CN103904151A - 一种hit太阳能电池及其制备方法 - Google Patents

一种hit太阳能电池及其制备方法 Download PDF

Info

Publication number
CN103904151A
CN103904151A CN201410161505.6A CN201410161505A CN103904151A CN 103904151 A CN103904151 A CN 103904151A CN 201410161505 A CN201410161505 A CN 201410161505A CN 103904151 A CN103904151 A CN 103904151A
Authority
CN
China
Prior art keywords
type
thickness
hydrogenated amorphous
amorphous silicon
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410161505.6A
Other languages
English (en)
Other versions
CN103904151B (zh
Inventor
陈贵锋
王弘
张辉
曹哲
张浩恩
张娇
贾少鹏
罗鸿志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201410161505.6A priority Critical patent/CN103904151B/zh
Publication of CN103904151A publication Critical patent/CN103904151A/zh
Application granted granted Critical
Publication of CN103904151B publication Critical patent/CN103904151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明一种HIT太阳能电池,该电池的组成包括P型多晶硅衬底(P p-Si),在P型多晶硅衬底正面依次沉积的第一本征氢化非晶硅层(i a-Si:H)、N型氢化非晶硅层(N a-Si:H)和第一透明导电薄膜层,透明导电薄膜层上面为正面电极;在P型多晶硅衬底背面依次沉积的本征氢化非晶硅层(i a-Si:H)、P型氢化非晶硅层(P a-Si:H)和第二透明导电薄膜层,第二透明导电薄膜层下面为背面电极。本发明大大降低了电池生产成本,且使得太阳能电池不再受限于圆形的单晶硅衬底,可有效提高太阳能电池组件的平面利用率。

Description

一种HIT太阳能电池及其制备方法
技术领域:
本发明涉及太阳能电池技术领域领域,具体为一种HIT太阳能电池及其制备方法。
背景技术:
1992年三洋公司发明了HIT(Heterojunction with intrinsic Thinlayer)太阳能电池,所谓HIT太阳能电池就是一种利用晶体硅基板和非晶硅薄膜制成的混合型太阳能电池,其结构中具有非掺杂即本征的非晶硅薄膜层结构。HIT太阳能电池具有转换效率高、稳定性好的特点。2013年,三洋公司创下了效率为24.7%的世界纪录,国内电池的水平处在19%~20%之间。但是,为了更好的实现HIT太阳能电池的产业化,就其目前的发展状况而言,不仅要进一步提高太阳能电池的转换效率,还迫切的需要降低太阳能电池的制作成本。因此,我们用多晶硅代替单晶硅做衬底,来解决降低电池成本的问题。就目前来说,对于多晶硅衬底的HIT太阳能电池的报导还非常少。
发明内容:
本发明的目的是针对当前技术中采用单晶硅作衬底造成的成本高昂的不足,提供一种HIT太阳能电池及其制备方法,该电池利用多晶硅代替单晶硅做衬底材料,并通过清洗、铝吸杂等工艺对多晶硅衬底进行工艺处理,不仅减少了高成本的单晶硅的使用,大大降低了生产成本,且使得太阳能电池不再受限于圆形的单晶硅衬底,可有效提高太阳能电池组件的平面利用率。
本发明解决其技术问题所采用的技术方案是:
一种HIT太阳能电池,该电池的组成包括P型多晶硅衬底(P p-Si),在P型多晶硅衬底正面依次沉积的第一本征氢化非晶硅层(i a-Si:H)、N型氢化非晶硅层(N a-Si:H)和第一透明导电薄膜层,透明导电薄膜层上面为正面电极;在P型多晶硅衬底背面依次沉积的本征氢化非晶硅层(i a-Si:H)、P型氢化非晶硅层(P a-Si:H)和第二透明导电薄膜层,第二透明导电薄膜层下面为背面电极;
所述的正面电极为铝栅电极,膜厚15~20μm,栅线间距3mm、宽度0.10~0.12mm;
所述的背面电极为铝栅电极,膜厚15~20μm,栅线间距3mm、宽度0.10~0.12mm。
所述的P型多晶硅衬底(P p-Si)的厚度为100~130um;第一本征氢化非晶硅层(i a-Si:H)的厚度为5~20nm;N型氢化非晶硅层(N a-Si:H)的厚度为50~150nm,第二本征氢化非晶硅层(i a-Si:H)的厚度为5~20nm;P型氢化非晶硅层(P a-Si:H)的厚度为5~20nm;第一、第二透明导电薄膜层的厚度为50~100nm。
本发明的P型多晶硅衬底,其厚度为100~130um,电阻率为1~5Ω·cm,少子寿命1~100us。
所述的HIT太阳能电池的制备方法,该方法包括如下步骤:
1)清洗工艺
利用标准的RCA清洗工艺处理P型多晶硅衬底,去除P型多晶硅衬底表面的颗粒物、有机物以及金属杂质;
2)铝吸杂工艺
首先在经过清洗的P型多晶硅衬底任一面上蒸镀厚度为1~2μm的铝层,蒸铝面即为硅片的正面;然后对硅片进行退火处理,在氩气的气氛中由室温升高到700℃~800℃,保温1-3小时,然后退火降温到室温,升温速度与降温速度均为5-15℃/min;再将P型多晶硅衬底用质量分数为10%的NaOH溶液浸泡处理10~30分钟,腐蚀掉表面的铝层以及合金层;
3)PECVD工艺
采用平板式PECVD方法在P型多晶硅衬底正面依次沉积厚度为5~20nm的本征氢化非晶硅层(i a-Si:H)及厚度为50~150nm的N型氢化非晶硅层(N a-Si:H),然后再在P型多晶硅衬底背面依次沉积厚度为5~20nm的本征氢化非晶硅层(i a-Si:H)及厚度为5~20nm的P型氢化非晶硅层(P a-Si:H),得到多层结构;
4)磁控溅射工艺
采用磁控溅射方法在步骤3)得到的多层结构的两面分别沉积厚度为50~100nm的透明导电薄膜层;
5)丝网印刷工艺
采用丝网印刷技术在步骤4)得到的多层结构的两面分别印刷铝浆,膜厚在15~20μm,然后采用低温烧结制成电极,烧结温度为200℃~300℃,时间为2~4小时,形成铝栅电极,从而最终得到HIT太阳能电池。
本发明的有益效果是:
1一片厚度为300μm的两英寸双抛单晶硅片的价格在50元左右,而相同规格的多晶硅的价格仅为2元。因此,采用多晶硅取代传统常用的单晶硅作为衬底制备HIT太阳能电池,不仅减少了高成本的单晶硅的使用,大大降低了生产成本,且使得太阳能电池不再受限于圆形的单晶硅衬底,可有效提高太阳能电池组件的平面利用率。
2对多晶硅衬底进行铝吸杂工艺处理,可以有效的去除了多晶硅衬底体内的金属杂质以及缺陷等,可以提高少子扩散长度,有利于提高太阳能电池的转换效率。根据实例:利用ELYMAT(electrolytic mapping of transition metals)技术测得,吸杂前多晶硅片的少子扩散长度为31.18μm,经过铝吸杂后,少子扩散长度增加到98.77μm。与其他吸杂方法比较,铝吸杂反应迅速,效果明显,并且不含有像磷吸杂中的POCl3等有毒物质。
3采用本征氢化非晶硅层可以起到钝化多晶硅衬底表面的作用,降低界面态密度,使太阳能电池形成高质量的PN结,其中的氢离子可以降低缺陷态密度,中和多晶硅表面的悬挂键,提高电导率,从而增大开路电压。
附图说明:
图1是本发明的HIT太阳能电池的结构示意图。
图中:1是正面电极;2是透明导电薄膜层;3是n型氢化非晶硅层(N a-Si:H);4是正面的本征氢化非晶硅层(i a-Si:H);5是p型多晶硅衬底(P p-Si);6是背面的本征氢化非晶硅层(i a-Si:H);7是p型氢化非晶硅层(P a-Si:H);8是透明导电薄膜层;9是背面电极。
具体实施方式:
如图1所示,一种HIT太阳能电池结构,包括P型多晶硅片衬底5,在N型硅片衬底5的受光面上具有本征氢化非晶硅膜4,本征氢化非晶硅膜4上具有用于形成异质结的N型氢化非晶硅层3,在N型氢化非晶硅层3上具有透明导电薄膜层2,透明导电薄膜层2上具有正面电极1,透明导电膜为N型透明导电膜。本征氢化非晶硅膜4的厚度为5nm~20nm。
在P型多晶硅衬底5的背光面上具有本征氢化非晶硅层6,本征氢化非晶硅层6上具有P型氢化非晶硅层7,在P型氢化非晶硅层7上具有透明导电薄膜层8,在透明导电薄膜层8上具有背面电极9,本征氢化非晶硅层6的厚度为5nm~20nm。
实施例1:
所述的HIT太阳能电池结构的制备过程主要为:
1)清洗工艺
利用标准的RCA清洗工艺处理P型多晶硅衬底,去除P型多晶硅衬底表面的颗粒物、有机物以及金属杂质,本实验使用的多晶硅衬底,其厚度为117um,电阻率为2.5Ω·cm,少子寿命1.1us。清洗后利用ELYMAT技术测得的多晶硅片的少子扩散长度为31.18μm;
2)铝吸杂工艺
首先利用真空镀膜机采用热蒸发的方法在P型多晶硅衬底上任意一面蒸镀厚度为1.3μm的铝层(蒸铝面即为硅片的正面)。然后对硅片进行退火处理:在氩气的气氛中由室温升到800℃,然后保温两个小时后,退火降到室温,且使升温速度与降温速度均为5℃/min。最后将P型多晶硅衬底用质量分数为10%的NaOH溶液浸泡20分钟,腐蚀掉表面的铝层以及合金层。然后利用ELYMAT技术测得的硅片的少子扩散长度为98.77μm;
3)PECVD工艺
采用PECVD(Plasma Enhanced Chemical Vapor Deposition)方法在P型多晶硅衬底正面依次沉积厚度为10nm的本征氢化非晶硅层(i a-Si:H)及厚度为60nm的N型氢化非晶硅层(N a-Si:H),在P型多晶硅衬底背面依次沉积厚度为10nm的本征氢化非晶硅层(i a-Si:H)及厚度为20nm的P型氢化非晶硅层(P a-Si:H);
4)磁控溅射工艺
采用磁控溅射方法在步骤3)得到的多层结构的两面分别沉积厚度为80nm的透明导电薄膜;
5)丝网印刷工艺
采用丝网印刷技术在步骤4)得到的多层结构的两面分别印刷铝浆,膜厚在15μm,然后采用低温烧结制成电极,烧结温度为300℃,3小时,形成正面、背面铝栅电极(栅线间距3mm、宽度0.10~0.12mm),最后得到HIT太阳能电池。
表1:实施例1得到的HIT太阳能电池利用仪器(KEITHLEY-2611)在功率为100mV/cm2的白光照射下,测得的效率为18.5%,其主要参数如表所示:
面积 效率 开路电压 短路电流 串联电阻 并联电阻
12.6mm2 18.5% 679.4mV 38.45mA/cm2 2.55mΩ 345Ω
实施例2
本实施例其他步骤同实施例1,不同之处为步骤2)的铝吸杂工艺:
首先在经过清洗的P型多晶硅衬底任一面上蒸镀厚度为1~2μm的铝层,蒸铝面即为硅片的正面;然后对硅片进行退火处理,在氩气的气氛中由室温升高到700℃,保温3小时,然后退火降温到室温,升温速度与降温速度均为5℃/min;再将P型多晶硅衬底用质量分数为10%的NaOH溶液浸泡处理20分钟,腐蚀掉表面的铝层以及合金层。
得到的HIT太阳能电池利用仪器(KEITHLEY-2611)在功率为100mV/cm2的白光照射下,测得的效率为18.5%。
实施例3
本实施例其他步骤同实施例1,不同之处为步骤2)的铝吸杂工艺:
首先在经过清洗的P型多晶硅衬底任一面上蒸镀厚度为1~2μm的铝层,蒸铝面即为硅片的正面;然后对硅片进行退火处理,在氩气气氛中由室温升高到750℃,保温3小时,然后退火降温到室温,升温速度与降温速度均为10℃/min;再将P型多晶硅衬底用质量分数为10%的NaOH溶液浸泡处理20分钟,腐蚀掉表面的铝层以及合金层。电池性能同实施例2。
通过表1可以看出,本发明通过采用多晶硅片作为衬底,在电池效率基本达到国内先进水平的同时,由于成本大大降低(一片厚度为300μm的两英寸双抛单晶硅片的价格在50元左右,而相同规格的多晶硅的价格仅为2元),经济效益显著。
本发明未尽事宜为公知技术。

Claims (4)

1.一种HIT太阳能电池,其特征为该电池的组成包括P型多晶硅衬底(P p-Si),在P型多晶硅衬底正面依次沉积的第一本征氢化非晶硅层(i a-Si:H)、N型氢化非晶硅层(N a-Si:H)和第一透明导电薄膜层,透明导电薄膜层上面为正面电极;在P型多晶硅衬底背面依次沉积的本征氢化非晶硅层(i a-Si:H)、P型氢化非晶硅层(P a-Si:H)和第二透明导电薄膜层,第二透明导电薄膜层下面为背面电极;
所述的正面电极为铝栅电极;所述的背面电极为铝栅电极。
2.如权利要求1所述的HIT太阳能电池,其特征为所述的P型多晶硅衬底(P p-Si)的厚度为100~130um;第一本征氢化非晶硅层(i a-Si:H)的厚度为5~20nm;N型氢化非晶硅层(N a-Si:H)的厚度为50~150nm,第二本征氢化非晶硅层(i a-Si:H)的厚度为5~20nm;P型氢化非晶硅层(P a-Si:H)的厚度为5~20nm;第一、第二透明导电薄膜层的厚度为50~100nm,所述的铝栅电极,膜厚15~20μm,栅线间距3mm、宽度0.10~0.12mm。
3.如权利要求1所述的HIT太阳能电池,其特征为所述的P型多晶硅衬底,其厚度为100~130um,电阻率为1~5Ω·cm,少子寿命1~100us。
4.如权利要求1所述的HIT太阳能电池的制备方法,其特征为该方法包括如下步骤:
1)清洗工艺
利用标准的RCA清洗工艺处理P型多晶硅衬底,去除P型多晶硅衬底表面的颗粒物、有机物以及金属杂质;
2)铝吸杂工艺
首先在经过清洗的P型多晶硅衬底任一面上蒸镀厚度为1~2μm的铝层,蒸铝面即为硅片的正面;然后对硅片进行退火处理,在氩气的气氛中由室温升高到700℃~800℃,保温1-3小时,然后退火降温到室温,升温速度与降温速度均为5-15℃/min;再将P型多晶硅衬底用质量分数为10%的NaOH溶液浸泡处理10~30分钟,腐蚀掉表面的铝层以及合金层;
3)PECVD工艺
采用平板式PECVD方法在P型多晶硅衬底正面依次沉积厚度为5~20nm的本征氢化非晶硅层(i a-Si:H)及厚度为50~150nm的N型氢化非晶硅层(N a-Si:H),然后再在P型多晶硅衬底背面依次沉积厚度为5~20nm的本征氢化非晶硅层(i a-Si:H)及厚度为5~20nm的P型氢化非晶硅层(P a-Si:H),得到多层结构;
4)磁控溅射工艺
采用磁控溅射方法在步骤3)得到的多层结构的两面分别沉积厚度为50~100nm的透明导电薄膜层;
5)丝网印刷工艺
采用丝网印刷技术在步骤4)得到的多层结构的两面分别印刷铝浆,膜厚在15~20μm,然后采用低温烧结制成电极,烧结温度为200℃~300℃,时间为2~4小时,形成铝栅电极,从而最终得到HIT太阳能电池。
CN201410161505.6A 2014-04-22 2014-04-22 一种hit太阳能电池及其制备方法 Active CN103904151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410161505.6A CN103904151B (zh) 2014-04-22 2014-04-22 一种hit太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410161505.6A CN103904151B (zh) 2014-04-22 2014-04-22 一种hit太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN103904151A true CN103904151A (zh) 2014-07-02
CN103904151B CN103904151B (zh) 2016-06-01

Family

ID=50995390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410161505.6A Active CN103904151B (zh) 2014-04-22 2014-04-22 一种hit太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN103904151B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300026A (zh) * 2014-10-29 2015-01-21 高影 P型hit太阳能电池结构
CN104733557A (zh) * 2015-01-13 2015-06-24 福建铂阳精工设备有限公司 Hit太阳能电池及提高hit电池的短路电流密度的方法
CN105244442A (zh) * 2015-11-15 2016-01-13 河北工业大学 一种薄膜晶硅钙钛矿异质结太阳电池的制备方法
CN105428535A (zh) * 2015-11-15 2016-03-23 河北工业大学 薄膜晶硅钙钛矿异质结太阳电池的制备方法
CN105449103A (zh) * 2015-11-15 2016-03-30 河北工业大学 一种薄膜晶硅钙钛矿异质结太阳电池及其制备方法
CN105633125A (zh) * 2014-11-27 2016-06-01 株洲南车时代电气股份有限公司 半导体芯片台面结构及其保护方法
CN105932075A (zh) * 2016-05-12 2016-09-07 南昌大学 一种背结晶硅异质结太阳电池及其制备方法
RU2700046C1 (ru) * 2019-02-13 2019-09-12 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Фотопреобразователь с HIT структурой и технология его изготовления
CN112466989A (zh) * 2020-11-12 2021-03-09 晋能光伏技术有限责任公司 一种异质结太阳能电池的制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100186802A1 (en) * 2009-01-27 2010-07-29 Peter Borden Hit solar cell structure
CN103094423A (zh) * 2013-01-31 2013-05-08 英利集团有限公司 一种p型异质结太阳电池及其制作方法
WO2013106827A1 (en) * 2012-01-13 2013-07-18 Crystal Solar, Inc. Silicon heterojunction solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100186802A1 (en) * 2009-01-27 2010-07-29 Peter Borden Hit solar cell structure
WO2013106827A1 (en) * 2012-01-13 2013-07-18 Crystal Solar, Inc. Silicon heterojunction solar cells
CN103094423A (zh) * 2013-01-31 2013-05-08 英利集团有限公司 一种p型异质结太阳电池及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
史少飞: "HIT太阳能电池材料的制备与性能研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》, 15 October 2012 (2012-10-15) *
石湘波等: "铝吸杂对多晶硅太阳电池的影响", 《江南大学学报(自然科学版)》, vol. 5, no. 2, 30 April 2006 (2006-04-30) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300026A (zh) * 2014-10-29 2015-01-21 高影 P型hit太阳能电池结构
CN105633125A (zh) * 2014-11-27 2016-06-01 株洲南车时代电气股份有限公司 半导体芯片台面结构及其保护方法
CN104733557A (zh) * 2015-01-13 2015-06-24 福建铂阳精工设备有限公司 Hit太阳能电池及提高hit电池的短路电流密度的方法
CN105244442A (zh) * 2015-11-15 2016-01-13 河北工业大学 一种薄膜晶硅钙钛矿异质结太阳电池的制备方法
CN105428535A (zh) * 2015-11-15 2016-03-23 河北工业大学 薄膜晶硅钙钛矿异质结太阳电池的制备方法
CN105449103A (zh) * 2015-11-15 2016-03-30 河北工业大学 一种薄膜晶硅钙钛矿异质结太阳电池及其制备方法
CN105449103B (zh) * 2015-11-15 2018-06-22 河北工业大学 一种薄膜晶硅钙钛矿异质结太阳电池及其制备方法
CN105932075A (zh) * 2016-05-12 2016-09-07 南昌大学 一种背结晶硅异质结太阳电池及其制备方法
CN105932075B (zh) * 2016-05-12 2017-07-11 南昌大学 一种背结晶硅异质结太阳电池及其制备方法
RU2700046C1 (ru) * 2019-02-13 2019-09-12 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Фотопреобразователь с HIT структурой и технология его изготовления
CN112466989A (zh) * 2020-11-12 2021-03-09 晋能光伏技术有限责任公司 一种异质结太阳能电池的制备工艺

Also Published As

Publication number Publication date
CN103904151B (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
CN103904151A (zh) 一种hit太阳能电池及其制备方法
CN105118870A (zh) 一种制作背接触异质结单晶硅太阳能电池的方法
CN103199143B (zh) N型掺氢晶化硅钝化的异质结太阳能电池器件
CN103383975A (zh) 一种双面钝化高效异质结电池及其制作方法
CN101976710A (zh) 基于氢化微晶硅薄膜的晶体硅异质结太阳电池的制备方法
CN101840953B (zh) 一种制备表面混合调制晶硅太阳能电池的方法
CN107658366A (zh) 一种异质结电池的镀膜方法及pvd载板和镀膜装置
WO2022142343A1 (zh) 太阳能电池及其制备方法
CN103956391B (zh) 一种AZO/Si异质结太阳电池及其制备方法
CN204189776U (zh) 一种用于pvd溅射的载板
CN103985778B (zh) 具有选择性发射极的异质结太阳能电池及其制备方法
CN103137765A (zh) 一种铝诱导晶化多晶硅薄膜太阳能电池及制备方法
CN204946910U (zh) 一种背接触异质结单晶硅太阳能电池
CN102270668B (zh) 一种异质结太阳能电池及其制备方法
CN103730532A (zh) 掺氢晶化硅钝化的异质结太阳能电池
CN110085683A (zh) 无掺杂晶体硅异质结太阳能电池及其制备方法
CN103227247A (zh) 一种高效晶体硅异质结太阳能电池的制备方法
CN102751339A (zh) 异质结太阳能电池结构及其制作方法
CN101393942B (zh) 多晶硅-碳化硅叠层薄膜太阳能电池
CN102544230A (zh) 一种生长可变禁带宽度的Cd1-xZnxTe薄膜的方法
CN205564764U (zh) 一种背面钝化接触电池结构
CN209056506U (zh) 适合规模化量产的mwt异质结硅太阳电池
CN103000738A (zh) 一种机械叠层碲化镉/多晶硅太阳能电池
CN101707219B (zh) 本征隔离结构太阳能电池及其制造方法
CN210156405U (zh) 具有氢退火tco导电膜的异质结电池结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant