CN103890930A - 用于嵌入式dram的替代栅多栅晶体管 - Google Patents

用于嵌入式dram的替代栅多栅晶体管 Download PDF

Info

Publication number
CN103890930A
CN103890930A CN201280050984.3A CN201280050984A CN103890930A CN 103890930 A CN103890930 A CN 103890930A CN 201280050984 A CN201280050984 A CN 201280050984A CN 103890930 A CN103890930 A CN 103890930A
Authority
CN
China
Prior art keywords
transistor
trench capacitor
shows
planar
planar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280050984.3A
Other languages
English (en)
Other versions
CN103890930B (zh
Inventor
J·B·张
L·张
M·A·古罗恩
W·E·亨施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN103890930A publication Critical patent/CN103890930A/zh
Application granted granted Critical
Publication of CN103890930B publication Critical patent/CN103890930B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate
    • H10B12/0385Making a connection between the transistor and the capacitor, e.g. buried strap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/845Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body including field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/056Making the transistor the transistor being a FinFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/36DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being a FinFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

存储器基元、存储器基元阵列以及制造嵌入式DRAM中的具有多栅晶体管的存储器基元的方法,所述多栅晶体管例如是完全耗尽的finFET或纳米线晶体管。所述存储器基元包括沟槽电容器、非平面晶体管以及将所述沟槽电容器电耦接到所述非平面晶体管的自对准硅化物互连。

Description

用于嵌入式DRAM的替代栅多栅晶体管
技术领域
本发明涉及计算机存储器的制造。具体地,本发明涉及具有与常规平面SOI CMOS器件兼容的多栅晶体管的嵌入式DRAM的制造。
背景技术
嵌入式DRAM(“eDRAM”)是允许器件按比例缩小至45nm节点以及超过45nm节点的存储器技术。其密集程度比SRAM高大约三倍。此外,完全耗尽的(未掺杂沟道)多栅器件(FinFET、三栅和纳米线)允许CMOS器件继续按比例缩小经过22nm节点。这种器件结构提供了晶体管沟道与相邻基元(cell)的改善的静电屏蔽。这种改善的屏蔽可以降低泄漏并且改善保持时间。
发明内容
本发明的示例性实施例是一种形成存储器基元(memory cell)晶体管的方法。所述方法包括在衬底内形成沟槽电容器。所述方法还包括在所述衬底内形成非平面晶体管。所述方法进一步包括形成将所述沟槽电容器电耦接到所述非平面晶体管的自对准硅化物互连。
本发明的另一示例性实施例是一种存储器基元。所述存储器基元包括沟槽电容器、非平面晶体管以及将所述沟槽电容器电耦接到所述非平面晶体管的自对准硅化物互连。
本发明的又一示例性实施例是一种存储器阵列。所述存储器阵列包括多个DRAM存储器基元。每一个所述DRAM存储器基元包括沟槽电容器、非平面晶体管以及将所述沟槽电容器电耦接到所述非平面晶体管的自对准硅化物互连。所述存储器阵列还包括处理器。所述处理器和所述多个DRAM基元都形成在单片硅衬底中。
附图说明
在说明书的结论处的权利要求中特别指出并且清楚地要求保护被认为是本发明的主题。从以下结合附图给出的详细描述,本发明的前述及其它目的、特征和优点是显而易见的,在附图中:
图1A示出了作为本发明所预期的存储器阵列的一部分的存储器基元的示例性实施例。
图1B示出了用于对存储器基元进行存取的示例性晶体管栅极组件和沟道。
图2示出了本发明所预期的制造存储器基元的方法的示例性实施例。
图3A示出了根据本发明实施例、位于衬底上的绝缘层上方的绝缘体上硅层的平面图。
图3B示出了图3A的横截面图。
图3C示出了图3A的等距横截面图。
图4A示出了根据本发明实施例在SOI层上鳍(fin)硬掩膜的形成。
图4B示出了图4A的横截面图。
图4C示出了图4A的等距横截面图。
图5A示出了根据本发明实施例在鳍硬掩膜上衬垫层(pad layer)的形成。
图5B示出了图5A的横截面图。
图5C示出了图5A的等距横截面图。
图6A示出了根据本发明实施例的沟槽电容器和STI层的形成。
图6B示出了图6A的横截面图。
图6C示出了图6A的等距横截面图。
图6D示出了图6A的特写横截面图。
图7A示出了根据本发明实施例在衬垫层和STI层上方抗蚀剂层的形成。
图7B示出了图7A的横截面图。
图7C示出了图7A的等距横截面图。
图7D示出了图7A的特写横截面图。
图8示出了根据本发明实施例、若干层的部分去除以形成隔离沟槽。
图8B示出了图8A的横截面图。
图8C示出了图8A的等距横截面图。
图8D示出了图8A的特写横截面图。
图9A示出了根据本发明实施例在隔离沟槽中STI层的进一步形成。
图9B示出了图9A的横截面图。
图9C示出了图9A的等距横截面图。
图9D示出了图9A的特写横截面图。
图10A示出了根据本发明实施例在衬垫层和STI层上方伪栅极层的形成。
图10B示出了图10A的横截面图。
图10C示出了图10A的等距横截面图。
图10D示出了图10A的特写横截面图。
图11A示出了根据本发明实施例通过对伪栅极层的图案化形成伪栅极。
图11B示出了图11A的横截面图。
图11C示出了图11A的等距横截面图。
图11D示出了图11A的特写横截面图。
图12A示出了根据本发明实施例的自对准硅化物互连的形成。
图12B示出了图12A的横截面图。
图12C示出了图12A的等距横截面图。
图12D示出了图12A的特写横截面图。
图13A示出了根据本发明实施例的电介质层的沉积。
图13B示出了图13A的横截面图。
图13C示出了图13A的等距横截面图。
图13D示出了图13A的特写横截面图。
图14A示出了根据本发明实施例的伪栅极的去除以形成栅极沟槽。
图14B示出了图14A的横截面图。
图14C示出了图14A的等距横截面图。
图14D示出了图14A的特写横截面图。
图15A示出了根据本发明实施例在SOI层中晶体管沟道的蚀刻。
图15B示出了图15A的横截面图。
图15C示出了图15A的等距横截面图。
图15D示出了图15A的特写横截面图。
图16A示出了根据本发明实施例的侧壁间隔物(spacer)的形成。
图16B示出了图16A的横截面图。
图16C示出了图16A的等距横截面图。
图16D示出了图16A的特写横截面图。
图17A示出了根据本发明实施例的晶体管栅极组件的形成。
图17B示出了图17A的横截面图。
图17C示出了图17A的等距横截面图。
图18A示出了根据本发明实施例的晶体管栅极组件钝化层的形成。
图18B示出了图18A的横截面图。
图18C示出了图18A的等距横截面图。
图18D示出了图18A的特写横截面图。
图19A示出了根据本发明实施例的栅极接触的形成。
图19B示出了图19A的横截面图。
图20A示出了根据本发明实施例的存储器基元的示例性实施例的形成,所述存储器基元包括纳米线多栅器件。
图20B示出了图20A的横截面图。
具体实施方式
参考本发明的实施例描述本发明。贯穿本发明的说明书,参考图1-20。所述图包括伴有字母的数字,字母表示同一物体的不同透视图。除非另外注明,以下描述适用。标记有A的图示出平面图。标记有B的图示出横截面图。标记有C的图示出等距横截面图。标记有D的图示出特写横截面图。
如下文中详细讨论的,本发明的实施例包括存储器基元、存储器基元阵列以及制造嵌入式DRAM中的可以使用多栅晶体管的存储器基元的方法。
图1A-B示出了作为存储器阵列103的一部分的存储器基元102的示例性实施例。存储器阵列103可以包括多个存储器基元102和处理器。在一个实施例中,存储器基元102是DRAM存储器基元。处理器和所述多个存储器基元102可以都形成在同一单片硅衬底中。注意,即使以下描述提及了单个存储器基元,但是应当理解,该存储器基元可以是具有相似或相同存储器基元的存储器阵列103的一部分。
在本发明的一个实施例中,所述存储器基元包括沟槽电容器104、非平面晶体管106以及将沟槽电容器104电耦接到非平面晶体管106的自对准硅化物互连108。非平面晶体管106可以包括晶体管栅极组件110和晶体管沟道112。晶体管栅极组件110可以具有被耦接到晶体管沟道112的多个栅极表面114。在一个实施例中,非平面晶体管106是finFET器件。
图2示出了根据本发明的制造半导体结构的方法202的示例性实施例。在一个实施例中,方法202包括:在衬底内形成沟槽电容器的电容器形成步骤204,在衬底内形成非平面晶体管的晶体管形成步骤206,以及形成将沟槽电容器电耦接到非平面晶体管的自对准硅化物互连的硅化物形成步骤208。方法202还可以包括:在沟槽电容器上方形成浅沟槽隔离电介质的STI形成步骤210,以及形成在沟槽电容器上方经过(pass)的信号线的信号线形成步骤212。在信号线形成步骤212中,信号线可以通过在STI形成步骤210中形成的浅沟槽隔离电介质而与沟槽电容器分隔开。方法202进一步可以包括去除浅沟槽隔离电介质的一部分以露出沟槽电容器的暴露表面的去除步骤214。在一个实施例中,所述自对准硅化物互连至少部分地形成在所述沟槽电容器的暴露表面上。通过图3-20以及伴随它们的描述来详细解释方法202及其所有步骤。
图3A-C示出了衬底306上的绝缘体层304上方的绝缘体上硅(“SOI”)层302。SOI层302可以通过本发明所预期的SOI减薄工艺形成。本领域普通技术人员将认识到用于形成SOI层302的各种常规技术。一种形成SOI层302的示例性方法是对硅衬底进行氧化、之后使用稀释的氢氟酸进行湿法蚀刻。在一个实施例中,SOI层302的目标厚度为约25nm。
图4A-C示出了在SOI层302上形成鳍硬掩膜402。在一个实施例中,通过在SOI层302上沉积二氧化硅层、氮化硅层、氧化铪层、氧化铝层或其它适当的材料层,形成鳍硬掩膜402。在另一个实施例中,通过将最终的减薄氧化物留在适当的位置,形成鳍硬掩膜402。本领域普通技术人员将认识到用于界定鳍硬掩膜图案的各种光刻和蚀刻技术,例如反应离子蚀刻。
图5A-D示出了在鳍硬掩膜402上形成衬垫层502。在一个实施例中,通过沉积氮化硅层形成衬垫层502。可以通过化学机械抛光来平面化衬垫层502。衬垫层502可以形成为在下文中描述的浅沟槽隔离氧化物的形成期间保护SOI层302。衬垫层502可以形成为具有这样的厚度:在形成浅沟槽隔离氧化物之后剩余约40nm。
图6A-D示出了沟槽电容器104和STI层602的形成。图6A-D也示出了上述方法202中的电容器形成步骤204和STI形成步骤210的例子。在一个实施例中,沟槽电容器可以是使用eDRAM的加工标准形成的深沟槽电容器。浅沟槽隔离电介质可以形成在沟槽电容器104上方,形成顶部与衬垫层502共面的二氧化硅或其它适当材料的STI层602。沟槽电容器104可以包括本领域普通技术人员已知的n+多晶硅或其它适当的材料。在一个实施例中,STI层602和衬垫层502的厚度为60nm,并且硬掩膜层为20nm。沟槽电容器104可以形成为使得沟槽电容器104的顶部与SOI层302的顶部共面。
图7A-D示出了在衬垫层502和STI层602上方形成抗蚀剂层702。在一个实施例中,通过直接在鳍硬掩膜402以及部分STI层602二者上方直接形成抗蚀剂层702,进行有源区光刻。
图8A-D示出了部分地去除若干层以形成隔离沟槽802。在一个实施例中,进行反应离子蚀刻,去除未被抗蚀剂层保护的其它层的部分和抗蚀剂层502。可以去除衬垫层502、STI层602、深沟槽电容器104和SOI层302的未被保护的部分,向下直到绝缘层304,留下隔离沟槽802。
图9A-D示出了进一步在隔离沟槽中形成STI层602。STI层602可以由氧化物构成。本领域普通技术人员将认识到适用于浅沟槽隔离的各种材料。在一个实施例中,也使用化学机械抛光来形成与衬垫层502共面的STI层602,将这两个层的厚度减小到40nm。
图10A-D示出了在衬垫层502和STI层602上方形成牺牲或“伪”栅层1002。在一个实施例中,伪栅极层1002可以包括氮化硅。在另一个实施例中,伪栅极层可以包括多晶硅。伪栅极层1002的适当厚度可以是40nm,但是可以基于稍后形成的栅电极的期望高度选择该厚度。注意,原始厚度可以通过工艺流中的后续步骤改变,得到最终的期望厚度。
图11A-D示出了通过对伪栅极层1002进行图案化形成伪栅极1102。在一个实施例中,使用光刻和反应离子蚀刻来对伪栅极1102进行图案化。所述反应离子蚀刻可以相对于STI层602中的材料是选择性的,使得STI层602保持完整。
图12A-D示出了自对准硅化物互连108的形成。图12A-D还示出了上述方法202的去除步骤214和硅化物形成步骤208的例子。在一个实施例中,使用非光刻制造工艺形成自对准硅化物互连108。为了形成硅化物互连108,可以通过离子注入以及之后通过退火处理进行掺杂剂激活来进行注入。离子注入可以包括例如砷或磷作为离子源以形成N-fet器件。在一个实施例中,硅化物互连108可以是Co20%Si,或者能够经受得住逻辑中的最后栅集成方案所需的温度并且可以采取双硅化物工艺。
在一个实施例中,可以在硅化物预清洁之后形成硅化物互连108。在预清洁期间,可以去除浅沟槽隔离电介质层602的一部分以露出沟槽电容器104的暴露表面。自对准硅化物互连108可以至少部分地形成在通过浅沟槽隔离电介质层602的被部分地去除的部分而露出的沟槽电容器104的所述暴露表面上。
如下文中所示例的,自对准硅化物互连108可以作为替代栅(replacement gate)工艺流的一部分形成,在替代栅工艺流中在非平面晶体管处形成和去除伪栅极之后形成晶体管栅极叠层。在一个实施例中,硅化物互连的一部分可以形成升高的(raised)源极/漏极1202。
图13A-D示出了电介质层1302的沉积。电介质层1302可以由二氧化硅或者基于二氧化硅膜构成。适当的沉积工艺可以包括旋涂电介质材料、PECVD、CVD和ALD或者这些技术的一些组合。在一个实施例中,电介质层1302被回抛光以露出伪栅极1102的顶部。在所述工艺的该阶段,示例性厚度如下:鳍硬掩膜:80nm;鳍硬掩膜上方的伪栅极:80nm;STI层上方的伪栅极:40nm;以及STI层:从伪栅极下方的部分的40nm变化到与硅化物互连相邻的边缘上的30nm。
图14A-D示出了去除伪栅极1102以形成栅沟槽1402。可以使用湿法或干法化学腐蚀去除所述伪栅极。所述工艺可以相对于电介质层、STI电介质层和SOI层的材料是选择性的。在一个实施例中,伪栅极的去除露出了鳍硬掩膜402、部分SOI层以及部分STI层602。所述栅沟槽在鳍硬掩膜上方可以是80nm深,并且在STI层上方可以是40nm深。
图15A-D示出了在SOI层302中晶体管沟道112的蚀刻。晶体管沟道112可以是finFET器件的鳍。在一个实施例中,使用相对于鳍硬掩膜402的材料具有选择性的各向异性反应离子蚀刻完成蚀刻。在另一个实施例中,鳍反应离子蚀刻可以包括除去了部分鳍硬掩膜402的故意的BOX凹陷。在一个实施例中,鳍硬掩膜的新厚度为15nm。STI层的厚度也可以被凹陷到35nm。
图16A-D示出了通过在栅沟槽内的电介质层1302的壁上沉积薄的保形层(conformal layer)之后进行反应离子蚀刻,形成可选的侧壁间隔物1602。侧壁间隔物1602可以由诸如氮化硅、氮化硼或二氧化硅的适当的电介质形成。适当的沉积工艺可以包括LPCVD、RTCVD和ALD。在一个实施例中,所述蚀刻工艺可以是高度各向异性的,并且可以以充分的过蚀刻来进行,以从栅沟槽1402的底部去除所述侧壁间隔物材料。在所述工艺的该阶段,示例性厚度如下:晶体管沟道上方的栅沟槽:75nm;STI层上方的栅沟槽:40nm;硅化物互连上方的电介质层的部分:65nm;STI层上方的电介质层的部分:30nm;以及直接在电介质层下方的STI层的部分:25nm。
图17A-C示出了晶体管栅极组件110的形成。图17A-C也示出了上述方法202中的信号线形成步骤112的例子。在一个实施例中,用于一个存储器基元的晶体管栅极组件110也可以是在另一基元的沟槽电容器上方经过的信号线。所述信号线可以通过浅沟槽隔离电介质层602而与沟槽电容器104分隔开。在沉积晶体管栅极组件1102之前,可以使用湿法或干法预清洁来消除对晶体管沟道表面的损伤。在预清洁之后,可以将晶体管栅极组件材料沉积在栅极沟槽1402中。在一个实施例中,晶体管栅极组件110包括栅极电介质和栅电极。栅极电介质可以包括SiO2、SiOxNy、HfO2、HfOxNy、HfOxSiNy、Al2O3、ZrO2。栅电极可以包括一种或多种功函数设定材料和盖层。功函数设定材料可以包括TiN、TaN、La2O3、AlO、TaAlN、Al。盖层可以包括Ti、Al、TiAl合金、W或Ru。在沉积之后,可以去除存在于场中的额外材料。用于去除的适当技术可以包括干法蚀刻或者化学机械抛光。
图18A-D示出了晶体管栅极组件钝化层1802的形成。在一个实施例中,晶体管栅极组件钝化层1802是可选的。晶体管栅极组件钝化层1802可以沉积在晶体管栅极组件110上方。用于晶体管栅极组件钝化层1802的适当的电介质材料可以包括SiN、Al2O3或HfO2。可以使用化学机械抛光或者反应离子蚀刻工艺,从场中除去作为栅极叠层钝化层1802的一部分沉积的过量的电介质材料。在一个实施例中,在形成过程的该阶段,STI层为30nm,晶体管栅极组件在晶体管沟道上方的部分为60nm并且在另一存储器基元的STI层上方的部分为30nm,电介质层在STI层上方的部分上为25nm。
图19A-B示出了栅极接触1902的形成。可以通过光刻和反应离子蚀刻,并且之后进行金属沉积和场去除技术,形成栅极接触1902。在具有栅极组件钝化层的实施例中,可以使用无边界接触反应离子蚀刻,其中相对于Si、SiN和硅化物选择性地蚀刻氧化物。
图20A-B示出了包括纳米线多栅器件的存储器基元102的示例性实施例的形成。在这两幅图中,自上而下以时间顺序示出连续的步骤。图20A示出了形成纳米线时的存储器基元的三维视图。图20B示出了当形成纳米线时所述存储器基元的沿着晶体管沟道的宽度的横截面图。在一个实施例中,纳米线被形成为使得非平面晶体管106是纳米线多栅器件。纳米线多栅器件可以被形成为使得晶体管栅极组件110在与晶体管沟道的长度平行的晶体管沟道的表面114上包围晶体管沟道112。在本发明的一个实施例中,可以通过在晶体管栅极组件预清洁期间底切(undercut)晶体管沟道112,在可以形成晶体管栅极组件110的晶体管沟道下方产生区域2002,形成纳米线或全包围栅(GAA)多栅器件。如上所述,随后可以形成晶体管栅极组件、晶体管栅极组件钝化层和接触,以完成纳米线或全包围栅多栅器件的形成。
尽管已经描述了本发明的优选实施例,但是应当理解,现在以及将来,本领域技术人员可以进行落入后附权利要求的范围内的各种改进和增强。这些权利要求应当被解释为保持对被首次描述的本发明的适当保护。

Claims (20)

1.一种制造存储器基元晶体管的方法,所述方法包括:
在衬底内形成沟槽电容器;
在所述衬底内形成非平面晶体管;以及
形成将所述沟槽电容器电耦接到所述非平面晶体管的自对准硅化物互连。
2.根据权利要求1所述的方法,还包括:
在所述沟槽电容器上方形成浅沟槽隔离电介质;以及
形成在所述沟槽电容器上方经过的信号线,所述信号线通过所述浅沟槽隔离电介质而与所述沟槽电容器分隔开。
3.根据权利要求2所述的方法,还包括:
去除所述浅沟槽隔离电介质的一部分以露出所述沟槽电容器的暴露表面;
其中所述自对准硅化物互连至少部分地形成在所述沟槽电容器的所述暴露表面上。
4.根据权利要求1所述的方法,其中,所述非平面晶体管包括晶体管栅极组件和晶体管沟道,所述晶体管栅极组件具有耦接到所述晶体管沟道的多个栅极表面。
5.根据权利要求4所述的方法,其中,所述非平面晶体管是完全耗尽的finFET器件。
6.根据权利要求4所述的方法,其中,所述非平面晶体管是纳米线多栅器件,所述晶体管栅极组件在与所述晶体管沟道的长度平行的所述晶体管沟道的表面上包围所述晶体管沟道。
7.根据权利要求1所述的方法,其中,所述自对准硅化物互连作为替代栅工艺流的一部分而形成,在所述替代栅工艺流中在所述非平面晶体管处形成和去除伪栅极之后形成所述晶体管栅极。
8.根据权利要求1所述的方法,其中,使用非光刻制造工艺形成所述自对准硅化物互连。
9.一种存储器基元,包括:
沟槽电容器;
非平面晶体管;以及
自对准硅化物互连,其将所述沟槽电容器电耦接到所述非平面晶体管。
10.根据权利要求9所述的存储器基元,还包括:
浅沟槽隔离电介质,其被形成在所述沟槽电容器上方;以及
信号线,其在所述沟槽电容器上方经过,所述信号线通过所述浅沟槽隔离电介质而与所述沟槽电容器分隔开。
11.根据权利要求10所述的存储器基元,其中,所述自对准硅化物互连至少部分地形成在通过所述浅沟槽隔离电介质的被部分地去除的部分而露出的所述沟槽电容器的暴露表面上。
12.根据权利要求9所述的存储器基元,其中,所述非平面晶体管包括晶体管栅极组件和晶体管沟道,所述晶体管栅极组件具有耦接到所述晶体管沟道的多个栅极表面。
13.根据权利要求12所述的存储器基元,其中,所述非平面晶体管是完全耗尽的finFET器件。
14.根据权利要求12所述的存储器基元,其中,所述非平面晶体管是纳米线多栅器件,所述晶体管栅极组件在与所述晶体管沟道的长度平行的所述晶体管沟道的表面上包围所述晶体管沟道。
15.一种存储器阵列,包括:
多个DRAM存储器基元,每一个所述DRAM存储器基元包括:
沟槽电容器;
非平面晶体管;以及
自对准硅化物互连,其将所述沟槽电容器电耦接到所述非平面晶体管;以及
处理器,其中所述处理器和所述多个DRAM基元都形成在单片硅衬底中。
16.根据权利要求15所述的存储器阵列,其中,所述DRAM存储器基元还包括:
浅沟槽隔离电介质,其被形成在所述沟槽电容器上方;以及
信号线,其在所述沟槽电容器上方经过,所述信号线通过所述浅沟槽隔离电介质而与所述沟槽电容器分隔开,所述信号线被配置为承载来自所述多个DRAM存储器基元的电信号。
17.根据权利要求16所述的存储器阵列,其中,所述自对准硅化物互连至少部分地形成在通过所述浅沟槽隔离电介质的被部分地去除的部分而露出的所述沟槽电容器的暴露表面上。
18.根据权利要求15所述的存储器阵列,其中,所述非平面晶体管包括晶体管栅极组件和晶体管沟道,所述晶体管栅极组件具有耦接到所述晶体管沟道的多个栅极表面。
19.根据权利要求18所述的存储器阵列,其中,所述非平面晶体管是完全耗尽的finFET晶体管。
20.根据权利要求18所述的存储器阵列,其中,所述非平面晶体管是纳米线多栅器件,所述晶体管栅极组件包围在与所述晶体管沟道的长度平行的所述晶体管沟道上的表面。
CN201280050984.3A 2011-10-17 2012-10-06 用于嵌入式dram的替代栅多栅晶体管 Expired - Fee Related CN103890930B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/274,758 US9368502B2 (en) 2011-10-17 2011-10-17 Replacement gate multigate transistor for embedded DRAM
US13/274,758 2011-10-17
PCT/US2012/059154 WO2013059010A1 (en) 2011-10-17 2012-10-06 Replacement gate multigate transistor for embedded dram

Publications (2)

Publication Number Publication Date
CN103890930A true CN103890930A (zh) 2014-06-25
CN103890930B CN103890930B (zh) 2016-08-17

Family

ID=48085404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280050984.3A Expired - Fee Related CN103890930B (zh) 2011-10-17 2012-10-06 用于嵌入式dram的替代栅多栅晶体管

Country Status (4)

Country Link
US (2) US9368502B2 (zh)
CN (1) CN103890930B (zh)
DE (1) DE112012003882B4 (zh)
WO (1) WO2013059010A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024787A (zh) * 2015-03-25 2016-10-12 国际商业机器公司 半导体装置及其制造方法
CN108091654A (zh) * 2016-11-23 2018-05-29 格芯公司 用于垂直fet sram及逻辑单元微缩的金属层布线层级

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675373B1 (ko) * 2010-03-24 2016-11-11 삼성전자주식회사 반도체 소자 및 그 제조 방법
US8673729B1 (en) 2012-12-05 2014-03-18 International Business Machines Corporation finFET eDRAM strap connection structure
US9337200B2 (en) 2013-11-22 2016-05-10 Globalfoundries Inc. Dynamic random access memory cell employing trenches located between lengthwise edges of semiconductor fins
US9773869B2 (en) 2014-03-12 2017-09-26 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US9401311B2 (en) 2014-05-02 2016-07-26 International Business Machines Corporation Self aligned structure and method for high-K metal gate work function tuning
US9577062B2 (en) 2014-10-27 2017-02-21 International Business Machines Corporation Dual metal gate electrode for reducing threshold voltage
US9224740B1 (en) * 2014-12-11 2015-12-29 Globalfoundries Inc. High-K dielectric structure for deep trench isolation
US9570449B2 (en) 2015-01-07 2017-02-14 International Business Machines Corporation Metal strap for DRAM/FinFET combination
US9496338B2 (en) 2015-03-17 2016-11-15 International Business Machines Corporation Wire-last gate-all-around nanowire FET
US9362407B1 (en) 2015-03-27 2016-06-07 International Business Machines Corporation Symmetrical extension junction formation with low-K spacer and dual epitaxial process in FinFET device
US9748250B2 (en) 2015-06-08 2017-08-29 International Business Machines Corporation Deep trench sidewall etch stop
US9461052B1 (en) 2015-06-15 2016-10-04 International Business Machines Corporation Embedded dynamic random access memory field effect transistor device
US9905671B2 (en) 2015-08-19 2018-02-27 International Business Machines Corporation Forming a gate contact in the active area
US9490255B1 (en) 2015-12-01 2016-11-08 International Business Machines Corporation Complementary metal oxide semiconductor replacement gate high-k metal gate devices with work function adjustments
US20180350607A1 (en) * 2017-06-01 2018-12-06 Globalfoundries Inc. Semiconductor structure
KR102291559B1 (ko) 2017-06-09 2021-08-18 삼성전자주식회사 반도체 장치
KR102343202B1 (ko) 2017-06-20 2021-12-23 삼성전자주식회사 반도체 장치 및 이의 제조 방법
US10134739B1 (en) 2017-07-27 2018-11-20 Globalfoundries Inc. Memory array with buried bitlines below vertical field effect transistors of memory cells and a method of forming the memory array
US10937789B2 (en) 2018-06-07 2021-03-02 International Business Machines Corporation Nanosheet eDRAM

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983544A (en) * 1986-10-20 1991-01-08 International Business Machines Corporation Silicide bridge contact process
CN1212454A (zh) * 1997-09-22 1999-03-31 日本电气株式会社 高可靠性的槽式电容器型存储器单元
US6348385B1 (en) * 2000-11-30 2002-02-19 Chartered Semiconductor Manufacturing Ltd. Method for a short channel CMOS transistor with small overlay capacitance using in-situ doped spacers with a low dielectric constant
CN1512589A (zh) * 2002-12-27 2004-07-14 ��ʽ���綫֥ 半导体器件、动态型半导体存储器件及半导体器件的制法
US20060071260A1 (en) * 2004-09-27 2006-04-06 Hiroyuki Yamasaki Semiconductor device and method of manufacturing the same
US20080108199A1 (en) * 2004-06-29 2008-05-08 Schwerin Ulrike G Method of forming an integrated circuit including a transistor
CN101375398A (zh) * 2006-01-25 2009-02-25 Nxp股份有限公司 纳米线隧穿晶体管

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410399B1 (en) * 2000-06-29 2002-06-25 International Business Machines Corporation Process to lower strap, wordline and bitline contact resistance in trench-based DRAMS by silicidization
JP3660650B2 (ja) 2002-06-13 2005-06-15 株式会社東芝 半導体装置の製造方法
US6720619B1 (en) * 2002-12-13 2004-04-13 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator chip incorporating partially-depleted, fully-depleted, and multiple-gate devices
US7154118B2 (en) * 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7319252B2 (en) * 2004-06-28 2008-01-15 Intel Corporation Methods for forming semiconductor wires and resulting devices
US7241655B2 (en) * 2004-08-30 2007-07-10 Micron Technology, Inc. Method of fabricating a vertical wrap-around-gate field-effect-transistor for high density, low voltage logic and memory array
US7153737B2 (en) 2005-01-17 2006-12-26 International Business Machines Corporation Self-aligned, silicided, trench-based, DRAM/EDRAM processes with improved retention
US7800184B2 (en) * 2006-01-09 2010-09-21 International Business Machines Corporation Integrated circuit structures with silicon germanium film incorporated as local interconnect and/or contact
US20080048186A1 (en) 2006-03-30 2008-02-28 International Business Machines Corporation Design Structures Incorporating Semiconductor Device Structures with Self-Aligned Doped Regions
US7678648B2 (en) 2006-07-14 2010-03-16 Micron Technology, Inc. Subresolution silicon features and methods for forming the same
US7709312B2 (en) * 2006-09-29 2010-05-04 Intel Corporation Methods for inducing strain in non-planar transistor structures
US7737482B2 (en) 2006-10-05 2010-06-15 International Business Machines Corporation Self-aligned strap for embedded trench memory on hybrid orientation substrate
US7928426B2 (en) * 2007-03-27 2011-04-19 Intel Corporation Forming a non-planar transistor having a quantum well channel
US7923337B2 (en) 2007-06-20 2011-04-12 International Business Machines Corporation Fin field effect transistor devices with self-aligned source and drain regions
US7534675B2 (en) 2007-09-05 2009-05-19 International Business Machiens Corporation Techniques for fabricating nanowire field-effect transistors
US7985633B2 (en) * 2007-10-30 2011-07-26 International Business Machines Corporation Embedded DRAM integrated circuits with extremely thin silicon-on-insulator pass transistors
US20090146194A1 (en) 2007-12-05 2009-06-11 Ecole Polytechnique Federale De Lausanne (Epfl) Semiconductor device and method of manufacturing a semiconductor device
US20090184357A1 (en) * 2008-01-18 2009-07-23 Qimonda Ag Soi based integrated circuit and method for manufacturing
US8008160B2 (en) 2008-01-21 2011-08-30 International Business Machines Corporation Method and structure for forming trench DRAM with asymmetric strap
US7749835B2 (en) 2008-03-14 2010-07-06 International Business Machines Corporation Trench memory with self-aligned strap formed by self-limiting process
US7939876B2 (en) * 2008-04-09 2011-05-10 International Business Machines Corporation Metallized conductive strap spacer for SOI deep trench capacitor
US8227310B2 (en) * 2008-08-06 2012-07-24 International Business Machines Corporation Integrated circuits comprising an active transistor electrically connected to a trench capacitor by an overlying contact and methods of making
US7777282B2 (en) 2008-08-13 2010-08-17 Intel Corporation Self-aligned tunneling pocket in field-effect transistors and processes to form same
US8248152B2 (en) * 2009-02-25 2012-08-21 International Business Machines Corporation Switched capacitor voltage converters
US8361870B2 (en) * 2010-07-26 2013-01-29 Globalfoundries Inc. Self-aligned silicidation for replacement gate process
CN101996999B (zh) * 2010-08-24 2012-06-20 中国科学院上海微系统与信息技术研究所 一种具有扩展型沟槽的dram结构及其制作方法
US8802524B2 (en) * 2011-03-22 2014-08-12 United Microelectronics Corp. Method of manufacturing semiconductor device having metal gates
US8278184B1 (en) * 2011-11-02 2012-10-02 United Microelectronics Corp. Fabrication method of a non-planar transistor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983544A (en) * 1986-10-20 1991-01-08 International Business Machines Corporation Silicide bridge contact process
CN1212454A (zh) * 1997-09-22 1999-03-31 日本电气株式会社 高可靠性的槽式电容器型存储器单元
US6348385B1 (en) * 2000-11-30 2002-02-19 Chartered Semiconductor Manufacturing Ltd. Method for a short channel CMOS transistor with small overlay capacitance using in-situ doped spacers with a low dielectric constant
CN1512589A (zh) * 2002-12-27 2004-07-14 ��ʽ���綫֥ 半导体器件、动态型半导体存储器件及半导体器件的制法
US20080108199A1 (en) * 2004-06-29 2008-05-08 Schwerin Ulrike G Method of forming an integrated circuit including a transistor
US20060071260A1 (en) * 2004-09-27 2006-04-06 Hiroyuki Yamasaki Semiconductor device and method of manufacturing the same
CN101375398A (zh) * 2006-01-25 2009-02-25 Nxp股份有限公司 纳米线隧穿晶体管

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024787A (zh) * 2015-03-25 2016-10-12 国际商业机器公司 半导体装置及其制造方法
CN106024787B (zh) * 2015-03-25 2018-11-30 国际商业机器公司 半导体装置及其制造方法
CN108091654A (zh) * 2016-11-23 2018-05-29 格芯公司 用于垂直fet sram及逻辑单元微缩的金属层布线层级
CN108091654B (zh) * 2016-11-23 2021-10-01 格芯(美国)集成电路科技有限公司 用于垂直fet sram及逻辑单元微缩的金属层布线层级

Also Published As

Publication number Publication date
US9368502B2 (en) 2016-06-14
CN103890930B (zh) 2016-08-17
US20130092992A1 (en) 2013-04-18
DE112012003882T5 (de) 2014-07-10
US20160379986A1 (en) 2016-12-29
DE112012003882B4 (de) 2018-02-01
WO2013059010A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
CN103890930A (zh) 用于嵌入式dram的替代栅多栅晶体管
US9780208B1 (en) Method and structure of forming self-aligned RMG gate for VFET
US10367069B2 (en) Fabrication of vertical field effect transistor structure with controlled gate length
US10991795B2 (en) Semiconductor device and manufacturing method thereof
US9754842B2 (en) FinFET with dummy gate on non-recessed shallow trench isolation (STI)
US10854602B2 (en) FinFET device and method for fabricating the same
CN103177950B (zh) 制造鳍器件的结构和方法
US9711657B2 (en) Silicide process using OD spacers
US9502408B2 (en) FinFET device including fins having a smaller thickness in a channel region, and a method of manufacturing same
US20170077228A1 (en) Finfet device and method for fabricating the same
US8883623B2 (en) Facilitating gate height uniformity and inter-layer dielectric protection
CN108172580A (zh) 半导体器件及其制造方法
US10164097B2 (en) Semiconductor device and manufacturing method thereof
CN103165428A (zh) 制作半导体器件的方法
US20160086952A1 (en) Preventing epi damage for cap nitride strip scheme in a fin-shaped field effect transistor (finfet) device
US10079242B2 (en) Logic and flash field-effect transistors
CN105097516B (zh) 一种FinFET器件及其制造方法、电子装置
US9548249B2 (en) Methods of performing fin cut etch processes for FinFET semiconductor devices and the resulting devices
CN103855026A (zh) FinFET及其制造方法
US9455135B2 (en) Method for fabricating semiconductor device
CN105244276A (zh) 一种FinFET及其制造方法、电子装置
CN203038895U (zh) 一种半导体结构
US20190287861A1 (en) Substrate with a fin region comprising a stepped height structure
CN106952813A (zh) 一种半导体器件及其制造方法、电子装置
CN103855027A (zh) FinFET及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171031

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171031

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20191006

CF01 Termination of patent right due to non-payment of annual fee