CN113388833B - 一种抗冲蚀磨损的流体阀门零件制备方法 - Google Patents

一种抗冲蚀磨损的流体阀门零件制备方法 Download PDF

Info

Publication number
CN113388833B
CN113388833B CN202110603179.XA CN202110603179A CN113388833B CN 113388833 B CN113388833 B CN 113388833B CN 202110603179 A CN202110603179 A CN 202110603179A CN 113388833 B CN113388833 B CN 113388833B
Authority
CN
China
Prior art keywords
coating
valve part
phase
fluid valve
tungsten carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110603179.XA
Other languages
English (en)
Other versions
CN113388833A (zh
Inventor
鲜广
赵海波
鲜丽君
范洪远
熊计
王均
郭智兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202110603179.XA priority Critical patent/CN113388833B/zh
Publication of CN113388833A publication Critical patent/CN113388833A/zh
Application granted granted Critical
Publication of CN113388833B publication Critical patent/CN113388833B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种抗冲蚀磨损的流体阀门零件制备方法,该方法为采用热喷涂和物理气相沉积方法在铸造或锻造成型的流体阀门零件表面分别制备一层碳化钨基涂层和氮化物陶瓷层,然后通过真空热处理和脉冲电磁场后处理方式消除涂层中的孔洞等组织缺陷、降低残余应力以及增强涂层与基体、外层涂层与内层涂层的结合。本发明方法操作简单,易于实施,获得的双工艺双层复合涂层流体阀门零件兼具抗磨和抗蚀的作用,在含砂液体的冲蚀工况下具有持久的使用寿命。

