon-germanium nanowire structure and method of forming the same
US20100295021A1 (en) * 2009-05-21 2010-11-25 International Business Machines Corporation Single Gate Inverter Nanowire Mesh
CN102509697A (zh) * 2011-11-01 2012-06-20 北京大学 一种制备超细线条的方法
CN102509698A (zh) * 2011-11-23 2012-06-20 北京大学 一种制备超细线条的方法
CN103700582A (zh) * 2013-12-27 2014-04-02 中国科学院微电子研究所 一种锗纳米线叠层结构的制作方法
CN103824759A (zh) * 2014-03-17 2014-05-28 北京大学 一种制备多层超细硅线条的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192691A1 (zh) * 2014-06-19 2015-12-23 北京大学 一种半导体结构及其形成方法
CN108231594A (zh) * 2017-12-21 2018-06-29 上海集成电路研发中心有限公司 一种FinFET器件的制作方法
CN108231594B (zh) * 2017-12-21 2020-10-02 上海集成电路研发中心有限公司 一种FinFET器件的制作方法
CN109742025A (zh) * 2019-01-21 2019-05-10 中国科学院微电子研究所 一种环栅纳米线器件的制造方法

Also Published As

Publication number Publication date
US20160225851A1 (en) 2016-08-04
CN104037159B (zh) 2017-01-25
WO2015192691A1 (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
CN104037159B (zh) 一种半导体结构及其形成方法
US6897098B2 (en) Method of fabricating an ultra-narrow channel semiconductor device
US8742511B2 (en) Double gate planar field effect transistors
TWI463565B (zh) 使用共形氮化物形成自上而下堅固之矽奈米結構的方法及其結構
US8809131B2 (en) Replacement gate fin first wire last gate all around devices
TWI598994B (zh) 奈米線結構之形成方法
KR101945609B1 (ko) 퇴적 및 에칭 공정들을 이용한 융기되고 리세싱된 피처들을 위한 선택적 막 형성을 위한 기판 처리 방법
US20140034908A1 (en) Epitaxially Thickened Doped or Undoped Core Nanowire FET Structure and Method for Increasing Effective Device Width
WO2008005612A1 (en) Method for forming a semiconductor device and structure thereof
TWI404206B (zh) 形成具有鰭狀物之半導體裝置之方法及其結構
US20140367833A1 (en) Low-Temperature Sidewall Image Transfer Process Using ALD Metals, Metal Oxides and Metal Nitrides
US9252016B2 (en) Stacked nanowire
JP2008543103A (ja) ゲート電極に覆われたゲルマニウムベースのチャネルを有するトランジスタ及びその製造方法
US9054018B2 (en) Semiconductor device and method for manufacturing the same
CN102086024B (zh) 硅纳米线的制备方法
CN110047752A (zh) 利用硬掩模层的纳米线晶体管制造
WO2012159329A1 (zh) 一种以空气为侧墙的围栅硅纳米线晶体管的制备方法
US9865508B2 (en) Method and structure to fabricate closely packed hybrid nanowires at scaled pitch
CN105590845A (zh) 堆叠围栅纳米线制造方法
CN104253048B (zh) 堆叠纳米线制造方法
CN103824759B (zh) 一种制备多层超细硅线条的方法
US9620589B2 (en) Integrated circuits and methods of fabrication thereof
US9425060B2 (en) Method for fabricating multiple layers of ultra narrow silicon wires
CN108231591A (zh) 形成纳米线内间隔的方法
CN104465354B (zh) 全包围栅极结构及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant