CN103887233B - 集成电路用低介电常数薄膜层的制备工艺 - Google Patents

集成电路用低介电常数薄膜层的制备工艺 Download PDF

Info

Publication number
CN103887233B
CN103887233B CN201410136480.4A CN201410136480A CN103887233B CN 103887233 B CN103887233 B CN 103887233B CN 201410136480 A CN201410136480 A CN 201410136480A CN 103887233 B CN103887233 B CN 103887233B
Authority
CN
China
Prior art keywords
heater
pressure
dielectric constant
thin film
low dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410136480.4A
Other languages
English (en)
Other versions
CN103887233A (zh
Inventor
孙旭辉
夏雨健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongxin Jianhai Semiconductor Technology Anhui Co ltd
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201410136480.4A priority Critical patent/CN103887233B/zh
Priority to PCT/CN2014/080502 priority patent/WO2015154337A1/zh
Priority to US15/303,380 priority patent/US10153154B2/en
Publication of CN103887233A publication Critical patent/CN103887233A/zh
Application granted granted Critical
Publication of CN103887233B publication Critical patent/CN103887233B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1005Formation and after-treatment of dielectrics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开一种集成电路用低介电常数薄膜层的制备工艺,包括:抽除炉体内气体;当炉体内真空度小于10‑3Pa时,启动13.36MHz射频电源和匹配器;将用于排净炉体内残存气体的排气氮气从第三进气管依次经过第二耐压混气罐、第二喷嘴送入炉体内;将八甲基环四硅氧烷、环己烷混合均匀并注入耐压不锈钢釜内,将鼓泡氮气、惰性气体分别从第一进气管、第二进气管注入并依次经过第一耐压混气罐、耐压不锈钢釜、第一喷嘴送入炉体内;沉积结束后,将已沉积的薄膜层转移至炉体的加热温区内进行退火处理后,从而获得低介电常数薄膜层。本发明实现了便捷精确调控薄膜介电常数值并获得了低介电常数值的薄膜层,此薄膜层化学成分更均匀,具有较好的热稳定性、硬度,提高了薄膜的平整度。

Description

集成电路用低介电常数薄膜层的制备工艺
技术领域
本发明涉及一种集成电路用低介电常数薄膜层的制备工艺,属于半导体技术领域。
背景技术
在集成电路内部,各个器件间的链接主要是靠金属导线。随着集成电路技术的发展,芯片中互联线密度不断增加,互连线的宽度和间距不断减小,由此产生的互联电阻(R)和电容(C)所产生的寄生效应越来越明显。为了降低互联RC延迟,提升芯片性能,具有低介电常数(k)的材料不断被提出和采用,并成为主要发展趋势。
用于制备低介电常数薄膜层的方法通常有等离子体增强化学气相沉积(PECVD)和旋涂(spin-caoting)两种方法。其中,等离子体增强化学气相沉积由于具有薄膜均匀,成本低等特点,被广泛应用于半导体工业中。
在众多的用于制备低介电常数的材料中,有机硅烷或有机硅氧烷由于其化学合成简单,成本较低,相较于气体易于储存运输,被广泛采用作为制备低介电常数材料的液体源,用该种液体源所制备的薄膜材料的化学组成可简要表示为SiCOH,分子间以硅氧键为主相连形成大规模的笼状结构。但普通的单一液体源难以便捷精确地调控其介电常数值,并且合成高碳硅比的液体源具有一定的困难,故大规模生产仍具有一定的困难。
发明内容
本发明目的是提供一种集成电路用低介电常数薄膜层的制备工艺,该制备方法实现了便捷精确调控薄膜介电常数值并获得了低介电常数值的薄膜层,此薄膜层化学成分更均匀,具有较好的热稳定性、硬度,提高了薄膜的平整度。
为达到上述目的,本发明采用的技术方案是:一种集成电路用低介电常数薄膜层的制备工艺,所述制备方法基于一沉积装置,所述沉积装置包括两端密封安装有端盖的炉体、位于炉体一侧的液体源喷射机构,所述炉体前半段缠绕有感应线圈,此感应线圈依次连接到13.36MHz射频电源和匹配器,所述液体源喷射机构包括耐压不锈钢釜、第一耐压混气罐和第二耐压混气罐,此第一耐压混气罐一端连接有均安装第一质量流量计的第一进气管、第二进气管,第一耐压混气罐另一端与耐压不锈钢釜一端通过安装有顶针阀的管路连接,耐压不锈钢釜另一端通过安装有顶针阀、第一质量流量计的管路连接到第一喷嘴;所述第二耐压混气罐一端连接有均安装第二质量流量计的第三进气管,所述第二耐压混气罐另一端连接到第二喷嘴,所述第一喷嘴、第二喷嘴密封地插入所述炉体一端的端盖从而嵌入炉体内;
一真空泵位于炉体另一侧,连接所述真空泵一端的管路密封地插入炉体另一端的端盖内,一手动挡板阀、真空计安装于端盖和真空泵之间的管路上;
包括以下步骤:
步骤一、关闭顶针阀和第一、第二质量流量计后,打开手动挡板阀和真空泵,抽除炉体内气体;
步骤二、当炉体内真空度小于10-3Pa时,启动13.36MHz射频电源和匹配器;
步骤三、开启第二质量流量计后,将用于排净炉体内残存气体的排气氮气或者惰性气体从第三进气管依次经过第二耐压混气罐、第二喷嘴送入炉体内;
步骤四、将八甲基环四硅氧烷、环己烷混合均匀并注入所述耐压不锈钢釜内,将鼓泡气体分别从第一进气管、第二进气管注入并依次经过第一耐压混气罐、耐压不锈钢釜、第一喷嘴送入炉体内,从而将八甲基环四硅氧烷、环己烷带入炉体内,八甲基环四硅氧烷、环己烷、鼓泡气体在等离子条件下在基底表面沉积一薄膜层;
步骤五、沉积结束后,关闭13.36MHz射频电源、匹配器、顶针阀和第一、第二质量流量计后,关闭手动挡板阀,并对炉体进行放气,待炉体内压力恢复至大气压时,打开真空泵一侧端盖,将已沉积的薄膜层转移至炉体的加热温区内,关闭端盖,打开手动挡板阀进行抽真空处理,当炉体内真空度小于10-3Pa时,将已沉积的薄膜层转移至炉体的加热温区内,加热至300℃~800℃保温进行退火处理后,退火的条件为真空无气体保护,从而获得所述低介电常数薄膜层。
上述技术方案中进一步改进的方案如下:
1. 上述方案中,一尾气净化器安装于端盖和真空泵之间。
2. 上述方案中,所述步骤四中鼓泡气体的流量为0.1sccm~1000sccm。
3. 上述方案中,所述步骤四中鼓泡气体为鼓泡氮气或者惰性气体,此惰性气体为氩气、氦气和氖气中的一种。
4. 上述方案中,所述步骤五中13.36MHz射频电源、匹配器的功率为25W~300W,沉积时间为30秒~1小时。
5. 上述方案中,所述步骤三中排气氮气或者惰性气体的流量为2~5sccm,通气时间为10分钟。
由于上述技术方案运用,本发明与现有技术相比具有下列优点和效果:
本发明集成电路用低介电常数薄膜层的制备工艺,其实现了便捷精确调控薄膜介电常数值并获得了低介电常数值的薄膜层,此薄膜层化学成分更均匀,具有较好的热稳定性、硬度,提高了薄膜的平整度;其次,其已沉积的薄膜层加热至300℃~800℃保温进行退火处理后,退火的条件为真空无气体保护,由于隔绝了大气的影响,使样品相对于在大气中退火有明显的重复性的提高,也已于控制,同时由于不引入保护气流,避免了样品被吹翻,同时也避免了样品表面存在湍流,因此样品表面气体氛围较为均匀;同时样品表面温度更加接近设定温度,因而具有更好的均匀性与可靠性。
附图说明
附图1为本发明制备方法基于的沉积装置结构示意图。
以上附图中:1、炉体;2、端盖;3、液体源喷射机构;4、感应线圈;5、13.36MHz射频电源;6、匹配器;7、耐压不锈钢釜;8、第一耐压混气罐;9、第二耐压混气罐;101、第一质量流量计;102、第二质量流量计;111、第一进气管;112、第二进气管;12、顶针阀;13、第一喷嘴;141、第三进气管;15、第二喷嘴;16、尾气净化器;17、真空泵;18、真空计;19、手动挡板阀。
具体实施方式
下面结合实施例对本发明作进一步描述:
实施例1~3:一种集成电路用低介电常数薄膜层的制备工艺,所述制备方法基于一沉积装置,所述沉积装置包括两端密封安装有端盖2的炉体1、位于炉体1一侧的液体源喷射机构3,所述炉体1前半段缠绕有感应线圈4,此感应线圈4依次连接到13.36MHz射频电源5和匹配器6,所述液体源喷射机构3包括耐压不锈钢釜7、第一耐压混气罐8和第二耐压混气罐9,此第一耐压混气罐8一端连接有均安装第一质量流量计101的第一进气管111、第二进气管112,第一耐压混气罐8另一端与耐压不锈钢釜7一端通过安装有顶针阀12的管路连接,耐压不锈钢釜7另一端通过安装有顶针阀12、第一质量流量计101的管路连接到第一喷嘴13;所述第二耐压混气罐9一端连接有均安装第二质量流量计102的第三进气管141,所述第二耐压混气罐9另一端连接到第二喷嘴15,所述第一喷嘴13、第二喷嘴15密封地插入所述炉体一端的端盖从而嵌入炉体内;
一真空泵17位于炉体1另一侧,连接所述真空泵17一端的管路密封地插入炉体1另一端的端盖2内,一手动挡板阀19、真空计18安装于端盖2和真空泵17之间的管路上;
包括以下步骤:
步骤一、关闭顶针阀12和第一、第二质量流量计101、102后,打开手动挡板阀19和真空泵17,抽除炉体1内气体;
步骤二、当炉体1内真空度小于10-3Pa时,启动13.36MHz射频电源5和匹配器6;
步骤三、开启第二质量流量计102后,将用于排净炉体内残存气体的排气氮气或者惰性气体从第三进气管141依次经过第二耐压混气罐9、第二喷嘴15送入炉体1内;此气体在随后过程中不关闭,仅根据需要调节流量:
步骤四、将八甲基环四硅氧烷、环己烷混合均匀并注入所述耐压不锈钢釜7内,将鼓泡气体分别从第一进气管111、第二进气管112注入并依次经过第一耐压混气罐8、耐压不锈钢釜7、第一喷嘴13送入炉体1内,从而将八甲基环四硅氧烷、环己烷带入炉体1内,八甲基环四硅氧烷、环己烷、鼓泡气体在等离子条件下在基底表面沉积一薄膜层;
步骤五、沉积结束后,关闭13.36MHz射频电源5、匹配器6、顶针阀12和第一、第二质量流量计101、102后,关闭手动挡板阀19,并对炉体1进行放气,待炉体1内压力恢复至大气压时,打开真空泵17一侧端盖,将已沉积的薄膜层转移至炉体1的加热温区内,关闭端盖,打开手动挡板阀进行抽真空处理,当炉体1内真空度小于10-3Pa时,将已沉积的薄膜层转移至炉体1的加热温区内,加热至300℃~800℃保温进行退火处理后,退火的条件为真空无气体保护,从而获得所述低介电常数薄膜层。
一尾气净化器16安装于端盖2和真空泵17之间。
上述步骤四中鼓泡气体的流量为0.1sccm~1000sccm。
上述步骤四中鼓泡气体为鼓泡氮气或者惰性气体,此惰性气体为氩气、氦气和氖气中的一种。
上述步骤五中13.36MHz射频电源5、匹配器6的功率为25W~300W,沉积时间为30秒~1小时。
上述步骤三中排气氮气或者惰性气体的流量为2~5sccm,通气时间为10分钟。
实施例1:
实施例2:
实施例3:
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (3)

1.一种集成电路用低介电常数薄膜层的制备工艺,所述制备工艺基于一沉积装置,其特征在于:所述沉积装置包括两端密封安装有端盖(2)的炉体(1)、位于炉体(1)一侧的液体源喷射机构(3),所述炉体(1)前半段缠绕有感应线圈(4),此感应线圈(4)依次连接到13.36MHz射频电源(5)和匹配器(6),所述液体源喷射机构(3)包括耐压不锈钢釜(7)、第一耐压混气罐(8)和第二耐压混气罐(9),此第一耐压混气罐(8)一端连接有均安装第一质量流量计(101)的第一进气管(111)、第二进气管(112),第一耐压混气罐(8)另一端与耐压不锈钢釜(7)一端通过安装有顶针阀(12)的管路连接,耐压不锈钢釜(7)另一端通过安装有顶针阀(12)、第一质量流量计(101)的管路连接到第一喷嘴(13);所述第二耐压混气罐(9)一端连接有均安装第二质量流量计(102)的第三进气管(141),所述第二耐压混气罐(9)另一端连接到第二喷嘴(15),所述第一喷嘴(13)、第二喷嘴(15)密封地插入所述炉体一端的端盖从而嵌入炉体内;
一真空泵(17)位于炉体(1)另一侧,连接所述真空泵(17)一端的管路密封地插入炉体(1)另一端的端盖(2)内,一手动挡板阀(19)、真空计(18)安装于真空泵侧端盖(2)和真空泵(17)之间的管路上;
包括以下步骤:
步骤一、关闭顶针阀(12)和第一、第二质量流量计(101、102)后,打开手动挡板阀(19)和真空泵(17),抽除炉体(1)内气体;
步骤二、当炉体(1)内真空度小于10-3Pa时,启动13.36MHz射频电源(5)和匹配器(6);
步骤三、开启第二质量流量计(102)后,将用于排净炉体内残存气体的排气氮气或者惰性气体从第三进气管(141)依次经过第二耐压混气罐(9)、第二喷嘴(15)送入炉体(1)内;
步骤四、将八甲基环四硅氧烷、环己烷混合均匀并注入所述耐压不锈钢釜(7)内,将鼓泡气体分别从第一进气管(111)、第二进气管(112)注入并依次经过第一耐压混气罐(8)、耐压不锈钢釜(7)、第一喷嘴(13)送入炉体(1)内,从而将八甲基环四硅氧烷、环己烷带入炉体(1)内,八甲基环四硅氧烷、环己烷、鼓泡气体在等离子条件下在基底表面沉积一薄膜层;
步骤五、沉积结束后,关闭13.36MHz射频电源(5)、匹配器(6)、顶针阀(12)和第一、第二质量流量计(101、102)后,关闭手动挡板阀(19),并对炉体(1)进行放气,待炉体(1)内压力恢复至大气压时,打开真空泵(17)一侧端盖,将已沉积的薄膜层转移至炉体(1)的加热温区内,关闭端盖,打开手动挡板阀进行抽真空处理,当炉体(1)内真空度小于10-3Pa时,加热至300℃~800℃保温进行退火处理后,退火的条件为真空无气体保护,从而获得所述低介电常数薄膜层。
2.根据权利要求1所述的集成电路用低介电常数薄膜层的制备工艺,其特征在于:所述步骤四中鼓泡气体的流量为0.1sccm~1000sccm。
3.根据权利要求1所述的集成电路用低介电常数薄膜层的制备工艺,其特征在于:所述步骤四中鼓泡气体为鼓泡氮气或者惰性气体,此惰性气体为氩气、氦气和氖气中的一种。
CN201410136480.4A 2014-04-08 2014-04-08 集成电路用低介电常数薄膜层的制备工艺 Active CN103887233B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410136480.4A CN103887233B (zh) 2014-04-08 2014-04-08 集成电路用低介电常数薄膜层的制备工艺
PCT/CN2014/080502 WO2015154337A1 (zh) 2014-04-08 2014-06-23 集成电路用低介电常数薄膜层的制备工艺
US15/303,380 US10153154B2 (en) 2014-04-08 2014-06-23 Process of preparing low dielectric constant thin film layer used in integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410136480.4A CN103887233B (zh) 2014-04-08 2014-04-08 集成电路用低介电常数薄膜层的制备工艺

Publications (2)

Publication Number Publication Date
CN103887233A CN103887233A (zh) 2014-06-25
CN103887233B true CN103887233B (zh) 2017-05-17

Family

ID=50956066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410136480.4A Active CN103887233B (zh) 2014-04-08 2014-04-08 集成电路用低介电常数薄膜层的制备工艺

Country Status (3)

Country Link
US (1) US10153154B2 (zh)
CN (1) CN103887233B (zh)
WO (1) WO2015154337A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392957A (zh) * 2014-10-30 2015-03-04 苏州大学 低介电常数薄膜层的制备方法
US10638555B2 (en) * 2016-06-13 2020-04-28 Hydra Heating Industries, LLC Fluid transport using inductive heating
CN113451122A (zh) * 2020-03-27 2021-09-28 江苏鲁汶仪器有限公司 一种在iii-v衬底上沉积高粘附性薄膜的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102204415A (zh) * 2008-05-09 2011-09-28 应用材料股份有限公司 用于具流动性的介电质的制造设备及工艺
CN103688338A (zh) * 2011-08-01 2014-03-26 应用材料公司 用于处理晶片及清洁腔室的感应等离子体源

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223048A (en) * 1978-08-07 1980-09-16 Pacific Western Systems Plasma enhanced chemical vapor processing of semiconductive wafers
US6991959B2 (en) * 2002-10-10 2006-01-31 Asm Japan K.K. Method of manufacturing silicon carbide film
US6914014B2 (en) * 2003-01-13 2005-07-05 Applied Materials, Inc. Method for curing low dielectric constant film using direct current bias
US8513448B2 (en) * 2005-01-31 2013-08-20 Tosoh Corporation Cyclic siloxane compound, a material for forming Si-containing film, and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102204415A (zh) * 2008-05-09 2011-09-28 应用材料股份有限公司 用于具流动性的介电质的制造设备及工艺
CN103688338A (zh) * 2011-08-01 2014-03-26 应用材料公司 用于处理晶片及清洁腔室的感应等离子体源

Also Published As

Publication number Publication date
WO2015154337A1 (zh) 2015-10-15
CN103887233A (zh) 2014-06-25
US10153154B2 (en) 2018-12-11
US20170069489A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
CN103887233B (zh) 集成电路用低介电常数薄膜层的制备工艺
CN105714272B (zh) 用于提高膜均匀性的装置和方法
TW438901B (en) Apparatus for depositing a film with a four-corners grounded susceptor
CN104091838B (zh) 高转化效率抗pid晶体硅太阳能电池及其制造方法
JP6058876B2 (ja) SiO2膜を堆積する方法
WO2004050948A1 (ja) プラズマcvdを利用する成膜方法及び装置
CN103119695A (zh) 共形膜的等离子体激活沉积
CN103540908A (zh) 沉积二氧化硅薄膜的方法
CN102534569A (zh) 一种常压辉光等离子体增强原子层沉积装置
CN107742603A (zh) 一种晶硅太阳电池石墨舟及其饱和处理方法
CN103924208A (zh) 一种制备多层石墨烯薄膜的方法
CN100523292C (zh) 等离子体化学汽相淀积氟化非晶碳膜的方法及膜层结构
CN106987826B (zh) 一种双腔式等离子体沉积镀膜方法
TWI378499B (en) Method for passivating at least a part of a substrate surface
CN108017058A (zh) 一种以高压氢钝化提高光增益的硅纳米晶的制备方法
CN108493105A (zh) 二氧化硅薄膜及其制备方法
CN109402608A (zh) 一种原子层沉积设备的气路系统及其控制方法
CN203774246U (zh) 用于制备低介电常数材料的等离子增强化学气相沉积装置
CN103887139B (zh) 用于制备低介电常数材料的等离子增强化学气相沉积装置
CN104393061B (zh) 一种晶体硅太阳能电池减反射膜及其制备工艺
CN103904026B (zh) 微电子芯片用低介电常数薄膜层的制造工艺
CN103996654B (zh) 多相低介电常数材料层的制造方法
JP2723472B2 (ja) 基体上に硼燐化シリカガラスを付着する装置および方法
CN104392957A (zh) 低介电常数薄膜层的制备方法
CN207009480U (zh) 一种钙钛矿薄膜后处理设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201110

Address after: Room 1090, No. 230, North Central Road, Gulou District, Nanjing City, Jiangsu Province

Patentee after: Li Ming

Address before: 215123 No. 199 benevolence Road, Suzhou Industrial Park, Jiangsu, China

Patentee before: SOOCHOW University

CP02 Change in the address of a patent holder

Address after: Shogun East Gulou District of Nanjing city of Jiangsu Province, No. 199 210000

Patentee after: Li Ming

Address before: Room 1090, No. 230, North Central Road, Gulou District, Nanjing City, Jiangsu Province

Patentee before: Li Ming

CP02 Change in the address of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20210806

Address after: No. 133 Dongzheng Road, Huinan Town, Pudong New Area, Shanghai, 200120

Patentee after: Shanghai Jianhai Semiconductor Equipment Co.,Ltd.

Address before: 210000 No. 199 shogundong Road, Gulou District, Nanjing, Jiangsu

Patentee before: Li Ming

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220907

Address after: 239000 plant 1, phase IV industrial workshop, No. 100, Quanzhou Road, Zhongxin Suchu high tech Industrial Development Zone, Chuzhou City, Anhui Province

Patentee after: Zhongxin Jianhai semiconductor technology (Anhui) Co.,Ltd.

Address before: No. 133 Dongzheng Road, Huinan Town, Pudong New Area, Shanghai, 200120

Patentee before: Shanghai Jianhai Semiconductor Equipment Co.,Ltd.

TR01 Transfer of patent right