CN103820882A - 无机氧化物中空纤维及其制备方法 - Google Patents

无机氧化物中空纤维及其制备方法 Download PDF

Info

Publication number
CN103820882A
CN103820882A CN201410081771.8A CN201410081771A CN103820882A CN 103820882 A CN103820882 A CN 103820882A CN 201410081771 A CN201410081771 A CN 201410081771A CN 103820882 A CN103820882 A CN 103820882A
Authority
CN
China
Prior art keywords
preparation
cellulose
inorganic oxide
fibre
cellulose fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410081771.8A
Other languages
English (en)
Other versions
CN103820882B (zh
Inventor
周金平
贾宝泉
张俐娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201410081771.8A priority Critical patent/CN103820882B/zh
Publication of CN103820882A publication Critical patent/CN103820882A/zh
Application granted granted Critical
Publication of CN103820882B publication Critical patent/CN103820882B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Artificial Filaments (AREA)

Abstract

本发明公开了一种无机氧化物中空纤维及其制备方法。无机氧化物中空纤维的外径为10~100μm,内径为8~94μm,无机氧化物层厚为1~5μm。该无机氧化物中空纤维首先通过原位合成的方法制备得到含无机物纤维素纤维;所得的含无机物纤维素纤维经水洗干燥后,在300~1200oC高温处理,利用纤维素纤维在高温下发生热裂解除去纤维素,得到无机氧化物中空纤维。本发明的制备方法以纤维素纤维特殊的热裂解现象为基础,十分简单高效,无需使用其他中空模板,所得的无机氧化物中空纤维比表面积大、尺寸可控,可用于微反应器、催化、吸附、保温材料等领域。

Description

无机氧化物中空纤维及其制备方法
 
技术领域
本发明涉及一种无机氧化物中空纤维及其制备方法,属于无机材料领域,也属于物理、化学领域。
背景技术
中空纤维是一种发展迅速、可广泛应用于过滤、透析、萃取、微流体等领域中的新型材料。其中,无机氧化物中空纤维因其独特的结构和广泛的应用已成为热点研究领域之一。无机氧化物中空纤维具有力学性能良好、耐高温、耐腐蚀、抗氧化、稳定性好等特点,在催化、吸附等方面具有应用前景。无机氧化物中空纤维的制备方法主要分为模板法和无模板法。目前模板法应用最为广泛。而传统的中空模板法制备出的中空纤维尺寸一般很大,中国发明专利说明书CN100423819C和CN1895758A中公开了外径达100 μm以上的中空纤维。如果要制备出更小尺寸的无机氧化物中空纤维往往需要复杂的制备工艺以及特别定制的仪器设备。因此,研制一种简易的制备工艺将对无机氧化物中空纤维的发展产生巨大影响。
纤维素是地球上最为丰富的生物质资源,它具有可再生、可持续、可降解等特点。将溶解后的纤维素溶液通过成型、凝固后,得到纤维素的膜、丝等产品,可广泛应用于纺织、医疗、过滤、包装等领域。不仅如此,纤维素材料也可以作为无机材料的支架和模板。纤维素在高温下一般会发生热裂解,在纤维内部产生孔结构。当纤维素纤维中含有无机氧化物时,其特殊的热裂解行为则会产生特殊的中空结构。我们利用了含有无机氧化物的纤维素纤维在加热时的这种特殊热裂解行为,制备了无机氧化物的微米级中空纤维。本发明介绍了一种制备微米级(100 μm以下)无机氧化物中空纤维的简单方法,在制备过程中不需要任何中空模板,使用范围广、产品尺寸小,非常适合于大规模生产。
发明内容
本发明的目的在于克服现有技术中存在的缺陷,提供一种无机氧化物中空纤维材料及其制备方法。
一种无机氧化物中空纤维,外径为10~100 μm,内径为8~94 μm,无机氧化物层厚为1~5 μm;所述的无机氧化物为氧化铜、三氧化二铁、二氧化钛或二氧化硅。
一种制备所述无机氧化物中空纤维的方法,包括以下步骤:将含无机物纤维素纤维用蒸馏水浸泡清洗干净后,在室温下干燥10~30 h;然后将其在300~1200 oC的马弗炉中灼烧0.5~10 h,自然冷却后取出,即得到无机氧化物中空纤维。
所述的含无机物纤维素纤维为含铜纤维素纤维、含铁纤维素纤维、含钛纤维素纤维或含硅纤维素纤维。
所述的含铜纤维素纤维,其制备方法包括以下步骤:将8 g棉浆纤维素加入92 g新制备的铜氨溶液中,并存放在0~5 oC的环境中,待其自然溶解,然后以7200 rpm的速率离心脱泡15 min。将纤维素溶液加入到湿法纺丝机的储液罐中,并加压使溶液通过喷丝口,喷出的细流在浓度为5 wt%的NaOH水溶液中凝固成丝,并通过收集辊收集,纺丝速度为50 m/min,得到含铜纤维素纤维。
所述的含铜纤维素纤维,其制备方法包括以下步骤:将20 g湿态的纤维素纤维在500 mL 0.1 M的CuSO4溶液中浸泡10 h,然后将其转移到500 mL 10 wt%的NaOH溶液中浸泡15 min,即得到含铜纤维素纤维。
所述的含铁纤维素纤维,其制备方法包括以下步骤:将20 g湿态的纤维素纤维在500 mL 0.2 M的FeSO4溶液中浸泡10 h,然后将其转移到500 mL 10 wt%的NaOH溶液中浸泡15 min,即得到含铁纤维素纤维。
所述的含钛纤维素纤维,其制备方法包括以下步骤:将20 g湿态的纤维素纤维在500 mL乙醇中浸泡5 h,并需要更换乙醇5次,然后浸泡在0.2 M的钛酸乙酯的乙醇溶液中10 h,再转移到500 mL 15 wt%的氨水中溶液中浸泡2 h,即得到含钛纤维素纤维。
所述的含硅纤维素纤维,其制备方法包括以下步骤:将20 g湿态的纤维素纤维在500 mL乙醇中浸泡5 h,并需要更换乙醇5次,然后浸泡在0.2 M的正硅酸乙酯的乙醇溶液中10 h,再转移到500 mL 20 wt%的氨水中浸泡2 h,即得到含硅纤维素纤维。
所述的纤维素纤维,其制备方法包括以下步骤:将质量百分比为12 : 8 : 80的NaOH、尿素和水混合均匀后,预冷至-10 oC,再加入纤维素迅速搅拌使其溶解,制备5 wt%的纤维素溶液,在离心机中以7200 rpm的转速离心脱泡15 min;将纤维素溶液加入到湿法纺丝机的储液罐中,并加压使溶液通过喷丝口;喷出的细流在浓度为5 wt%的H2SO4水溶液中凝固成丝,并通过收集辊收集,纺丝速度为40 m/min,即得到纤维素纤维。
所述的纤维素纤维,其制备方法包括以下步骤:将8 g棉浆纤维素加入92 g新制备的铜氨溶液中,并存放在0~5 oC的环境中,待其自然溶解,然后以7200 rpm的速率离心脱泡15 min。将纤维素溶液加入到湿法纺丝机的储液罐中,并加压使溶液通过喷丝口,喷出的细流在浓度为5 wt%的NaOH水溶液中凝固成丝,并通过收集辊收集,纺丝速度为50 m/min,得到含铜纤维素纤维;再经过5 wt%的H2SO4水溶液处理,即得到纤维素纤维。