Description

一种抗冲蚀磨损的流体阀门零件制备方法
技术领域
本发明属于阀门制造技术领域,具体涉及一种抗冲蚀磨损的流体阀门零件制备方法。
背景技术
腐蚀与磨损失效是油气开采与输送、化工、污水处理等领域用阀门及管道面临的关键问题之一,即使是使用马氏体不锈钢制造的阀门零件,服役寿命也存在较大局限性。为了提高流体阀门的耐磨性和耐腐蚀性能,通常采用表面渗氮、镀铬、堆焊、热喷涂等方法在阀门零件表面制备一层耐磨和防腐涂层。其中,热喷涂技术由于工艺灵活、操作方便、喷涂材料品种多、生产效率高等优点被广泛应用。相比普通阀门,涂层阀门的使用性能和服役寿命成倍提高。尽管如此,热喷涂涂层也存在一些缺陷,比如,涂层中存在孔洞、裂纹、夹杂等,在实际应用中,这些缺陷为液体浸入涂层以及进而破坏涂层提供了便利条件,涂层一旦失效,阀门本体的抗腐蚀和耐磨性能大幅降低。因此,现有方法制备的阀门的耐腐蚀性,尤其是耐冲蚀磨损性能仍有限。
发明内容
本发明的目的是针对现有技术存在的问题,提供一种抗冲蚀磨损的流体阀门零件制备方法。
为达此目的,本发明提供的技术方案是:提供一种抗冲蚀磨损的流体阀门零件制备方法,所述流体阀门零件为构成阀门的且与流体直接相接触并承受流体冲刷的零件,包括但不限于阀座、阀体、阀芯、球体、阀瓣、闸板,首先采用铸造或者锻造方法成型流体阀门零件,随后采用热喷涂方法在流体阀门零件与流体相接触的表面喷涂一层碳化钨基涂层,光整表面后采用物相气相沉积方法继续在碳化钨基涂层表面再沉积一层氮化物陶瓷层,然后将涂层后的流体阀门零件放入真空炉中进行真空热处理,最后再将流体阀门零件进行电磁场处理。
其中,所述热喷涂工艺为超音速火焰喷涂或为等离子喷涂或为等离子喷焊,制备的碳化钨基涂层是由平均粒径在50~200μm范围内的特粗颗粒WC、W2C和亚微米级Cr7C3、Cr23C6均匀分布在镍基粘结相中组成的,涂层中的 WC和W2C硬质相的总体积分数为40~60%,涂层中的 Cr7C3和Cr23C6弥散强化相的总体积分数为10~30%,镍基粘结相中Ni的质量分数为80~90%,其余为Cr、Fe和Si,镍基粘结相的物相为FeNi3、CrSi2和Cr3Si,碳化钨基涂层厚度为0.3~1.0mm。
其中,所述物相气相沉积工艺为在背底真空低于5.0×10-3Pa时向涂层沉积室通入氩气,在-300~-800V的偏压电场条件下利用气体离子和金属离子对碳化钨基涂层表面产生强烈的轰击,经过至少60min后开启工作靶沉积氮化物陶瓷层,氮化物陶瓷层为高铝含量的AlCrN和AlTiN涂层,涂层组织为致密的非柱状结构,涂层中的Al/Cr和Al/Ti原子含量比为1~2,氮化物陶瓷层厚度为2~5μm。
其中,所述真空热处理的保温温度为900~1100℃,保温时间1~3h,真空度<2.0×10-1Pa。
其中,所述电磁场后处理是对流体阀门零件进行耦合脉冲电磁场处理,处理工艺为脉冲磁场强度为1~2T,脉冲磁场频率1~2Hz,磁场脉冲数为35~60,脉冲电流能量密度10~20A/cm2,脉冲电场频率40~60,电流脉冲数为10~20。
与现有技术相比,本发明的有益效果是:本发明提供的抗冲蚀磨损的流体阀门零件制备方法采用热喷涂方法在铸造或锻造成型的阀门零件表面制备一层碳化钨基涂层,相比于不锈钢、碳钢、铸铁材料,碳化钨基涂层的硬度高,耐磨性好,同时,碳化钨陶瓷相耐蚀性能优良,碳化钨基涂层中弥散分布的亚微米级碳化铬可以进一步增强涂层的硬度和耐磨性,镍合金粘结相与碳化钨相润湿性好,二者结合界面形成碳化物固溶相;通过物理气相沉积方法在热喷涂碳化钨基涂层上沉积致密的氮化物陶瓷层,本身具有更高的硬度和耐磨性,同时隔绝液体与碳化钨基涂层直接接触,避免液体通过孔洞、裂纹等缺陷位置浸入涂层内部;真空热处理是借助原子的扩散作用减少孔洞、应力缺陷和增强界面结合,电磁场后处理进一步消除热处理后仍残留的微观缺陷,使涂层致密化,同时使裂纹愈合,界面融合和强度提高。本发明方法制备的流体阀门零件表面覆盖低缺陷密度的致密双层防护涂层,具有优良的抵抗液体和硬质颗粒冲蚀磨损的能力。
附图说明
图1为本发明实施例1中所制备的抗冲蚀磨损的流体阀门零件的截面组织形貌。
具体实施方式
下面通过具体实施例对本发明作进一步说明,但本发明的保护内容不局限于以下实施例,本领域技术人员在本发明基础上做出的任何非创造性改动均属于本发明的保护范围。
实施例1
采用铸造方法成型出阀座,随后采用大气等离子喷涂工艺在阀座的内壁表面喷涂一层碳化钨基涂层,碳化钨基涂层由平均粒径在138μm范围内的粗颗粒WC、W2C和亚微米级Cr7C3、Cr23C6均匀分布在镍基粘结相中组成的,涂层中的 WC和W2C硬质相的总体积分数为45.4%,涂层中的 Cr7C3和Cr23C6弥散强化相的总体积分数为16.2%,镍基粘结相中Ni的质量分数为83.6%,其余为Cr、Fe和Si,镍基粘结相的物相为FeNi3、CrSi2和Cr3Si,碳化钨基涂层厚度为0.65mm;光整表面后采用物相气相沉积方法继续在碳化钨基涂层表面再沉积一层氮化物陶瓷层,工艺为在背底真空为2.0×10-3Pa时向涂层沉积室通入氩气,在-400V的偏压电场条件下利用气体离子和金属离子对碳化钨基涂层表面产生强烈的轰击,经过90min后开启工作靶沉积氮化物陶瓷层,氮化物陶瓷层为高铝含量的AlTiN涂层,涂层组织为致密的非柱状结构,涂层中的Al/Cr和Al/Ti原子含量比为1.15,氮化物陶瓷层厚度为2.2μm;然后将涂层后的阀座放入真空炉中进行真空热处理,真空度为1.8×10-1Pa,保温温度为900℃,保温时间2h,最后再将阀座进行电磁场处理,处理工艺为脉冲磁场强度为2T,脉冲磁场频率1Hz,磁场脉冲数为50,脉冲电流能量密度15A/cm2,脉冲电场频率50,电流脉冲数为15。
经检测,阀座表面硬度为3258.3HV,在10N载荷条件下经过1小时的磨损后磨损失重率为万分之2.51,在3.5wt%NaCl溶液中的腐蚀电流密度为6.25×10-7A/cm2,在3.5wt%NaCl与2wt%石英砂的混合水溶液条件下,以旋转线速度5m/s冲蚀120小时后失重率为0.08%。
实施例2
采用锻造方法成型出球体,随后采用超音速火焰喷涂工艺在球体表面喷涂一层碳化钨基涂层,碳化钨基涂层由平均粒径在100μm范围内的粗颗粒WC、W2C和亚微米级Cr7C3、Cr23C6均匀分布在镍基粘结相中组成的,涂层中的 WC和W2C硬质相的总体积分数为58.9%,涂层中的 Cr7C3和Cr23C6弥散强化相的总体积分数为24.7%,镍基粘结相中Ni的质量分数为81.8%,其余为Cr、Fe和Si,镍基粘结相的物相为FeNi3、CrSi2和Cr3Si,碳化钨基涂层厚度为0.83mm;光整表面后采用物相气相沉积方法继续在碳化钨基涂层表面再沉积一层氮化物陶瓷层,工艺为在背底真空为4.0×10-3Pa时向涂层沉积室通入氩气,在-600V的偏压电场条件下利用气体离子和金属离子对碳化钨基涂层表面产生强烈的轰击,经过60min后开启工作靶沉积氮化物陶瓷层,氮化物陶瓷层为高铝含量的AlCrN涂层,涂层组织为致密的非柱状结构,涂层中的Al/Cr和Al/Ti原子含量比为1.73,氮化物陶瓷层厚度为3.5μm;然后将涂层后的球体放入真空炉中进行真空热处理,真空度为1.5×10-1Pa,保温温度为1000℃,保温时间1h,最后再将球体进行电磁场处理,处理工艺为脉冲磁场强度为1T,脉冲磁场频率1Hz,磁场脉冲数为40,脉冲电流能量密度10A/cm2,脉冲电场频率45,电流脉冲数为10。
经检测,球体表面硬度为2825.5HV,在10N载荷条件下经过1小时的磨损后磨损失重率为万分之3.76,在3.5wt%NaCl溶液中的腐蚀电流密度为5.68×10-7A/cm2,在3.5wt%NaCl与2wt%石英砂的混合水溶液条件下,以旋转线速度5m/s冲蚀120小时后失重率为0.07%。
对比例1
采用铸造方法成型出阀座,随后采用大气等离子喷涂工艺在阀座的内壁表面喷涂一层碳化钨基涂层,碳化钨基涂层由平均粒径在138μm范围内的粗颗粒WC、W2C和亚微米级Cr7C3、Cr23C6均匀分布在镍基粘结相中组成的,涂层中的 WC和W2C硬质相的总体积分数为45.4%,涂层中的 Cr7C3和Cr23C6弥散强化相的总体积分数为16.2%,镍基粘结相中Ni的质量分数为83.6%,其余为Cr、Fe和Si,镍基粘结相的物相为FeNi3、CrSi2和Cr3Si,碳化钨基涂层厚度为0.65mm;然后将涂层后的阀座放入真空炉中进行真空热处理,真空度为1.8×10-1Pa,保温温度为900℃,保温时间2h。
经检测,球体表面硬度为903.1HV,在10N载荷条件下经过1小时的磨损后磨损失重率为千分之2.93,在3.5wt%NaCl溶液中的腐蚀电流密度为1.31×10-5A/cm2,在3.5wt% NaCl与2wt%石英砂的混合水溶液条件下,以旋转线速度5m/s冲蚀120小时后失重率为0.20%。

Claims (1)

1.一种抗冲蚀磨损的流体阀门零件制备方法,其特征在于:所述流体阀门零件为构成阀门的且与流体直接相接触并承受流体冲刷的零件,包括但不限于阀座、阀体、阀芯、球体、阀瓣、闸板,首先采用铸造或者锻造方法成型流体阀门零件,随后采用热喷涂方法在流体阀门零件与流体相接触的表面喷涂一层碳化钨基涂层,光整表面后采用物相气相沉积方法继续在碳化钨基涂层表面再沉积一层氮化物陶瓷层,然后将涂层后的流体阀门零件放入真空炉中进行真空热处理,最后再将流体阀门零件进行电磁场处理;所述热喷涂工艺为超音速火焰喷涂或为等离子喷涂或为等离子喷焊,制备的碳化钨基涂层是由平均粒径在50~200μm范围内的特粗颗粒WC、W2C和亚微米级Cr7C3、Cr23C6均匀分布在镍基粘结相中组成的,涂层中的 WC和W2C硬质相的总体积分数为40~60%,涂层中的 Cr7C3和Cr23C6弥散强化相的总体积分数为10~30%,镍基粘结相中Ni的质量分数为80~90%,其余为Cr、Fe和Si,镍基粘结相的物相为FeNi3、CrSi2和Cr3Si,碳化钨基涂层厚度为0.3~1.0mm;所述物相气相沉积工艺为在背底真空低于5.0×10-3Pa时向涂层沉积室通入氩气,在-300~-800V的偏压电场条件下利用气体离子和金属离子对碳化钨基涂层表面产生强烈的轰击,经过至少60min后开启工作靶沉积氮化物陶瓷层,氮化物陶瓷层为高铝含量的AlCrN和AlTiN涂层,涂层组织为致密的非柱状结构,涂层中的Al/Cr和Al/Ti原子含量比为1~2,氮化物陶瓷层厚度为2~5μm;所述真空热处理的保温温度为900~1100℃,保温时间1~3h,真空度<2.0×10-1Pa;所述电磁场后处理是对流体阀门零件进行耦合脉冲电磁场处理,处理工艺为脉冲磁场强度为1~2T,脉冲磁场频率1~2Hz,磁场脉冲数为35~60,脉冲电流能量密度10~20A/cm2,脉冲电场频率40~60,电流脉冲数为10~20。
CN202110603179.XA 2021-05-31 2021-05-31 一种抗冲蚀磨损的流体阀门零件制备方法 Active CN113388833B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110603179.XA CN113388833B (zh) 2021-05-31 2021-05-31 一种抗冲蚀磨损的流体阀门零件制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110603179.XA CN113388833B (zh) 2021-05-31 2021-05-31 一种抗冲蚀磨损的流体阀门零件制备方法

Publications (2)

Publication Number Publication Date
CN113388833A CN113388833A (zh) 2021-09-14
CN113388833B true CN113388833B (zh) 2022-06-03

Family

ID=77619586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110603179.XA Active CN113388833B (zh) 2021-05-31 2021-05-31 一种抗冲蚀磨损的流体阀门零件制备方法

Country Status (1)

Country Link
CN (1) CN113388833B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115213073A (zh) * 2022-06-13 2022-10-21 中核核电运行管理有限公司 一种核电厂小尺寸阀门内壁新型冲蚀减缓方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789077A (en) * 1994-06-27 1998-08-04 Ebara Corporation Method of forming carbide-base composite coatings, the composite coatings formed by that method, and members having thermally sprayed chromium carbide coatings
CN103276338A (zh) * 2013-06-04 2013-09-04 华芳雄 采用等离子喷焊修复强化农业机械零部件表面的工艺
CN103476967A (zh) * 2011-03-01 2013-12-25 蒂森克虏拉塞斯坦有限公司 用于增强钢带上的金属涂层的方法
CN103953772A (zh) * 2014-04-21 2014-07-30 宁波丰基特种阀门有限公司 碳化钨氮化铬复合涂层的超硬耐磨阀门及其制备方法
CN108103500A (zh) * 2017-12-22 2018-06-01 西安交通大学 一种拉伸预应力金属陶瓷压铸模具及其制备方法
CN110527999A (zh) * 2018-05-24 2019-12-03 魏永强 一种减少熔覆层裂纹的脉冲电场-行波磁场复合方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047629A1 (de) * 2007-04-13 2008-10-16 Stein, Ralf Verfahren zum Aufbringen einer hochfesten Beschichtung auf Werkstücke und/oder Werkstoffe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789077A (en) * 1994-06-27 1998-08-04 Ebara Corporation Method of forming carbide-base composite coatings, the composite coatings formed by that method, and members having thermally sprayed chromium carbide coatings
CN103476967A (zh) * 2011-03-01 2013-12-25 蒂森克虏拉塞斯坦有限公司 用于增强钢带上的金属涂层的方法
CN103276338A (zh) * 2013-06-04 2013-09-04 华芳雄 采用等离子喷焊修复强化农业机械零部件表面的工艺
CN103953772A (zh) * 2014-04-21 2014-07-30 宁波丰基特种阀门有限公司 碳化钨氮化铬复合涂层的超硬耐磨阀门及其制备方法
CN108103500A (zh) * 2017-12-22 2018-06-01 西安交通大学 一种拉伸预应力金属陶瓷压铸模具及其制备方法
CN110527999A (zh) * 2018-05-24 2019-12-03 魏永强 一种减少熔覆层裂纹的脉冲电场-行波磁场复合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Slurry erosion-corrosion resistance and microbial corrosion electrochemical characteristics of HVOF sprayed WC-10Co-4Cr coating for offshore hydraulic machinery;Sheng Hong等;《International Journal of Refractory Metals & Hard Materials》;20180223;第74卷;第7-13页 *
镍基碳化钨氮化铬复合涂层组织与性能研究;田治秦;《中国优秀博硕士学位论文全文数据库(硕士)工程科技I辑》;20180915(第9期);第B022-81页 *

Also Published As

Publication number Publication date
CN113388833A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
Qiao et al. Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings
Leyland et al. Thick Ti/TiN multilayered coatings for abrasive and erosive wear resistance
CN111455301B (zh) 一种随钻测量仪器外筒耐磨耐蚀高熵合金梯度复合涂层
US20100304084A1 (en) Protective coatings which provide erosion resistance, and related articles and methods
Hocking Coatings resistant to erosive/corrosive and severe environments
CN109321861A (zh) 一种层片状和柱状复合结构的耐蚀耐磨涂层及制备方法
CN104213067A (zh) 一种在钢材表面涂覆抗高温腐蚀且耐磨涂层的方法
CN102418065A (zh) 复合金属碳化物耐磨涂层及其制备工艺
CN108130533A (zh) 一种具有高抗磨耐蚀硬密封球阀及制备方法
EP3647585B1 (en) Hydro-electric turbine component having enhanced life span and method for forming the same
CN109402578A (zh) 一种基于反应磁控溅射技术制备高熵合金涂层的方法
CN113388833B (zh) 一种抗冲蚀磨损的流体阀门零件制备方法
CN112063958A (zh) 一种涂覆有非晶合金涂层的往复泵柱塞及其加工工艺
CN108531844B (zh) 一种用于h13钢表面防护的稀土氧化物掺杂的抗高温氧化与耐磨涂层的制备方法
CN105624604B (zh) 在零件内表面热喷涂可控成分与结构涂层的致密化制备方法
Sathish et al. Duplex and composite coatings: a thematic review on thermal spray techniques and applications
CN113718208A (zh) 多弧离子镀抗空蚀镍基金属涂层及其制备方法
CN109518118A (zh) 内送粉高能等离子喷涂制备难熔金属重载耐磨涂层的方法
CN106119758A (zh) 钛合金及钛铝金属间化合物表面硼化钛基涂层的制备方法
Khan et al. Nanostructured composite coatings for oil sand’s applications
CN101294284A (zh) 一种耐冲蚀抗疲劳等离子表面复合强化方法
CN109652798A (zh) 一种烧结钕铁硼磁体表面复合涂层的制备方法
CN101698940A (zh) 高抗汽蚀性复合覆层及其制备方法
CN114632949A (zh) 一种增材制造金属零件表面防腐防污复合处理方法
Yu et al. Influence of Ta on crack susceptibility and mechanical properties of laser clad Ni-based coating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant