CN103953772B - 碳化钨氮化铬复合涂层的超硬耐磨阀门 - Google Patents
碳化钨氮化铬复合涂层的超硬耐磨阀门 Download PDFInfo
- Publication number
- CN103953772B CN103953772B CN201410163269.1A CN201410163269A CN103953772B CN 103953772 B CN103953772 B CN 103953772B CN 201410163269 A CN201410163269 A CN 201410163269A CN 103953772 B CN103953772 B CN 103953772B
- Authority
- CN
- China
- Prior art keywords
- valve
- tungsten carbide
- chromium composite
- superhard wear
- composite coat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K27/00—Construction of housing; Use of materials therefor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/129—Flame spraying
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种碳化钨氮化铬复合涂层的超硬耐磨阀门,包括阀门基体,所述阀门基体表面从里到外依次设有采用超音速火焰喷涂方法喷涂的WC底涂层和采用磁控溅射方法沉积的CrN顶涂层。本发明的碳化钨氮化铬复合涂层的超硬耐磨阀门所具有的优点是:能够较好的适用于恶劣工况中。本发明还公开了该碳化钨氮化铬复合涂层的超硬耐磨阀门的制备方法。
Description
技术领域
本发明涉及阀门技术领域,尤其是涉及一种超硬耐磨阀门。本发明还涉及该超硬耐磨阀门的制备方法。
背景技术
阀门为工业设备中之关键控制部件,广泛应用于石油、化工、冶金、电力、食品、医药、给排水、气体输送等各个行业。在一些恶劣的工作环境下,比如石油化工等行业中,存在高冲刷性、强腐蚀性以及高温高压气、固、液三相流的高杂质磨损等恶劣工况,这种使用环境对阀门的要求非常高,需要使用高性能的超硬耐磨阀门。
表面工程技术是指材料经过表面预处理后,通过表面改性、表面涂覆或多种表面技术复合处理,改变基体表面的表面形态、化学成分、组织结构和应力状态等,以获得所需表面性能的系统工程。其中,表面涂覆是表面工程技术的重要组成部分。为了延长阀门在恶劣工况下的使用寿命,人们普遍选择表面涂覆技术对阀门基体进行改性,提高其硬度、耐磨性和耐蚀性。
目前,阀门产品无论采用哪种涂层技术,大都使用单一的涂层材料。对于单一的涂层材料,受限于材料本身的特性,虽然涂层阀门在某些方面的性能良好,但另一些方面的性能可能受到限制,导致产品的综合性能不高。比如,涂覆有WC涂层的阀门硬度高,耐磨性能好,但阀门的抗氧化性能和耐蚀性能不高;涂覆有CrN涂层的阀门耐蚀性好,也具有较高的硬度,但与基体结合强度不高,使用过程中容易产生涂层脱落的问题。这些方面的不足,都会缩短超硬耐磨涂层的使用寿命,不能满足阀门在恶劣工况下的使用。
发明内容
本发明的目的是提供一种碳化钨氮化铬复合涂层的超硬耐磨阀门,它具有能够较好的适用于恶劣工况中的特点。本发明还公开了该碳化钨氮化铬复合涂层的超硬耐磨阀门的制备方法。
本发明所采用的第一个技术方案是:碳化钨氮化铬复合涂层的超硬耐磨阀门,包括阀门基体,所述阀门基体表面从里到外依次设有采用超音速火焰喷涂方法喷涂的WC底涂层和采用磁控溅射方法沉积的CrN顶涂层。
所述WC底涂层的厚度为50~500μm,CrN顶涂层的厚度为1~5μm。
本发明的碳化钨氮化铬复合涂层的超硬耐磨阀门所具有的优点是:能够较好的适用于恶劣工况中。本发明的碳化钨氮化铬复合涂层的超硬耐磨阀门充分吸收了WC涂层和CrN涂层的优点,使该阀门具有较高的硬度和耐磨性能,且具有较好的抗氧化能力和耐腐蚀性,能够适用于较为恶劣的工况中。更具体的说,WC作为阀门底涂层与基体直接接触,附着性好,有利于提高涂层与基体的结合强度;CrN作为阀门顶涂层,抗氧化性能好,有利于提高产品的耐蚀特性。同时,由于WC涂层存在不同程度的孔隙率,在一些强腐蚀环境中服役,需要进行必要的封孔处理,而WC底涂层之上沉积的CrN顶涂层起到对WC底涂层封孔的作用。而且,CrN顶涂层具有微细结构,在涂层内部产生压应力,抗裂纹扩展能力强,CrN顶涂层表面光滑,能有效阻止横裂纹的扩展,同时降低摩擦系数。换句话说,二种涂层配合使用,有利于发挥不同涂层的各自优势,使碳化钨氮化铬复合涂层的超硬耐磨阀门达到高性能,应用于恶劣工况等特殊领域,提高使用寿命。
本发明所采用的第二个技术方案是:碳化钨氮化铬复合涂层的超硬耐磨 阀门的制备方法,包括以下步骤:
1)预处理:对阀门基体表面依次进行预加工、表面净化和表面活化的预处理;
2)喷涂底涂层:以WC粉末为喷涂材料,将航空煤油和氧气雾化混合后喷入燃烧室中连续燃烧,产生高压焰流,并通过膨胀喷嘴将高压焰流加速到超音速,以氮气为送粉气体,携带WC粉末进入高速焰流中,经加热、加速,喷射到工件表面形成涂层,主要喷涂参数为:煤油流量20~30L/h,氧气流量50~60m3/h,送粉率70~80g/min,喷涂距离310~350mm,喷涂角度:球面法向,单道次喷涂厚度为10~15μm;
3)沉积顶涂层:以纯金属Cr为靶材,以Ar-N2混合气体为工作气体,金属Cr靶材经溅射产生Cr原子或离子,与工作气体中的N2反应生成CrN,沉积在基体表面,形成CrN涂层,主要沉积参数为:工作气体压强0.5~3Pa,Ar和N2流量由质量流量计控制,分压比1:1~1:3,溅射电流0.5~2A,溅射电压100~300V,沉积温度200~700℃。
本发明的碳化钨氮化铬复合涂层的超硬耐磨阀门的制备方法所具有的优点是:易于实现。该方法中所使用的设备均在工业中广泛应用,工艺过程简单,易于控制,适合大规模生产和产业化应用,具有良好的工业应用前景。
附图说明
下面结合附图和实施例对本发明进一步说明:
图1是本发明的实施例的碳化钨氮化铬复合涂层的超硬耐磨阀门表面结构的主视剖视图。
图中:10、阀门基体;20、WC底涂层;30、CrN顶涂层。
具体实施方式
实施例1
见图1所示:碳化钨氮化铬复合涂层的超硬耐磨阀门,包括阀门基体10。该阀门基体10表面从里到外依次设有采用超音速火焰喷涂方法喷涂的WC底涂层20和采用磁控溅射方法沉积的CrN顶涂层30。其中,该WC底涂层20的厚度为50μm,CrN顶涂层30的厚度为5μm。
其制备方法包括以下步骤:
1)预处理:对该阀门基体10表面依次进行预加工、表面净化和表面活化的预处理。其中,表面预加工指的是:球面磨削加工及去毛刺处理;表面净化采用的方法为:清洗、除锈、除油脱脂处理;表面活化采用的方法为:喷砂粗化或抛光。
2)喷涂底涂层:该WC底涂层20采用超音速火焰喷涂方法喷涂。具体的,将航空煤油和氧气雾化混合后喷入燃烧室中连续燃烧,产生高压焰流,并通过膨胀喷嘴将高压焰流加速到超音速。以氮气为送粉气体,携带WC粉末进入高速焰流中,经加热、加速,喷射到工件表面形成该WC底涂层20。主要喷涂参数为:煤油流量20L/h,氧气流量50m3/h,送粉率70g/min,喷涂距离310mm,喷涂角度:球面法向,单道次喷涂厚度为10μm。该过程采用的喷涂系统设备可以分为四个部分:机械手控制的喷枪、控制系统、送粉系统、冷却系统。
3)沉积顶涂层:该CrN顶涂层30采用磁控溅射方法沉积于该WC底涂层20上。具体的,以纯金属Cr为靶材,以Ar-N2混合气体为工作气体,金属Cr靶材经溅射产生Cr原子或离子,与工作气体中的N2反应生成CrN,沉积在该WC底涂层20表面,形成该CrN顶涂层30。主要沉积参数为:工作气体压强0.5Pa,Ar和N2流量由质量流量计控制,分压比1:1,溅射电流0.5A, 溅射电压100V,沉积温度200℃。该过程采用磁控溅射离子镀层设备。
这样,形成成品1。
实施例2
与实施例1的区别在于:
该碳化钨氮化铬复合涂层的超硬耐磨阀门的阀门基体10表面的WC底涂层20的厚度为150μm,CrN顶涂层30的厚度为3μm。
其制备方法中:
步骤2)中的主要喷涂参数为:煤油流量25L/h,氧气流量55m3/h,送粉率75g/min,喷涂距离330mm,单道次喷涂厚度为15μm。
步骤3)中的主要沉积参数为:工作气体压强1Pa,Ar和N2流量由质量流量计控制,分压比1:2,溅射电流1A,溅射电压200V,沉积温度400℃。
这样,形成成品2。
实施例3
与实施例1的区别在于:
该碳化钨氮化铬复合涂层的超硬耐磨阀门的阀门基体10表面的WC底涂层20的厚度为260μm,CrN顶涂层30的厚度为2μm。
其制备方法中:
步骤2)中的主要喷涂参数为:煤油流量30L/h,氧气流量60m3/h,送粉率80g/min,喷涂距离350mm,单道次喷涂厚度为13μm。
步骤3)中的主要沉积参数为:工作气体压强2Pa,Ar和N2流量由质量流量计控制,分压比1:3,溅射电流1.5A,溅射电压300V,沉积温度600℃。
这样,形成成品3。
实施例4
与实施例1的区别在于:
该碳化钨氮化铬复合涂层的超硬耐磨阀门的阀门基体10表面的WC底涂层20的厚度为500μm,CrN顶涂层30的厚度为1μm。
其制备方法中:
步骤2中单道次喷涂厚度为10μm。
步骤3)中的主要沉积参数为:工作气体压强3Pa,溅射电流2A,沉积温度700℃。
这样,形成成品4。
实验例
取成品1~4,经常规实验,
从上表可以得到本产品无论从硬度,耐磨、耐腐蚀及摩擦系数等指标都做优于常规产品。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (1)
1.碳化钨氮化铬复合涂层的超硬耐磨阀门,包括阀门基体,其特征在于:所述阀门基体表面从里到外依次设有采用超音速火焰喷涂方法喷涂的WC底涂层和采用磁控溅射方法沉积的CrN顶涂层;
所述WC底涂层的厚度为50~500μm,CrN顶涂层的厚度为1~3μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410163269.1A CN103953772B (zh) | 2014-04-21 | 2014-04-21 | 碳化钨氮化铬复合涂层的超硬耐磨阀门 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410163269.1A CN103953772B (zh) | 2014-04-21 | 2014-04-21 | 碳化钨氮化铬复合涂层的超硬耐磨阀门 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103953772A CN103953772A (zh) | 2014-07-30 |
CN103953772B true CN103953772B (zh) | 2017-03-15 |
Family
ID=51331086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410163269.1A Active CN103953772B (zh) | 2014-04-21 | 2014-04-21 | 碳化钨氮化铬复合涂层的超硬耐磨阀门 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103953772B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106435584A (zh) * | 2016-10-18 | 2017-02-22 | 安徽工业大学 | 一种热喷涂‑pvd复合涂层及其制备方法 |
CN107641806A (zh) * | 2017-09-29 | 2018-01-30 | 中南大学 | 一种薄带连铸结晶辊表面复合涂层及其制备方法 |
CN109023365B (zh) * | 2018-08-10 | 2020-05-26 | 广东省新材料研究所 | 一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法 |
CN109023202A (zh) * | 2018-09-13 | 2018-12-18 | 兰州理工大学 | 火焰喷涂+pvd镀膜复合涂-镀膜层的结构及其制备方法 |
CN111411318B (zh) * | 2020-05-21 | 2024-06-04 | 北京金轮坤天特种机械有限公司 | 一种钛合金轴类件及其制备方法和应用 |
CN113388833B (zh) * | 2021-05-31 | 2022-06-03 | 四川大学 | 一种抗冲蚀磨损的流体阀门零件制备方法 |
CN114131299B (zh) * | 2022-01-05 | 2022-11-08 | 温州市海格阀门有限公司 | 一种耐磨球阀铸件的加工工艺 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3503105A1 (de) * | 1985-01-30 | 1986-07-31 | Leybold-Heraeus GmbH, 5000 Köln | Verfahren zum beschichten von maschinenteilen und werkzeugen mit hartstoffmaterial und durch das verfahren hergestellte maschinenteile und werkzeuge |
CN2575112Y (zh) * | 2002-10-31 | 2003-09-24 | 江汉石油钻头股份有限公司 | 一种硬质合金表面的超硬涂层 |
US8092922B2 (en) * | 2008-06-30 | 2012-01-10 | GM Global Technology Operations LLC | Layered coating and method for forming the same |
CN101928910A (zh) * | 2008-12-22 | 2010-12-29 | 上海宝钢设备检修有限公司 | 冷轧机组工艺辊辊面耐磨涂层的喷涂方法 |
CN102453852A (zh) * | 2010-10-19 | 2012-05-16 | 鸿富锦精密工业(深圳)有限公司 | 镀膜件及其制备方法 |
CN102453855B (zh) * | 2010-10-28 | 2014-12-31 | 鸿富锦精密工业(深圳)有限公司 | 壳体及其制造方法 |
CN202768995U (zh) * | 2012-09-28 | 2013-03-06 | 温州大学 | 一种阀门的耐腐蚀纳米涂层结构 |
CN202768994U (zh) * | 2012-09-28 | 2013-03-06 | 温州大学 | 一种阀门的耐腐蚀防护涂层结构 |
CN103215544A (zh) * | 2013-04-23 | 2013-07-24 | 李固加 | 一种应用于挤压丝锥的涂层 |
CN203906936U (zh) * | 2014-04-21 | 2014-10-29 | 宁波丰基特种阀门有限公司 | 碳化钨氮化铬复合涂层的超硬耐磨阀门 |
-
2014
- 2014-04-21 CN CN201410163269.1A patent/CN103953772B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN103953772A (zh) | 2014-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103953772B (zh) | 碳化钨氮化铬复合涂层的超硬耐磨阀门 | |
CN109023365B (zh) | 一种唇型油封旋转轴耐磨减摩复合涂层及其制备方法 | |
CN111218638B (zh) | 一种球阀硬密封面耐磨蚀复合防护涂层及其制备方法 | |
CN110158007A (zh) | 一种自润滑耐磨复合涂层及其制备方法与应用 | |
CN108588617A (zh) | 球阀防腐耐磨涂层的制备工艺 | |
Adoberg et al. | The effect of surface pre-treatment and coating post-treatment to the properties of TiN coatings | |
CN109161856A (zh) | 一种具有纳米陶瓷-金属复合涂层的硬面球阀及制造方法 | |
CN109518118A (zh) | 内送粉高能等离子喷涂制备难熔金属重载耐磨涂层的方法 | |
CA2897696A1 (en) | Thermal spray for durable and large-area hydrophobic and superhydrophobic/icephobic coatings | |
CN103256142A (zh) | 一种节油型Cr-O-N纳米晶复合陶瓷涂层柴油发动机活塞环及制备方法 | |
CN111102295A (zh) | 金属滚动轴承或滑动轴承组成部件 | |
Rao et al. | Slurry erosive wear behavior of plasma sprayed Cr2O3 coatings on steel substrates | |
CN203906936U (zh) | 碳化钨氮化铬复合涂层的超硬耐磨阀门 | |
Özbek et al. | The mechanical properties and wear resistance of HVOF sprayed WC-Co coatings | |
CN105714292B (zh) | 一种硬密封球阀密封副的表面硬化处理方法 | |
CN103215545A (zh) | 一种陶瓷相纳米晶复合涂层注塑机螺杆制备工艺 | |
Umarov et al. | Tribological Performance of Ni-Cr Composite Coating Sprayed onto AISI 4340 (SNCM439) Steel by High Velocity Oxygen Fuel | |
RU2644836C2 (ru) | Способ обработки ниппельной части резьбового соединения насосно-компрессорной трубы | |
Nurbaş et al. | Abrasive Wear Behavior of Different Thermal Spray Coatings and Hard Chromium Electroplating on A286 Super Alloy* | |
CN115198225B (zh) | 一种液料等离子喷涂硬质合金-陶瓷梯度复合自润滑涂层的制备方法 | |
CN106191747A (zh) | 一种Co‑Cu‑Mn‑TiO2纳米涂层及其制备方法 | |
CN109161835A (zh) | 一种热作模具钢表面制备AlCrTiN/WC-12Co复合涂层的方法 | |
Sharma et al. | Study of High-Velocity Oxy-fuel Coating Technique and Fe-Based High-Velocity Oxy-fuel Coatings | |
CN106086752A (zh) | 一种WC‑Co‑Si‑Ti纳米涂层及其制备方法 | |
US20140234549A1 (en) | Thermally sprayed wear-resistant piston ring coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20171201 Address after: 315020, 134, east section, Ring North Road, Jiangbei District, Zhejiang, Ningbo Patentee after: Ningbo Tianjilong Intelligent Control Technology Co., Ltd. Address before: Jiangbei District 315033 Zhejiang city of Ningbo province (hongtan) No. 158 Changxin Road, building 7, 105 Patentee before: NINGBO FENGJI SPECIAL VALVE CO., LTD. |