本发明具有以下特点和有益效果:
1.本发明制备的无机氧化物中空纤维具有力学性能良好、耐高温、耐腐蚀、抗氧化、稳定性好等优点。
2. 本发明制备的无机氧化物中空纤维在微反应器、催化、吸附、保温材料等方面具有巨大的应用前景。
附图说明
图1为本发明氧化铜中空纤维的扫描电镜显微图。
图2为本发明三氧化二铁中空纤维的扫描电镜显微图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
按中国专利 ZL200410013389. X所述的方法制备纤维素纤维:将质量百分比为12 : 8 : 80 的NaOH、尿素和水混合均匀后,预冷至-10 oC,再加入纤维素迅速搅拌使其溶解,制备5 wt%的纤维素溶液,在离心机中以7200 rpm的转速离心脱泡15 min。将纤维素溶液加入到湿法纺丝机的储液罐中,并加压使溶液通过喷丝口。喷出的细流在浓度为5 wt%的H2SO4水溶液中凝固成丝,并通过收集辊收集,纺丝速度为40 m/min,即得到纤维素纤维。
将20 g湿态的纤维素纤维在500 mL 0.1 M的CuSO4溶液中浸泡10 h,然后将其转移到500 mL 10 wt%的NaOH溶液中浸泡15 min,使纤维中的Cu2+沉淀,即得到含铜纤维素纤维。
将含铜纤维素纤维用蒸馏水浸泡清洗干净后,在室温下干燥30 h,干燥后的含铜纤维素纤维的直径约为120 μm;然后在1200 oC的马弗炉中灼烧0.5 h,自然冷却后取出,即得到氧化铜中空纤维,其外径约为100 μm,内径约为94 μm,壁厚约为3 μm。
实施例2
按照已报道的方法(CN 1091144A)制备纤维素铜氨溶液:将8 g棉浆纤维素加入92 g新制备的铜氨溶液中,并存放在0~5 oC的环境中,待其自然溶解,然后以7200 rpm的速率离心脱泡15 min。将纤维素溶液加入到湿法纺丝机的储液罐中,并加压使溶液通过喷丝口,喷出的细流在浓度为5 wt%的NaOH水溶液中凝固成丝,并通过收集辊收集,纺丝速度为50 m/min,得到含铜纤维素纤维。
将含铜纤维素纤维用蒸馏水浸泡清洗干净后,在室温下干燥20 h,干燥后的含铜纤维素纤维的直径约为25 μm;然后在500 oC的马弗炉中灼烧3 h,自然冷却后取出,即得到氧化铜中空纤维,其外径约为10 μm,内径约为8 μm,壁厚约为1 μm,如图1所示。100克干燥后的含铜纤维素纤维可以得到约22 g氧化铜中空纤维。
实施例3
三氧化二铁中空纤维的制备,包括以下步骤: 
按照实施例2中的方法制得含铜纤维素纤维,经过5 wt%的H2SO4处理,得到纤维素纤维;然后将20 g湿态的纤维素纤维在500 mL FeSO4溶液(0.2 M)中浸泡10 h,然后再将其转移到500 mL NaOH水溶液(10 wt%)中浸泡15 min,使纤维中的Fe2+沉淀,得到含铁纤维素纤维。
将含铁纤维素纤维用蒸馏水浸泡清洗干净后,在室温下干燥10 h,干燥后的含铁纤维素纤维的直径约为40 μm;然后在300 oC的马弗炉中灼烧10 h,自然冷却后取出,即得到三氧化二铁中空纤维,其外径约为20 μm,内径约为14 μm,壁厚约为3 μm,如图2所示。
实施例4
二氧化钛中空纤维的制备,包括以下步骤: 
按照实施例1中的方法制得纤维素纤维,将20 g湿态的纤维素纤维在500 mL乙醇中浸泡5 h,并需要更换乙醇5次,然后浸泡在0.2 M的钛酸乙酯的乙醇溶液中10 h,再转移到500 mL 15 wt%的氨水中溶液中浸泡2 h,即得到含钛纤维素纤维。
将含钛纤维素纤维用蒸馏水浸泡清洗干净后,将在室温下干燥30 h,干燥后的含钛纤维素纤维的直径约为50 μm;然后在600 oC的马弗炉中灼烧0.5 h,自然冷却后取出,即得到二氧化钛中空纤维,其外径约30 μm,内径约为20 μm,壁厚约为5 μm。
实施例5
二氧化硅中空纤维的制备,包括以下步骤: 
按照实施例1中的方法制得纤维素纤维,将20 g湿态的纤维素纤维在500 mL乙醇中浸泡5 h,并需要更换乙醇5次,以替换出纤维素纤维中的水,然后浸泡在正硅酸乙酯的乙醇溶液(0.2 M)中10 h,再转移到500 mL 氨水(20 wt%)中浸泡2 h,得到含硅纤维素纤维。
将含硅纤维素纤维用乙醇、蒸馏水浸泡清洗干净后,将在室温下干燥30 h,干燥后的含硅纤维素纤维的直径约为40 μm;然后在800 oC的马弗炉中灼烧2 h,自然冷却后取出,即得到二氧化硅中空纤维,其外径约为10 μm,内径约为8 μm,壁厚约为1 μm。

Claims (10)

1.一种无机氧化物中空纤维,其特征在于,外径为10~100 μm,内径为8~94 μm,无机氧化物层厚为1~5 μm;所述的无机氧化物为氧化铜、三氧化二铁、二氧化钛或二氧化硅。
2.一种权利要求1所述的无机氧化物中空纤维的制备方法,其特征在于,包括以下步骤:将含无机物纤维素纤维用蒸馏水浸泡清洗干净后,在室温下干燥10~30 h;然后将其在300~1200 oC的马弗炉中灼烧0.5~10 h,自然冷却后取出,即得到无机氧化物中空纤维。
3.根据权利要求2所述的无机氧化物中空纤维的制备方法,其特征在于,所述的含无机物纤维素纤维为含铜纤维素纤维、含铁纤维素纤维、含钛纤维素纤维或含硅纤维素纤维。
4.根据权利要求3所述的无机氧化物中空纤维的制备方法,其特征在于,所述的含铜纤维素纤维,其制备方法包括以下步骤:将8 g棉浆纤维素加入92 g新制备的铜氨溶液中,并存放在0~5 oC的环境中,待其自然溶解,然后以7200 rpm的速率离心脱泡15 min;将纤维素溶液加入到湿法纺丝机的储液罐中,并加压使溶液通过喷丝口,喷出的细流在浓度为5 wt%的NaOH水溶液中凝固成丝,并通过收集辊收集,纺丝速度为50 m/min,得到含铜纤维素纤维。
5.根据权利要求3所述的无机氧化物中空纤维的制备方法,其特征在于,所述的含铜纤维素纤维,其制备方法包括以下步骤:将20 g湿态的纤维素纤维在500 mL 0.1 M的CuSO4溶液中浸泡10 h,然后将其转移到500 mL 10 wt%的NaOH溶液中浸泡15 min,即得到含铜纤维素纤维。
6.根据权利要求3所述的无机氧化物中空纤维的制备方法,其特征在于,含铁纤维素纤维,其制备方法包括以下步骤:将20 g湿态的纤维素纤维在500 mL 0.2 M的FeSO4溶液中浸泡10 h,然后将其转移到500 mL 10 wt%的NaOH溶液中浸泡15 min,即得到含铁纤维素纤维。
7.根据权利要求3所述的无机氧化物中空纤维的制备方法,其特征在于,所述的含钛纤维素纤维,其制备方法包括以下步骤:将20 g湿态的纤维素纤维在500 mL乙醇中浸泡5 h,并需要更换乙醇5次,然后浸泡在0.2 M的钛酸乙酯的乙醇溶液中10 h,再转移到500 mL 15 wt%的氨水中溶液中浸泡2 h,即得到含钛纤维素纤维。
8.根据权利要求3所述的无机氧化物中空纤维的制备方法,其特征在于,所述的含硅纤维素纤维,其制备方法包括以下步骤:将20 g湿态的纤维素纤维在500 mL乙醇中浸泡5 h,并需要更换乙醇5次,然后浸泡在0.2 M的正硅酸乙酯的乙醇溶液中10 h,再转移到500 mL 20 wt%的氨水中浸泡2 h,即得到含硅纤维素纤维。
9.根据权利要求6~8所述的无机氧化物中空纤维的制备方法,其特征在于,所述的纤维素纤维,其制备方法包括以下步骤:将质量百分比为12 : 8 : 80的NaOH、尿素和水混合均匀后,预冷至-10 oC,再加入纤维素迅速搅拌使其溶解,制备5 wt%的纤维素溶液,在离心机中以7200 rpm的转速离心脱泡15 min;将纤维素溶液加入到湿法纺丝机的储液罐中,并加压使溶液通过喷丝口;喷出的细流在浓度为5 wt%的H2SO4水溶液中凝固成丝,并通过收集辊收集,纺丝速度为40 m/min,即得到纤维素纤维。
10.根据权利要求6~8所述的无机氧化物中空纤维的制备方法,其特征在于,所述的纤维素纤维,其制备方法包括以下步骤:将8 g棉浆纤维素加入92 g新制备的铜氨溶液中,并存放在0~5 oC的环境中,待其自然溶解,然后以7200 rpm的速率离心脱泡15 min;将纤维素溶液加入到湿法纺丝机的储液罐中,并加压使溶液通过喷丝口,喷出的细流在浓度为5 wt%的NaOH水溶液中凝固成丝,并通过收集辊收集,纺丝速度为50 m/min,得到含铜纤维素纤维;经过5 wt%的H2SO4水溶液处理,即得到纤维素纤维。
CN201410081771.8A 2014-03-07 2014-03-07 无机氧化物中空纤维及其制备方法 Active CN103820882B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410081771.8A CN103820882B (zh) 2014-03-07 2014-03-07 无机氧化物中空纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410081771.8A CN103820882B (zh) 2014-03-07 2014-03-07 无机氧化物中空纤维及其制备方法

Publications (2)

Publication Number Publication Date
CN103820882A true CN103820882A (zh) 2014-05-28
CN103820882B CN103820882B (zh) 2015-12-30

Family

ID=50756160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410081771.8A Active CN103820882B (zh) 2014-03-07 2014-03-07 无机氧化物中空纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN103820882B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048781A (zh) * 2016-06-13 2016-10-26 东南大学 一种二氧化钛中空纤维材料的制备方法
CN106966636A (zh) * 2017-05-14 2017-07-21 陈毅忠 一种人行道路面铺装专用微孔透水材料的制备方法
CN111620430A (zh) * 2020-06-04 2020-09-04 浙江大学 基于金属薄膜催化的中空纤维膜反应器及制造方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988917A (ja) * 1982-11-11 1984-05-23 Mitsubishi Keikinzoku Kogyo Kk 耐火性アルミナ繊維
CN1895758A (zh) * 2006-06-23 2007-01-17 武汉大学 无机氧化物中空纤维及其合成方法和用途
CN101058942A (zh) * 2007-06-08 2007-10-24 武汉大学 一种制备磁性纳米复合纤维的方法
CN101143733A (zh) * 2007-08-28 2008-03-19 武汉大学 一种磁性氧化铁纳米粒子的制备方法
US20110159221A1 (en) * 2009-12-31 2011-06-30 Korea Institute Of Energy Research Inorganic hollow yarns and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988917A (ja) * 1982-11-11 1984-05-23 Mitsubishi Keikinzoku Kogyo Kk 耐火性アルミナ繊維
CN1895758A (zh) * 2006-06-23 2007-01-17 武汉大学 无机氧化物中空纤维及其合成方法和用途
CN101058942A (zh) * 2007-06-08 2007-10-24 武汉大学 一种制备磁性纳米复合纤维的方法
CN101143733A (zh) * 2007-08-28 2008-03-19 武汉大学 一种磁性氧化铁纳米粒子的制备方法
US20110159221A1 (en) * 2009-12-31 2011-06-30 Korea Institute Of Energy Research Inorganic hollow yarns and method of manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
何娟: "金属氧化物纤维的生物模板制备方法研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
刘石林 等: "再生纤维素/Fe2O3磁性复合纤维的制备及性能", 《2007年全国高分子学术论文报告会》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048781A (zh) * 2016-06-13 2016-10-26 东南大学 一种二氧化钛中空纤维材料的制备方法
CN106048781B (zh) * 2016-06-13 2018-03-20 东南大学 一种二氧化钛中空纤维材料的制备方法
CN106966636A (zh) * 2017-05-14 2017-07-21 陈毅忠 一种人行道路面铺装专用微孔透水材料的制备方法
CN111620430A (zh) * 2020-06-04 2020-09-04 浙江大学 基于金属薄膜催化的中空纤维膜反应器及制造方法和应用

Also Published As

Publication number Publication date
CN103820882B (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
CN103276590B (zh) 一种超疏水超亲油棉花的制备方法
CN102634869B (zh) 一种高强度导电石墨烯纤维的干纺制备方法
CN103147355B (zh) 一种生物质纳米纤维导电纸的制备方法
CN103132313B (zh) 填充型棉纤维及其制备方法
CN104264260A (zh) 一种石墨烯/纳米纤维素复合纤维及其制备方法
CN106215461A (zh) 用于油水分离的超疏水/超亲油多孔网膜及其制备方法与应用
CN105754133A (zh) 一种纳米纤维素基生物气凝胶及其制备方法和应用
CN105694110B (zh) 一种孔径可调的纤维素与蒙脱土纳米复合载体材料及其制备方法
CN105597720B (zh) 一种具有光催化性能的连续SiO2/TiO2气凝胶纤维的制备方法
CN103820882A (zh) 无机氧化物中空纤维及其制备方法
CN107419574B (zh) 一种利用油茶果壳制备纤维素纳米晶须的方法
CN104927097A (zh) 一种微波水热法制备纳米二氧化钛/壳聚糖复合材料的方法
CN105442298A (zh) 一种超声辅助非织造布纤维表面膨化负载纳米氧化锌的制备方法
CN102011202A (zh) 纤维丝束纺丝用水洗及热牵伸装置
CN109137133A (zh) 一种丝瓜络纤维素/壳聚糖复合纤维的制备方法
CN105671687A (zh) 一种连续SiO2气凝胶纤维的制备方法
CN104964541A (zh) 一种黏胶基毡的快速干燥方法
CN105603580A (zh) 一种取向氧化石墨烯纤维的制备方法
Peng et al. Corn stalk pith-based hydrophobic aerogel for efficient oil sorption
CN105937066A (zh) 一种高取向氧化石墨烯纤维的制备方法
CN103265638A (zh) 纤维素纳米晶须有机无机耐热杂化材料的制备方法
Zhang et al. Preparation of cellulose/chitosan superoleophobic aerogel with cellular pores for oil/water separation
CN103964446A (zh) 一种利用丝素为模板制备硅纳米微管的方法
CN109232993A (zh) 一种纤维素/微米纤维素长丝多孔小球的制备方法
CN106351075A (zh) 一种提高中低频吸声性能的剑麻纤维多孔材料的制备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant