CN103796425B - 用于使在低温基底上的薄膜高速反应的方法和装置 - Google Patents

用于使在低温基底上的薄膜高速反应的方法和装置 Download PDF

Info

Publication number
CN103796425B
CN103796425B CN201310495062.XA CN201310495062A CN103796425B CN 103796425 B CN103796425 B CN 103796425B CN 201310495062 A CN201310495062 A CN 201310495062A CN 103796425 B CN103796425 B CN 103796425B
Authority
CN
China
Prior art keywords
low temperature
gaseous atmosphere
film
temperature substrates
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310495062.XA
Other languages
English (en)
Other versions
CN103796425A (zh
Inventor
K·A·施罗德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NCC Nano LLC
Original Assignee
NCC Nano LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NCC Nano LLC filed Critical NCC Nano LLC
Publication of CN103796425A publication Critical patent/CN103796425A/zh
Application granted granted Critical
Publication of CN103796425B publication Critical patent/CN103796425B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1667Radiant energy, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/087Using a reactive gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1157Using means for chemical reduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/125Inorganic compounds, e.g. silver salt
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path

Abstract

公开了一种用于使低温基底上的薄膜在反应气氛内反应的方法。所述薄膜包含可还原的金属氧化物,并且所述反应气氛包含诸如氢或甲烷的还原气体。所述低温基底可以为聚合物、塑料或纸。使用来自高强度频闪系统的多个光脉冲将所述金属氧化物还原成金属并且如果适用则烧结所述金属。

Description

用于使在低温基底上的薄膜高速反应的方法和装置
本申请是申请日为2009年10月19日、国际申请号为PCT/US2009/061172、中国国家申请号为200980145384.3、名称为“用于使在低温基底上的薄膜高速反应的方法和装置”的PCT专利申请的分案申请。
相关申请的交叉引用
本申请基于35U.S.C.§119(e)(1)要求2008年10月17日提交的临时申请61/196,531的优先权,通过参考将其内容并入到这里。
技术领域
本发明一般而言涉及固化方法,具体而言,涉及用于使低温基底上的薄膜高速反应的方法和装置。
背景技术
在电路上形成电导体的一种方法是将包含金属的墨印刷到基底上,然后加热基底以烧结包含金属的墨中的颗粒,从而形成导电路径。通常,适合电传导的大多数金属需要被加热到非常高的温度,该温度通常在其熔点的两百摄氏度的范围内。例如,银是用于形成导电迹线的良好金属,这是因为其可以在空气中被加热,并且电导率相对低的其氧化物在相对低的温度下分解。另外,当在选择用于形成导电迹线的金属时,银是导电性最好的金属的事实经常胜过其高成本。
由于其低成本,在制造导电迹线时一直使用的另一种金属是铜。铜具有约为银的电导率的90%的电导率,但通常比银便宜50到100倍(基于质量)。然而,由于制造和处理铜墨以避免氧化的附加成本通常高于体材料的成本差异,因此银墨仍支配着印刷电子市场。基本上,当在空气中加热铜颗粒时,它们在烧结之前氧化,这导致非导体。
因此,希望提供一种用于使用诸如铜的相对低成本金属制造导电迹线的改进的方法。
发明内容
根据本发明的优选实施例,最初提供气态气氛。然后将位于低温基底顶上的薄膜层输送通过所述气态气氛。在所述薄膜层被输送通过所述气态气氛时,将所述薄膜层暴露到多个脉冲电磁发射,以使所述薄膜层与所述气态气氛化学反应。
本发明的所有特征和优点将在下面详细的描述中变得显而易见。
附图说明
通过参考对示例性实施例的以下详细描述并结合附图阅读,本发明本身以及优选使用模式、其他目的及其优点将得到最好的理解,在附图中:
图1为根据本发明的优选实施例的固化装置的图;以及
图2为根据本发明的优选实施例的用于使低温基底上的薄膜反应的方法的高级逻辑流程图。
具体实施方式
公知如果某些金属氧化物具有正还原势,则这些金属氧化物可被氢或烃还原。实例包括铜、金、铂和钯的氧化物。可以通过利用加热工艺使含有铜氧化物的矿石与木炭反应而制成铜。当在还原气氛中加热氧化的铜颗粒或者甚至纯铜氧化物时,颗粒可烧结而形成导体。
当通过印刷铜颗粒而制造薄膜导体时,如果在惰性或还原气氛中将颗粒加热到其烧结温度,则可以形成导电优良的迹线。由于铜的熔点接近1085℃,因此烧结所需的温度要求仅仅可以采用高温基底,例如玻璃或陶瓷。对基底的该相对高温度要求阻止了诸如纸或塑料的便宜基底的使用。
备选地,如果将铜氧化物置于低温基底上,铜氧化物可被加热到接近基底的分解温度并可将低温基底置于还原气氛中。然而,依赖于基底厚度,低温基底使所需的时间量大幅增加到数分钟或甚至数小时。并且,在这些低温度下,烧结非常有限。如果利用强而短的光脉冲来固化基底,则基底温度和气体气氛要求可被克服。不幸地,这些方法对于在铜膜中解决剩余氧化物的问题没有作用。可还原的金属氧化物可在氢气氛中被置于两个电接触之间,并且电流可被反复地脉冲通过氧化物以加热氧化物并还原氧化物。然而,该技术需要电接触,并且其吞吐量相对有限。由此,需要以高吞吐量在低温基底上还原金属氧化物。
为了本发明,将固化限定为热处理,其包括使薄膜与气态气氛反应。薄膜被限定为小于100微米厚的涂层。低温基底可以由纸、塑料或聚合物构成。电磁发射可包括电磁辐射,其包括γ-射线、x-射线、紫外、可见光、红外光、毫米波、微波、或无线电波。电磁发射源包括激光器、感应加热器、微波发生器、闪光灯、发光二极管等等。
下面参考附图,特别地,参考图1,其描述了根据本发明的优选实施例的固化装置的图。如图所示,固化装置100包括传送带系统110、频闪头120、继电器架(relay rack)130和卷到卷(reel-to-reel)供应系统140。固化装置100能够固化被安装在位于以相对高的速度跨传送带移动的毛网(web)上的低温基底103上的薄膜102。传送带系统110可以以例如0到1000ft/min的速度工作以移动基底103。固化装置100可收纳6英寸增量的任何宽度的毛网。可通过现有技术的一种或组合,将薄膜102附加到基底103上,这些现有技术为例如丝网印刷、喷墨印刷、凹版印刷、激光印刷、静电复印、移印(pad printing)、涂抹、蘸水笔(dippen)、注射(syringe)、气刷、橡皮版印刷、化学气相沉积(CVD)、蒸发、溅射等等。
频闪头120包括用于固化位于基底103上的薄膜102的高强度脉冲氙闪光灯121,该频闪头120优选为水冷的。脉冲氙闪光灯121可提供不同的强度、脉冲长度和脉冲重复频率的脉冲。例如,脉冲氙闪光灯121可提供脉冲重复速率最高为1kHz的具有3’’乘6’’宽度束的10微秒到50毫秒脉冲。来自脉冲氙闪光灯121的发射的光谱含量的范围为200nm到2500nm。可以通过用铈掺杂的石英灯替代石英灯而调整光谱以去除低于350nm的大多数发射。还可以用蓝宝石灯替代石英灯以使发射从约140nm延伸到约4500nm。还可以添加滤光器以去除光谱的其他部分。闪光灯121还可以是有时被称为定向等离子弧(DPA)灯的水冷壁闪光灯。
继电器架130包括可调电源131、传送控制模块132和频闪控制模块134。可调电源131可产生具有最高为4千焦耳每脉冲的能量的脉冲。可调电源131被连接到脉冲氙闪光灯121,并且可以通过控制流过脉冲氙闪光灯121的电流的量来改变来自脉冲氙闪光灯121的发射的强度。
可调电源131控制脉冲氙闪光灯121的发射强度。依赖于薄膜102和基底103的光学、热学和几何特性,来自脉冲氙闪光灯121的发射的功率、脉冲持续时间和脉冲重复频率被电子地调整和同步到毛网速度,以允许对薄膜102的最优固化而不损伤基底103。
在固化操作期间,基底103以及薄膜102被移动到传送带系统110上。传送带系统110使薄膜102在频闪头120下方移动,在那里薄膜102被来自脉冲氙闪光灯121的快速脉冲所固化。通过频闪控制模块134控制来自脉冲氙闪光灯121的发射的功率、持续时间和重复速率,并且由传送控制模块132确定基底103移动经过频闪头120的速度。
利用传感器150来感测传送带系统110的速度,该传感器150可以是机械的、电学的或光学的传感器。例如,可以通过检测来自被连接到与移动的传送带接触的轮的轴端编码器的信号来感测传送带系统110的传送带速度。反过来,可以相应地用传送带系统110的传送带速度来同步脉冲重复速率。由下式给出频闪脉冲速率f的同步:
其中f=频闪脉冲速率[Hz]
S=毛网速度[ft/min]
O=重叠因子
W=固化头宽度[in]
重叠因子O为由基底接收到的频闪脉冲的平均数目。例如,当毛网速度为200ft/min,重叠因子为5,固化头宽度为2.75英寸时,频闪灯的脉冲速率为72.7Hz。
外壳160包围基底103并包含还原气氛161。透明窗口162使来自闪光灯121的光通过。当闪光灯121被脉冲时,膜102被瞬时加热并与气氛161化学反应。当快速脉冲串与移动基底103组合时,可以在薄膜102的每个部分被暴露于多个脉冲时在任意大的面积内获得均匀的固化,这近似于诸如炉的连续固化系统。
现在参考图2,其描述了根据本发明的优选实施例的用于使低温基底上的薄膜反应的方法的高级逻辑流程图。最初,如块221中所示,提供包含还原气体的气态气氛,例如图1的还原气氛161。优选地,气态气氛包含氢或烃,例如甲烷、丙烷等等。
接下来,如块222中所示,将位于低温基底顶上的薄膜层输送通过该气态气氛。该薄膜优选包含可还原的金属氧化物,例如铜氧化物(CuO)、金氧化物(Ag2O)、铂氧化物(PtO)和钯氧化物(PdO)等等。为了经济,希望铜作为用于印刷电子设备的导体。印刷的铜膜通常包含作为电子传导的阻挡层的铜氧化物。低温基底可以由聚合物或纸构成。
然后,如块223中所示,在薄膜层被输送通过气态气氛的同时,将每段(即,固化头宽度)薄膜层暴露到来自闪光灯(例如图1中的闪光灯121)的至少一个脉冲,以使薄膜层与气态气氛化学反应。基本上,来自频闪系统的脉冲在还原位于低温基底上的诸如铜氧化物的金属氧化物的薄膜,以在小于一秒内形成诸如铜膜的导电金属膜而不损伤低温基底。
当在氢环境中将金属氧化物还原为金属时,反应进行的速度是受到扩散限制的。扩散速率与固化系统的温度有关。当利用炉子时,温度受到低温基底的分解温度的限制。脉冲光将金属氧化物加热到极高的温度而不分解低温基底。这大幅地缩短了用于还原金属氧化物的时间。
如上所述,本发明提供了一种用于使低温基底上的薄膜反应的方法和装置。本发明的一个优点在于,即使在最初沉积纯金属氧化物时也可以获得金属薄膜。沉积金属氧化物颗粒的动机之一是,它们比其金属对应部分更容易得到,当它们处于纳米颗粒形式时尤其如此。在保持其纯度的同时形成极微细(几十nm)金属颗粒是尤其困难的。极微细金属颗粒通常被氧化物和/或帽盖基团覆盖。此外,金属氧化物颗粒更容易被分散,并且更容易被印刷在各种基底上。
本发明的另一优点在于其不需要配准(registration)。如果薄膜是印刷图形,则仅仅那个图形反应,而低温基底的通常较不吸收光脉冲的未印刷部分保持冷却。
虽然金属氧化物的还原被示出为在还原气氛中以形成金属膜,但其他膜/反应气体组合也是可能的。其他实例包括:
(1)利用H2进行还原(或者产生氢化物用于H2存储材料)
(2)利用O2进行氧化(用于电介质)
(3)利用含碳气体进行渗碳(carburization)以形成碳化物。在含碳气体流内的O2分压以形成氧碳化物。
(4)利用氨或胺进行氮化以形成氮化物。在氨或胺气体流内的O2分压以形成氧氮化物。
(5)由各种前体气体形成硫属化物。硫属化物为硫化物(S2-)、硒化物(Se2-)以及碲化物(Te2-)。这覆盖了一大类半导体(II-VI半导体),例如,ZnS、ZnSe、CdS、CdSe、CdTe等等。
(6)由各种前体气体形成磷属化物(pnictide)。磷属化物为磷化物(P3-)、砷化物(As3-)和锑化物(Sb3-)。这也覆盖了一大类半导体的合成(III-V族半导体),例如,GaP、GaAs、InP、InAs、InSb等等。
虽然已经参考优选实施例具体示出并描述了本发明,但本领域技术人员将理解,在不脱离本发明的精神和范围的情况下,可以在其中进行形式和细节上的各种变化。

Claims (17)

1.一种用于使低温基底上的薄膜反应的方法,所述方法包括:
提供还原气态气氛;
将安装在低温基底上的金属氧化物薄膜层移动通过所述还原气态气氛;以及
将所述金属氧化物薄膜层暴露到脉冲电磁发射,同时使所述金属氧化物薄膜层在所述还原气态气氛内相对于所述脉冲电磁发射的源移动,以使所述金属氧化物薄膜层与所述还原气态气氛化学反应,从而还原所述金属氧化物薄膜层而形成导电金属膜,
其中所述低温基底以与所述脉冲电磁发射的重复速率同步的速度移动,
其中,由下式给出频闪脉冲速率f的同步:
<mrow> <mi>f</mi> <mo>=</mo> <mfrac> <mrow> <mn>0.2</mn> <mo>*</mo> <mi>S</mi> <mo>*</mo> <mi>O</mi> </mrow> <mi>W</mi> </mfrac> </mrow>
其中f=频闪脉冲速率[Hz]
S=毛网速度[ft/min]
O=重叠因子
W=固化头宽度[in],
所述重叠因子O为由所述基底接收到的频闪脉冲的平均数目。
2.根据权利要求1的方法,其中所述还原气态气氛包含氢。
3.根据权利要求1的方法,其中所述还原气态气氛包含烃气体。
4.根据权利要求1的方法,其中所述还原气态气氛包含多于一种气态物类。
5.根据权利要求1的方法,其中所述金属氧化物薄膜为包含具有正还原势的金属的金属氧化物。
6.根据权利要求5的方法,其中所述金属氧化物为铜氧化物。
7.根据权利要求5的方法,其中所述金属氧化物为铂氧化物。
8.根据权利要求5的方法,其中所述金属氧化物为钯氧化物。
9.根据权利要求1的方法,其中所述低温基底由塑料制成。
10.根据权利要求1的方法,其中所述低温基底由纸制成。
11.根据权利要求1的方法,其中所述低温基底由聚合物制成。
12.一种固化装置,包括:
外壳,用于提供还原气态气氛;
频闪头,具有闪光灯,用于向安装在低温基底上的金属氧化物薄膜层提供脉冲电磁发射,以使所述金属氧化物薄膜层与所述还原气态气氛化学反应,从而还原所述金属氧化物薄膜层而形成导电金属膜;
传送系统,用于使所述金属氧化物薄膜层在所述还原气态气氛内相对于所述频闪头移动;以及
频闪控制模块,用于控制由所述闪光灯产生的所述脉冲电磁发射的功率、持续时间、重复速率和数目,
其中所述低温基底以与所述脉冲电磁发射的所述重复速率同步的速度移动,
其中,由下式给出频闪脉冲速率f的同步:
<mrow> <mi>f</mi> <mo>=</mo> <mfrac> <mrow> <mn>0.2</mn> <mo>*</mo> <mi>S</mi> <mo>*</mo> <mi>O</mi> </mrow> <mi>W</mi> </mfrac> </mrow>
其中f=频闪脉冲速率[Hz]
S=毛网速度[ft/min]
O=重叠因子
W=固化头宽度[in],
所述重叠因子O为由所述基底接收到的频闪脉冲的平均数目。
13.根据权利要求12的固化装置,其中所述闪光灯为氙闪光灯。
14.根据权利要求12的固化装置,其中通过卷到卷系统传送所述低温基底。
15.根据权利要求12的固化装置,其中所述还原气态气氛包含氢。
16.根据权利要求12的固化装置,其中所述还原气态气氛包含烃气体。
17.根据权利要求12的固化装置,其中所述金属氧化物薄膜为包含具有正还原势的金属的金属氧化物。
CN201310495062.XA 2008-10-17 2009-10-19 用于使在低温基底上的薄膜高速反应的方法和装置 Active CN103796425B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US19653108P 2008-10-17 2008-10-17
US61/196,531 2008-10-17
CN2009801453843A CN102217429B (zh) 2008-10-17 2009-10-19 用于使在低温基底上的薄膜高速反应的方法和装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2009801453843A Division CN102217429B (zh) 2008-10-17 2009-10-19 用于使在低温基底上的薄膜高速反应的方法和装置

Publications (2)

Publication Number Publication Date
CN103796425A CN103796425A (zh) 2014-05-14
CN103796425B true CN103796425B (zh) 2017-11-21

Family

ID=42106805

Family Applications (4)

Application Number Title Priority Date Filing Date
CN2009801503274A Pending CN102245804A (zh) 2008-10-17 2009-03-25 还原低温基底上的薄膜的方法
CN201510329127.2A Pending CN104894538A (zh) 2008-10-17 2009-03-25 还原低温基底上的薄膜的方法
CN2009801453843A Active CN102217429B (zh) 2008-10-17 2009-10-19 用于使在低温基底上的薄膜高速反应的方法和装置
CN201310495062.XA Active CN103796425B (zh) 2008-10-17 2009-10-19 用于使在低温基底上的薄膜高速反应的方法和装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN2009801503274A Pending CN102245804A (zh) 2008-10-17 2009-03-25 还原低温基底上的薄膜的方法
CN201510329127.2A Pending CN104894538A (zh) 2008-10-17 2009-03-25 还原低温基底上的薄膜的方法
CN2009801453843A Active CN102217429B (zh) 2008-10-17 2009-10-19 用于使在低温基底上的薄膜高速反应的方法和装置

Country Status (8)

Country Link
US (2) US20110262657A1 (zh)
EP (2) EP2347032B1 (zh)
JP (7) JP5922929B2 (zh)
KR (3) KR101600559B1 (zh)
CN (4) CN102245804A (zh)
CA (3) CA2740618C (zh)
HK (1) HK1162093A1 (zh)
WO (2) WO2010044904A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8410712B2 (en) * 2008-07-09 2013-04-02 Ncc Nano, Llc Method and apparatus for curing thin films on low-temperature substrates at high speeds
US8834957B2 (en) * 2008-11-05 2014-09-16 Lg Chem, Ltd. Preparation method for an electroconductive patterned copper layer
US10000965B2 (en) 2010-01-16 2018-06-19 Cardinal Cg Company Insulating glass unit transparent conductive coating technology
US10060180B2 (en) 2010-01-16 2018-08-28 Cardinal Cg Company Flash-treated indium tin oxide coatings, production methods, and insulating glass unit transparent conductive coating technology
US10000411B2 (en) 2010-01-16 2018-06-19 Cardinal Cg Company Insulating glass unit transparent conductivity and low emissivity coating technology
US8907258B2 (en) * 2010-04-08 2014-12-09 Ncc Nano, Llc Apparatus for providing transient thermal profile processing on a moving substrate
CN103003012A (zh) * 2010-07-21 2013-03-27 泽农公司 烧结期间杂散光的减少
DE102011089884B4 (de) * 2011-08-19 2016-03-10 Von Ardenne Gmbh Niedrigemittierende Beschichtung und Verfahren zur Herstellung eines niedrigemittierenden Schichtsystems
TWI481326B (zh) * 2011-11-24 2015-04-11 Showa Denko Kk A conductive pattern forming method, and a conductive pattern forming composition by light irradiation or microwave heating
TW201339279A (zh) * 2011-11-24 2013-10-01 Showa Denko Kk 導電圖型形成方法及藉由光照射或微波加熱的導電圖型形成用組成物
TWI569700B (zh) * 2011-11-25 2017-02-01 昭和電工股份有限公司 導電性圖案生成方法
JP5991830B2 (ja) * 2012-03-19 2016-09-14 国立大学法人大阪大学 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物
WO2013182896A1 (en) * 2012-06-05 2013-12-12 Showa Denko K.K. Substrate film and sintering method
JP2014011256A (ja) * 2012-06-28 2014-01-20 Dainippon Screen Mfg Co Ltd 熱処理方法および熱処理装置
JP5275498B1 (ja) 2012-07-03 2013-08-28 石原薬品株式会社 導電膜形成方法及び焼結進行剤
JP5283291B1 (ja) * 2012-07-03 2013-09-04 石原薬品株式会社 導電膜形成方法及び焼結進行剤
WO2014026187A2 (en) * 2012-08-10 2014-02-13 Karim Rezaoul Flash lamps in a continuous motion process
JP6093136B2 (ja) * 2012-09-26 2017-03-08 株式会社Screenホールディングス 熱処理方法および熱処理装置
WO2014175163A1 (ja) * 2013-04-26 2014-10-30 昭和電工株式会社 導電パターンの製造方法及び導電パターン形成基板
CN104185378A (zh) * 2013-05-21 2014-12-03 群创光电股份有限公司 导电线路的制备方法、以及具有导电线路的装置
FR3008228B1 (fr) 2013-07-02 2015-07-17 Commissariat Energie Atomique Procede d'assemblage de deux composants electroniques, de type flip-chip par recuit uv, assemblage obtenu
KR101506504B1 (ko) * 2013-08-22 2015-03-30 (주)유니버셜스탠다드테크놀러지 대면적 광소결 장치
DE102013113485A1 (de) * 2013-12-04 2015-06-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Ausbilden einer elektrisch leitfähigen Struktur auf einem Kunststoffsubstrat
EP3083034A4 (en) * 2013-12-20 2017-09-13 Xenon Corporation Continuous flash lamp sintering
JP6313474B2 (ja) * 2015-01-06 2018-04-18 株式会社フジクラ 導体層の製造方法及び配線基板
KR102096826B1 (ko) * 2015-03-24 2020-04-03 쇼와 덴코 가부시키가이샤 도전 패턴 형성용 조성물 및 도전 패턴 형성 방법
DE102016112836A1 (de) * 2016-06-14 2017-12-14 Leander Kilian Gross Verfahren und Vorrichtung zur thermischen Behandlung eines Substrats
WO2019088965A1 (en) * 2017-10-30 2019-05-09 Hewlett-Packard Development Company, L.P. Three-dimensional printing
KR102068285B1 (ko) * 2018-02-12 2020-01-20 한양대학교 산학협력단 환원된 금속 산화물의 제조 방법 및 이를 포함하는 리튬이온 이차 전지
US10959441B2 (en) 2018-04-18 2021-03-30 Xenon Corporation Ultraviolet treatment of food products to kill microorganisms while retaining fruit bloom
JP7263124B2 (ja) * 2018-05-30 2023-04-24 旭化成株式会社 インクジェット用酸化銅インク及びこれを用いて導電性パターンを付与した導電性基板の製造方法
US11028012B2 (en) 2018-10-31 2021-06-08 Cardinal Cg Company Low solar heat gain coatings, laminated glass assemblies, and methods of producing same
US11174107B2 (en) 2019-03-22 2021-11-16 Xenon Corporation Flash lamp system for disinfecting conveyors

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3239373A (en) * 1962-04-24 1966-03-08 Louis S Hoodwin Printed circuit process
FR1427315A (fr) * 1964-02-24 1966-02-04 Yawata Iron & Steel Co Procédé pour la formation de revêtements isolants électriques sur les tôles électriques
US4159414A (en) * 1978-04-25 1979-06-26 Massachusetts Institute Of Technology Method for forming electrically conductive paths
FR2537898A1 (fr) * 1982-12-21 1984-06-22 Univ Paris Procede de reduction de composes metalliques par les polyols, et poudres metalliques obtenues par ce procede
US4592929A (en) * 1984-02-01 1986-06-03 Shipley Company Inc. Process for metallizing plastics
US4526807A (en) * 1984-04-27 1985-07-02 General Electric Company Method for deposition of elemental metals and metalloids on substrates
US4668533A (en) * 1985-05-10 1987-05-26 E. I. Du Pont De Nemours And Company Ink jet printing of printed circuit boards
JPH0537126A (ja) * 1991-07-30 1993-02-12 Toshiba Corp 金属酸化物を用いた配線基板および情報記録媒体
US6326130B1 (en) * 1993-10-07 2001-12-04 Mallinckrodt Baker, Inc. Photoresist strippers containing reducing agents to reduce metal corrosion
DE69506335T2 (de) * 1994-07-11 1999-07-15 Agfa Gevaert Nv Verfahren zur Herstellung einer Druckform mittels Tintenstrahlverfahren
US5938848A (en) * 1996-06-27 1999-08-17 Nordson Corporation Method and control system for applying solder flux to a printed circuit
EP1368813B1 (en) * 2000-12-15 2014-12-03 The Arizona Board of Regents on behalf of the University of Arizona Method for patterning metal using nanoparticle containing precursors
CN1297398C (zh) * 2001-07-06 2007-01-31 钟渊化学工业株式会社 层压体及其制造方法
US20060159838A1 (en) * 2005-01-14 2006-07-20 Cabot Corporation Controlling ink migration during the formation of printable electronic features
JP4416080B2 (ja) * 2003-01-29 2010-02-17 富士フイルム株式会社 プリント配線基板形成用インク、プリント配線基板の形成方法及びプリント配線基板
US20040185388A1 (en) * 2003-01-29 2004-09-23 Hiroyuki Hirai Printed circuit board, method for producing same, and ink therefor
JP2004277627A (ja) 2003-03-18 2004-10-07 Asahi Kasei Corp インクジェット用インクおよびこれを用いた金属含有薄膜の形成方法
JP2004277868A (ja) * 2003-03-19 2004-10-07 Mitsubishi Paper Mills Ltd 導電性組成物の作製方法
WO2004104490A1 (en) * 2003-05-21 2004-12-02 Alexza Pharmaceuticals, Inc. Self-contained heating unit and drug-supply unit employing same
JP2005071805A (ja) * 2003-08-25 2005-03-17 Fuji Photo Film Co Ltd 金属酸化物及び/又は金属水酸化物の粒子と金属の粒子を含む組成物、組成物を用いたプリント配線基板、その製造方法及びそれに用いるインク
US7547647B2 (en) * 2004-07-06 2009-06-16 Hewlett-Packard Development Company, L.P. Method of making a structure
CA2588343C (en) * 2004-11-24 2011-11-08 Nanotechnologies, Inc. Electrical, plating and catalytic uses of metal nanomaterial compositions
DE602006013100D1 (de) * 2005-01-10 2010-05-06 Yissum Res Dev Co Wasserbasierte dispersionen von metall-nanopartikeln
US20060258136A1 (en) * 2005-05-11 2006-11-16 Guangjin Li Method of forming a metal trace
US20070193026A1 (en) * 2006-02-23 2007-08-23 Chun Christine Dong Electron attachment assisted formation of electrical conductors
WO2008018719A1 (en) * 2006-08-07 2008-02-14 Inktec Co., Ltd. Manufacturing methods for metal clad laminates
US10231344B2 (en) * 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Reduction of Copper Oxide Thin Films with Hydrogen Plasma Generated by a Dielectric-Barrier Glow Discharge;Yasushi Sawada, et al;《Japanese Journal of Applied Physics》;19991115;第38卷(第11期);第6506-6511页 *

Also Published As

Publication number Publication date
JP2012505966A (ja) 2012-03-08
JP2015034352A (ja) 2015-02-19
KR101604437B1 (ko) 2016-03-17
JP5922929B2 (ja) 2016-05-24
EP2347032A1 (en) 2011-07-27
CA2740786C (en) 2016-05-24
JP2014033227A (ja) 2014-02-20
EP2347032A4 (en) 2016-01-27
WO2010044904A1 (en) 2010-04-22
US20100098874A1 (en) 2010-04-22
JP2017039999A (ja) 2017-02-23
CN104894538A (zh) 2015-09-09
CN102217429B (zh) 2013-11-13
CN102245804A (zh) 2011-11-16
CA2910493C (en) 2018-03-06
KR101600559B1 (ko) 2016-03-08
CA2740618A1 (en) 2010-04-22
CA2740786A1 (en) 2010-04-22
EP2347638A4 (en) 2016-01-27
US20110262657A1 (en) 2011-10-27
CN103796425A (zh) 2014-05-14
JP5401550B2 (ja) 2014-01-29
JP2012506158A (ja) 2012-03-08
HK1162093A1 (zh) 2012-08-17
EP2347638A1 (en) 2011-07-27
CN102217429A (zh) 2011-10-12
JP6328702B2 (ja) 2018-05-23
CA2740618C (en) 2016-01-12
EP2347032B1 (en) 2017-07-05
KR20150125016A (ko) 2015-11-06
WO2010045639A1 (en) 2010-04-22
CA2910493A1 (en) 2010-04-22
EP2347638B1 (en) 2018-12-05
KR20110082575A (ko) 2011-07-19
JP2018131691A (ja) 2018-08-23
JP2019189947A (ja) 2019-10-31
KR20110083675A (ko) 2011-07-20

Similar Documents

Publication Publication Date Title
CN103796425B (zh) 用于使在低温基底上的薄膜高速反应的方法和装置
CN104020657B (zh) 用于高速固化在低温衬底上的薄膜的方法和装置
Chen et al. Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating
CA2196770C (en) Method for directly depositing metal containing patterned films
KR100864268B1 (ko) 전자 부착 보조에 의한 전기 도체의 형성 방법
US20090191358A1 (en) Method for Generation of Metal Surface Structures and Apparatus Therefor
Anto et al. Hydrophilic Sparse Ionic Monolayer‐Protected Metal Nanoparticles: Highly Concentrated Nano‐Au and Nano‐Ag “Inks” that can be Sintered to Near‐Bulk Conductivity at 150° C
Joo et al. Laser sintering of Cu paste film printed on polyimide substrate
Joo et al. Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate
JP2006269119A (ja) 焼結助剤を添加した金属酸化物粒子等の高周波電磁波照射による還元・相互融着方法及びそれを用いた各種電子部品と金属酸化物粒子等の焼成用材料
KR101808741B1 (ko) 잉크젯 프린팅에 의한 도전층 패턴 형성방법
US20220306887A1 (en) Self-Sintering Conductive Inks
Wu et al. Fabrication of polymer silver conductor using inkjet printing and low temperature sintering process
Lesyuk et al. Nanomaterials for ink-jet printed electronics
JP2005294053A (ja) 高周波電磁波照射を利用した熱分解粒子の加熱分解相互融着方法及びその製品への応用
Perelaer et al. Combined sintering approaches for fast sintering of inkjet printed nanoparticles for R2R applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant