CN103781495A - 光敏抗体-荧光团缀合物 - Google Patents

光敏抗体-荧光团缀合物 Download PDF

Info

Publication number
CN103781495A
CN103781495A CN201280043973.2A CN201280043973A CN103781495A CN 103781495 A CN103781495 A CN 103781495A CN 201280043973 A CN201280043973 A CN 201280043973A CN 103781495 A CN103781495 A CN 103781495A
Authority
CN
China
Prior art keywords
cell
tumor
antibody
pit
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280043973.2A
Other languages
English (en)
Inventor
小林久隆
P·库伊克
M·博纳多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Health and Human Services
Original Assignee
US Department of Health and Human Services
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46579316&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN103781495(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US13/180,111 external-priority patent/US8524239B2/en
Application filed by US Department of Health and Human Services filed Critical US Department of Health and Human Services
Priority to CN201710729452.7A priority Critical patent/CN107929733A/zh
Publication of CN103781495A publication Critical patent/CN103781495A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6869Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from a cell of the reproductive system: ovaria, uterus, testes, prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0058Antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3069Reproductive system, e.g. ovaria, uterus, testes, prostate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/0002Details of protective garments not provided for in groups A41D13/0007 - A41D13/1281
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2400/00Functions or special features of garments
    • A41D2400/32Therapeutic use
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C15/00Other forms of jewellery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Reproductive Health (AREA)
  • Pregnancy & Childbirth (AREA)
  • Oncology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Radiation-Therapy Devices (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本公开涉及杀死细胞的组合物和方法。在具体实例中,所述方法包括使具有细胞表面蛋白的细胞与治疗有效量的抗体-IR700分子接触,其中所述抗体特异性结合所述细胞表面蛋白,例如肿瘤细胞表面上的肿瘤特异性抗原。随后照射所述细胞,例如在660-740nm的波长下剂量为至少1Jcm-2。在照射所述细胞之后例如约0-8小时,还使所述细胞与一种或多种治疗剂(例如抗癌剂)接触,从而杀死所述细胞。还提供了使用荧光寿命成像对细胞杀死进行实时成像的方法。还提供了可与本公开的方法一起使用的可穿戴装置,其包括衣服、珠宝或覆盖物;和被纳入到所述物品中的NIR LED。

Description

光敏抗体-荧光团缀合物
相关申请的交叉引用
本申请是2011年7月11日提交的美国申请No.13/180,111的部分继续申请,其要求2010年7月9日提交的美国临时申请No.61/363,079的优先权,两者均以引用的方式纳入本文。
技术领域
本申请涉及抗体-IR700缀合物以及用红外(NIR)光照射后使用抗体-IR700缀合物杀死与所述抗体特异性结合的细胞的方法。还提供了也可与本公开的缀合物和方法一起使用的纳入NIR发光二极管(LED)的装置。
背景技术
2007年,约13%的所有人类死亡是由癌症引起的。虽然有一些针对癌症的疗法,但是仍然需要有效杀死肿瘤细胞同时不损伤非癌细胞的疗法。
为了使常规癌症疗法——包括外科手术、辐射和化学疗法——的副作用最小,已经开发了分子靶向的癌症疗法。在现有的靶向疗法中,单克隆抗体(MAb)疗法历史最悠久,到目前为止,美国食品和药物管理局(FDA)已经批准了超过25种治疗性的MAb(Waldmann,Nat Med9:269-277,2003);Reichert et al.,Nat Biotechnol23:1073-1078,2005)。有效的MAb疗法传统上依赖于三种机制:抗体依赖的细胞的细胞毒性(ADCC)、补体依赖的细胞毒性(CDC)和受体封闭,并且需要多个高剂量的所述MAb。还已经将MAb作为载体以较低的剂量使用以递送治疗物例如放射性核素(Goldenberg et al.,J Clin Oncol24,823-834,2006)或化学毒素或生物毒素(Pastan et al.,Nat Rev Cancer6:559-565,2006)。然而,剂量限制性毒性最终与抗体缀合物的生物分布和分解代谢有关。
结合光增敏剂与非电离光的物理能来杀死细胞的常规光动力学疗法(PDT),已经不常用作癌症疗法,因为目前的非靶向光敏剂也会被正常组织吸收,从而引起严重的副作用,虽然激发光本身在近红外线(NIR)的范围内是无害的(图9)。
发明内容
本文提供了抗体-IR700分子和用其杀死靶细胞例如肿瘤细胞的方法。在具体的实例中,所述方法的特点在于,不会以显著的数量杀死非靶细胞例如正常细胞(例如,杀死少于1%的正常细胞),而以显著的数量杀死靶细胞。在具体实例中,所述方法包括使具有细胞表面蛋白的细胞与治疗有效量的抗体-IR700分子接触,其中所述抗体(或其他特异性的结合剂)特异性结合所述细胞表面蛋白。抗体-IR700分子的具体非限制性实例包括帕尼单抗(Panitumumab)-IR700、曲妥单抗(Trastuzumab)-IR700和HuJ591-IR700。在660-740nm例如660-710nm(例如680nm)的波光下以至少1J cm-2(例如至少50J cm-2)的剂量照射所述细胞。所述方法还包括在照射所述细胞后例如约8小时内,使所述细胞与一种或多种治疗剂(例如抗癌剂)接触,从而杀死所述细胞。这种方法还可包括在照射所述细胞后例如约0-48小时,用荧光寿命成像(FLT)检测所述细胞,从而容许实时检测细胞杀死。
还提供了实时检测细胞杀死的方法。这种方法可包括使含细胞表面蛋白的细胞与治疗有效量的一种或多种如上所述的抗体-IR700分子接触,在660-740nm的波长下以至少30J cm-2的剂量(例如足以使IR700FLT缩短至少25%的剂量,例如30-50J cm-2)照射所述细胞,并在照射所述细胞后约0-48小时(例如至少6小时),用荧光寿命成像检测所述细胞,从而实时检测所述细胞杀死。
可以用本公开的抗体-IR700分子和方法杀死任何靶细胞(并且在一些实例中进行实时检测),例如通过使用一种或多种与靶细胞表面上一种或多种蛋白(例如受体)结合的抗体,其中所述靶细胞表面上的一种或多种蛋白不会大量地存在于非靶细胞(例如正常的健康细胞)上,因此所述抗体不会与所述非靶细胞大量结合。在一个实例中,所述细胞表面蛋白是肿瘤特异性蛋白,例如HER1、HER2或PSMA。
在一些实例中,待杀死的所述细胞存在于受试者中。在这类实例中,所述方法可包括给予所述受试者治疗有效量的所述抗体-IR700分子并照射所述受试者,例如照射所述受试者的肿瘤。在一些实例中,所述方法还可包括选择具有表达可特异性结合所述抗体-IR700分子的细胞表面蛋白的肿瘤的受试者。
还提供了装置,例如可被患者穿戴的那些。这类装置可包括衣服、珠宝或覆盖物和被纳入到所述衣服、珠宝或覆盖物中的近红外(NIR)发光二极管(LED)。这类装置还可包括动力源和/或冷却源。这使得所述患者长时间穿戴所述装置(或被所述装置覆盖),从而容许治疗存在于血液或循环系统中的肿瘤细胞。还提供了使用所述装置的方法。
从以下参照附图进行的对若干实施方案的详细描述中,本公开的上述和其他特征会变得更加清楚。
附图说明
图1a的数字图像示出了用曲妥单抗-IR700缀合物(Tra-IR700)标记细胞,在4℃持续1小时或在37℃持续6小时。还示出了光图像。比例尺,30μm。
图1b的数字图像示出了孵育后6小时Tra-1R700的溶酶体定位。比例尺,50μm。
图1c的数字图像示出了用Tra-IR700在37℃孵育6小时然后进行光免疫疗法(PIT),在这之前和之后的数字图像。比例尺,50μm。
图1d的柱状图示出了响应Tra-1R700介导的PIT的照射剂量依赖性和靶特异性的细胞死亡。数据是均值±平均数标准差(n=至少4,***相对于无处理对照P<0.001,Student’s t检验)。
图1e的柱状图示出了响应Tra-1R700介导的PIT的长期生长抑制。数据是均值±平均数标准差(n=3,**相对于无处理对照P<0.01,Student’st检验)。
图1f的数字图像示出了响应TraIR700介导的PIT的生长抑制的显微镜观察结果。比例尺,100μm。
图1g的柱状图示出了光毒性细胞死亡不需要Tra-1R700的内化。数据是均值±平均数标准差(n=3)。
图1h的柱状图示出了Tra-1R700的靶特异性膜结合仅诱导光毒性细胞死亡。数据是均值±平均数标准差(n=3)。
图1i示出了用Tra-1R700介导的PIT时阴性表达HER2的A431细胞未显示出光毒性效应(n=3)。
图1j的柱状图示出了叠氮化钠(NaN3)浓度依赖性抑制Tra-1R700介导的PIT诱导的光毒性细胞死亡。数据是均值±平均数标准差(n=3,相对于无NaN3的2.0J cm-2PIT处理的对照,***P<0.001,**P<0.01,Student’s t检验)。DIC:微分干涉相差。PanIR:Pan-1R700。
图2a的曲线图示出了在用Tra-1R700(Tra-IR)处理并暴露于光的Balb/3T3(HER2阴性)细胞中没有观察到长期生长抑制。数据是均值±平均数标准差(n=3)。
图2b的数字图像示出了游离的IR700染料不会纳入到3T3/HER2细胞中。在不洗涤所述细胞的情况下拍摄荧光图像。细胞比含游离IR700染料的培养基更暗。比例尺,50μm。
图2c的曲线图示出了过量的未缀合的曲妥单抗(Tra)剂量依赖性地阻断TraIR700介导的光毒性。数据是均值±平均数标准差(n=3)。
图2d的曲线图示出了未缀合的曲妥单抗以剂量依赖的方式阻断Tra-1R700结合3T3/HER2细胞(n=3)。DIC:微分干涉相差。
图3a的数字图像示出了诱导靶特异性光免疫疗法(PIT)导致HER2表达细胞特异性的坏死性细胞死亡。比例尺,50μm。
图3b的数字图像示出了用LIVE/DEAD绿染色进行的荧光显微术证实了HER2特异性细胞死亡。比例尺,100μm。
图3c的图表示出了用于检测由Tra-1R700(TraIR)介导的PIT诱导的HER2特异性细胞死亡的流式细胞检测分析。左上象限:TraIR700阳性、活细胞;右上象限:Tra-1R700阳性、死细胞;左下象限:Tra-1R700阴性、活细胞;右下象限:Tra-1R700阴性、死细胞(n=3)。DIC:微分干涉相差。
图4a的数字图像示出了Tra-1R700的生物分布。早在注射Tra-IR700(300μg)一天后,用IR700荧光使3T3/HER2肿瘤(背部两侧)可见。在第1天用近红外(NIR)光照射所述肿瘤的右侧,同时,用黑带覆盖肿瘤的左侧。在第7天确认肿瘤缩小。虚线:被照射的肿瘤;实线:未被照射的肿瘤。除了由于未结合的染料的排泄而在第一天膀胱累积IR700外,1R700没有其他特异性的定位。
图4b的曲线图示出了体内给予Tra-IR700或仅给予载体然后进行PIT(50J cm-2)之后的平均肿瘤体积。数据是均值±平均数标准差(每组至少n=12只小鼠,相对于无处理对照,***P<0.001,"P<0.01,具有事后检验的Kruskal—Wallis检验)。Tra:曲妥单抗。
图5a的数字图像示出了进行Pan-1R700介导的PIT之前和之后的显微镜观察结果。比例尺,50um。
图5b示出了响应Pan-1R700(PanIR)介导的PIT的照射剂量依赖性和靶特异性的细胞死亡。数据是均值±平均数标准差(n=至少4,相对于无处理对照,***P<0.001,Student’s t检验)。
图5d的数字图像示出了Pan-1R700介导的PIT诱导了表达EGFR的细胞特异性的坏死性细胞死亡。比例尺,50μm。DIC:微分干涉相差。
图6a的数字图像示出了在之前给予了A431细胞的小鼠中帕尼单抗-IR700缀合物(Pan-IR700)的特异性定位。早在Pan-1R700(50μg)注射后1天,HER1阳性A431肿瘤(左背部)选择性地可见。HER1阴性3T3/HER2肿瘤(右背部)没有显示出可检测到的荧光(n=5只小鼠)。
图6b的曲线图示出了在注射两种不同剂量(50μg和300μg)的Pan-IR700后,随着时间的推移A431肿瘤中的IR700信号强度。数据是均值±平均数标准差(n=每组4只小鼠)。
图6c的曲线图示出了在注射两种不同剂量的(50μg和300μg)的Pan-IR700后,随着时间的推移A431肿瘤中IR700荧光强度的肿瘤/背景比率。数据是均值±平均数标准差(n=每组4只小鼠)。
图6d的数字图像示出了Pan-1R700的生物分布。早在Pan-1R700(300μg)注射后1天,用IR700荧光使A431肿瘤(两侧背部)选择性地可见。在第1天用近红外(NIR)光照射所述肿瘤的右侧,同时用黑带覆盖所述肿瘤的左侧。在第7天证实了肿瘤缩小。虚线:经照射的肿瘤,实线:未经照射的肿瘤。
图6e的曲线图示出了体内给予Pan-IR700或仅给予载体然后进行PIT(30J cm-2)之后的平均肿瘤体积。Pan-1R700注射后第1天(在肿瘤接种后第5天)进行PIT。数据是均值±平均数标准差(每组至少n=12只小鼠,相对其他对照组,***P<0.001,具有事后检验的Kruskal—Wallis检验)。
图6f的曲线图示出了体内给予Pan-IR700或仅给予载体然后进行PIT(30J cm-2)之后的存活率(每组至少n=12只小鼠,相对其他对照组,***P<0.001,具有Bonferroni多重校正的时序检验)。
图6g的数字图像示出了用PIT处理(右侧)和未处理(左侧)肿瘤后4天,苏木精和伊红染色的组织学图像(×40和×200)。n=5只小鼠;比例尺,100um。Pan:帕尼单抗。
图6h示出了高剂量给予Pan-1R700在体内导致Pan-1R700介导的PIT对A431肿瘤的抗肿瘤效能更高。观察到,由Pan-1R700介导的PIT引起的肿瘤生长抑制是Pan-1R700剂量依赖性的。数据是均值±平均数标准差(每组至少n=12只小鼠)。
图7的数字图像示出了J591-1R700的生物分布。在J591-1R700(100μg)注射后,用IR700荧光使PC3-PIP肿瘤选择地可见。在第4、12和13天用近红外(NIR)光照射所述肿瘤的右侧,同时用黑带覆盖所述肿瘤的左侧。在第5天证实了肿瘤缩小。
图8的数字图像示出了在Tra-1R700(用于HER2+细胞),Pan-1R700(用于HER1+细胞)和huJ591-1R700(用于PSMA+细胞)的存在下,各种细胞PIT之前和之后的显微镜观察结果。比例尺,50μm。DIC:微分干涉相差。
图9a的示意图示出的图解用于解释在用其他采用电磁波照射的物理癌症疗法的情况下使用PIT的选择性癌症疗法。虽然其他物理癌症疗法在正常组织中诱导不同类型的损伤,但是PIT专门损伤癌细胞而不损伤正常细胞或组织。
图9b的示意图示出了用于解释PIT的光物理学、化学和生物学基础的图解。采用人源化抗体作为递送载体,因为人源化抗体在临床可用的靶向试剂中结合特异性最高、体内靶向递送能力最强、免疫原性低。采用了亲水性的酞菁作为可激活的细胞毒性“纳米-炸药”试剂,因为对700nm的近红外光的吸收强且仅在与细胞膜结合时诱导强的细胞毒性。采用700nm的近红外光作为引发剂用于激活细胞毒性,因为在无害的非电离光子中其能量高并且体内组织透过力强。
图10A-D。浓度为2.5、5、20和40jag/mL的1R700缀合的帕尼单抗(Pan-1R700)的样品用PBS稀释制备。(A)Pan-IR700溶液的荧光强度图像:荧光强度随着Pan-1R700浓度的减小而降低。(B)Pan-IR700的荧光寿命(FLT)图像:不同浓度的Pan-1R700溶液的FLT的值几乎相同,3.56+/-0.081ns;3.62(2.5pg/mL),3.58(5pg/mL),3.44(20pg/mL),3.60ns(40pg/mL)。(C)对A431细胞片状沉淀物进行LED光照射改变了FLT。用剂量为0、8、15和30J/cm2的PIT处理与Pan-IR700孵育24小时的A431细胞系。与光暴露前的3.28ns相比,FLT缩短至3.09、2.94和2.85ns。这些表示分别缩短了9.1、10.1和13.1%。(D)A431片状沉淀物的FLT依赖于与Pan-IR700孵育的时间。随着与Pan-IR700孵育的时间的推移,FLT值放大。FLT从2.98ns(1小时)变为3.42ns(24小时)。
图11的数字图像示出了用Pan-IR700(10jig/m0)在37℃预孵育24小时的A431细胞在开始暴露于NIR光后5、15、60和90秒的连续荧光(下图)和微分干涉相差(DIC)显微镜图像(上图)。Pan-1R700在与细胞膜结合后逐渐内化到A431细胞的细胞质中,直至注射后24小时。DIC上的形态改变因暴露于更大剂量的NIR光而变得更严重。比例尺,50pm。
图12A-D.经照射的肿瘤(暗灰色柱)和未经照射的肿瘤(亮灰色柱)的FLT的比较。(A)在小鼠背部两侧接种A431细胞的同一小鼠中,进行剂量为10、30、50J/cm2的PIT之前或之后的FLT图像。右侧肿瘤用PIT处理而左侧肿瘤被覆盖。将用50J/cm2(B)、30J/cm2(C)和10J/cm2(D)的PIT处理的A431肿瘤的FLT绘图。与未经照射的肿瘤相比,证明了NIR光剂量为30和50J/cm2的PIT使FLT立即显著(P<0.05)缩短。然而,在10J/cm2的低剂量下,FLT不会显著缩短。在PIT后6小时观察到FLT的短暂延长,这可能是由于被活性巨噬细胞摄取。使用Mann-Whitney U检验进行统计分析。
图13A-C.(A)与无处理对照(0J/cm2)(对照)相比,用50和30J/cm2的PIT处理的肿瘤中的FLT显著缩短(p<0.01)。50和30J/cm2的PIT使FLT分别立即缩短至69.1+/-10.9%和61.5+15.1%。没有立即观察到仅用10J/cm2照射的A431肿瘤显示出显著的FLT缩短。与无处理对照相比,PIT后48小时,FLT仅缩短了7.7%。(B)随着时间的推移,在PIT处理的小鼠中未经照射的肿瘤的FLT比未处理的小鼠中的FLT缩短得稍多,但是这些改变是不显著的。使用Student’s t检验进行统计分析。(C)示出了用0、10、30和50J/cm2的PIT处理的A431肿瘤的组织学样本。所有样本用苏木精和伊红染色。对处理的肿瘤进行的显微镜评估表明,PIT后健康的或受损的肿瘤细胞簇有不同程度的坏死和微出血。当给予30和50J/cm2的NIR光时,坏死性损伤是弥散且强烈的并且可见到的存活的肿瘤细胞更少。相反,当仅给予10J/cm2的NIR光时,仅在所述肿瘤内的有限区域中存在坏死性细胞损伤,而仍然存在大量的健康的癌病灶。比例尺指示50μm。
图14A-C。A.在PIT后PEG化的Qdot800的动态图像。用Pan-IR700注射A431小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。在PIT处理后1小时给予Qdot800。在10分钟内仅右侧肿瘤清晰地显示出来。B.PIT处理的肿瘤(绿色;上)、对照肿瘤(蓝色;中间)和背景(黑色;下)的时间-信号强度曲线。C.荧光显微术。IR700信号显示出存活的A431细胞。Qdot800在PIT处理的肿瘤组织中广泛分布,并部分地观察到IR700和Qdot800共定位,然而,在对照肿瘤中,Qdot800的信号位于主血管的附近。
图15A-15B.A.PIT后SPIO的动态图像。用Pan-IR700注射A431小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。在PIT处理后1小时给予SPIO。在5分钟内仅右侧肿瘤清楚地显示出来。B.普鲁士蓝染色和HE染色。
图16A-16D.A.PIT后Pan-IR800的动态图像。用Pan-IR700注射A431小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。在PIT处理后1小时给予Pan-IR800。在10分钟内仅右侧肿瘤清楚地显示出来。B.Pan-IR800在PIT处理的肿瘤中可以以依赖于照射的光剂量的方式快速累积。在对照肿瘤中没有观察到信号。C和D。PIT后24小时,Pan-IR800不能被所述肿瘤吸收,可能是因为修复了血管的基底(间质压恢复)或血流停止。
图17A-F.A-C PIT后含有柔红霉素的脂质体的动态图像。用Pan-IR700注射A431小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。在PIT处理后1小时给予含有柔红霉素的脂质体。在30分钟内仅右侧肿瘤清楚地显示出来。D.荧光显微镜研究。IR700信号显示存活的A431细胞。含柔红霉素的脂质体在PIT处理的肿瘤组织中广泛分布并部分地观察到IR700与Qdot800的共定位,然而,对照肿瘤中Qdot800的信号位于主血管的附近。E.PIT与含柔红霉素的脂质体结合的联合疗法显著地抑制了肿瘤生长和(F)延长了荷A431小鼠的存活时间。
图18提供的示意图示出了使用PIT和化学疗法治疗肿瘤的示例性方法,所述方法可包括对肿瘤进行成像。
图19A-19B.A.PIT后Tra-IR800的动态图像。用Tra-IR700注射3T3/HER2小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。在PIT处理后1小时给予Tra-IR800。在10分钟内仅右侧肿瘤清楚地显示出来。白色箭头示出光不充足地照射3T3HER2肿瘤的位置。Tra-IR800仅在所述肿瘤暴露于NIR光的区域累积。B.PIT后Pan-IR800的动态图像。用Pan-IR700注射荷MDA-MB-468的小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。在PIT处理后1小时给予Pan-IR800。在10分钟内仅右侧肿瘤清楚地显示出来。
图20A-20C.A.PIT后USPIO的动态图像。用Pan-IR700注射A431小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。在PIT处理后1小时给予USPIO。在5分钟内仅右侧肿瘤清楚地显示出来。B.普鲁士蓝染色和HE染色。C.PIT后G6-Gd的动态图像。用Pan-IR700注射A431小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。在PIT处理后1小时给予G6-Gd。在5分钟内仅右侧肿瘤清楚地显示出来。
图21A-21B.A.肿瘤边缘区域和核心区域的荧光显微镜研究。IR700信号显示存活的A431细胞。含有柔红霉素的脂质体在PIT处理的肿瘤组织中广泛分布,并且部分地观察到IR700和含有柔红霉素的脂质体的共定位。尤其是在核心区域中,DX可在局部坏死的区域中被吸收。B.治疗后的体重变化。在组之间没有明显的差异。
具体实施方式
除非另有说明,否则本文所用的所有技术和科学术语的含义与本公开发明所属技术领域的普通技术人员通常所理解的相同。除非上下文另有明确说明,否则单数术语“一”、“一个”和“所述”包括复数指代物。类似地,除非上下文另有明确说明,否则词语“或”意欲包括“和”。“包含”意指“包括”。因此“包含A或B”意指“包括A”或“包括B”或“包括A和B”。
下文描述了适合用于实践和/或测试本公开实施方案的方法和材料。这些方法和材料仅仅是例证性的并不意欲是限制性的。可以使用其他与本文描述的那些相类似或等价的方法和材料。例如,本公开的发明所属技术领域中熟知的常规方法记载于多种一般性和更具体的参考文献中,包括例如Sambrook et al.,Molecular Cloning:A Laboratory Manual,2ded.,Cold Spring Harbor Laboratory Press,1989;Sambrook et al.,Molecular Cloning:A Laboratory Manual,3d ed.,Cold Spring HarborPress,2001;Ausubel et al.,Current Protocols in Molecular Biology,GreenePublishing Associates,1992(和2000年增刊);Ausubel et al.,ShortProtocols in Molecular Biology:A Compendium of Methods from CurrentProtocols in Molecular Biology,4th ed.,Wiley&Sons,1999;Harlow andLane,Antibodies:A Laboratory Manual,Cold Spring Harbor LaboratoryPress,1990;和Harlow and Lane,Using Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory Press,1999。
对于在2010年7月9日获得的序列,与本文参考的所有GenBank登录号相关的序列以引用的方式纳入本文。
为方便阅读本公开的各种实施方案,提供了以下对具体术语的解释:
给药:通过任何有效的途径提供或给予受试者试剂,例如抗体-IR700分子。示例性的给药途径包括但不限于局部、注射(例如皮下、肌肉内、真皮内、腹膜内、肿瘤内和静脉内)、口腔、眼睛、舌下、直肠、经皮、鼻内、阴道和吸入途径。
抗体:包含至少轻链或重链免疫球蛋白可变区的多肽配体,其特异性识别并结合抗原(例如肿瘤特异性蛋白)的表位。抗体由重链和轻链组成,所述重链和轻链各自具有可变区,称为重链可变区(VH)和轻链可变区(VL)。所述VH区和VL区一起负责结合被抗体识别的抗原。
抗体包括完整的免疫球蛋白以及本领域熟知的抗体的变体和部分,例如Fab片段、Fab'片段、F(ab)'2片段、单链Fv蛋白(“scFv”)和二硫键稳定的Fv蛋白(“dsFv”)。scFv蛋白是融合蛋白,其中免疫球蛋白的轻链可变区和免疫球蛋白的重链可变区通过接头结合,而在dsFv中,所述链已被突变以引入二硫键来稳定所述链的连接。所述术语还包括遗传工程形式例如嵌合抗体(例如人源化鼠抗体)、异缀合抗体(heteroconjugate antibody)(例如双特异性抗体)。还见于PierceCatalog and Handbook,1994-1995(Pierce Chemical Co.,Rockford,IL);Kuby,J.,Immunology,3rd Ed.,W.H.Freeman&Co.,New York,1997。
通常,天然的免疫球蛋白具有通过二硫键互相连接的重链(H)和轻链(L)。有两种类型的轻链:λ和κ。有5种决定抗体分子功能活性的主要重链类型(或同种型):IgM、IgD、IgG、IgA和IgE。
每条重链和轻链均含有恒定区和可变区(所述区域还称为“结构域”)。重链可变区与轻链可变区结合,特异性地结合抗原。轻链和重链可变区含有被三个高变区(也称为“互补决定区”或“CDR”)隔开的“框架”区。已经确定了框架区和CDR的范围(见Kabat et al.,Sequences ofProteins of Immunological Interest,U.S.Department of Health andHuman Services,1991,其以引用的方式纳入本文)。Kabat数据库目前在线维持。不同的轻链或重链的框架区的序列在同一物种例如人内是相对保守的。抗体的框架区,也就是组成性轻链和重链的结合框架区,用于在三维空间中安置和排列CDR。
CDR主要负责与抗原的表位结合。每条链的CDR一般称为CDR1、CDR2和CDR3,从N端开始顺序编号,一般还通过所述具体CDR所在的链来鉴定。因此,VH CDR3位于其所在抗体的重链的可变结构域,而VL CDR1是来自其所在抗体的轻链的可变结构域的CDR1。具有不同特异性的抗体(即,对不同的抗原有不同的结合位点)具有不同的CDR。虽然抗体与抗体之间的CDR不同,但是CDR内仅有限数量的氨基酸位置直接参与抗原结合。CDR内的这些位置被称为特异性决定残基(SDR)。
提及“VH”或“VH”时,是指免疫球蛋白重链的可变区,包括Fv、scFv、dsFv或Fab的重链可变区。提及“VL”或“VL”时,是指免疫球蛋白轻链的可变区,包括Fv、scFv、dsFv或Fab的轻链可变区。
“单克隆抗体”是由B-淋巴细胞的单个克隆或由其中已经转染了单个抗体的轻链和重链基因的细胞产生的抗体。单克隆抗体通过本领域技术人员所知晓的方法产生,例如通过将骨髓瘤细胞和免疫脾细胞融合制备杂合的抗体形成细胞。单克隆抗体包括人源化单克隆抗体。
“嵌合抗体”具有来自一个物种例如人的框架残基和来自另一物种的CDR(其一般赋予抗原结合能力)例如特异性结合间皮素的鼠抗体。
“人源化”免疫球蛋白是包括人框架区和一个或多个来自非人(例如小鼠、大鼠或合成的)免疫球蛋白的CDR的免疫球蛋白。提供CDR的非人免疫球蛋白被称为“供体”,提供所述框架的人免疫球蛋白被称为“受体”。在一个实施方案中,人源化免疫球蛋白中的所有CDR均来自供体免疫球蛋白。恒定区不一定存在,但是如果存在则必须与人免疫球蛋白恒定区基本相同,即,具有至少约85-90%,例如约95%或更高的同一性。因此,可能除了CDR外,人源化免疫球蛋白的所有部分均与天然人免疫球蛋白序列的相应部分基本相同。“人源化抗体”是包含人源化轻链和人源化重链免疫球蛋白的抗体。人源化抗体与提供CDR的供体抗体结合相同的抗原。人源化免疫球蛋白或抗体的受体框架可有有限数量的氨基酸被取自供体框架的氨基酸置换。人源化或其他单克隆抗体可以具有额外的保守性氨基酸置换,所述置换对抗原结合或其他免疫球蛋白功能基本没有影响。人源化免疫球蛋白可以通过遗传工程方法构建(参见例如,美国专利No.5,585,089)。
“人”抗体(也称为“全人”抗体)是包括人框架区和全部来自人免疫球蛋白的CDR的抗体。在一个实例中,框架和CDR来自相同来源的人重链和/或轻链氨基酸序列。然而,可以将来自一种人抗体的框架设计成包括来自不同人抗体的CDR。人免疫球蛋白的所有部分均与天然人免疫球蛋白序列的相应部分基本相同。
“特异性结合”是指相对于与无关蛋白例如非肿瘤蛋白例如β肌动蛋白结合,单个抗体特异性地与抗原例如肿瘤特异性抗原发生免疫反应的能力。例如,HER2特异性结合剂在体外或体内基本上只结合HER-2蛋白。本文使用的术语“肿瘤特异性结合剂”包括肿瘤特异性抗体和在该制剂中基本上只结合肿瘤特异性蛋白的其他试剂。
所述结合是抗体分子和T细胞表面分子的抗原决定簇之间的非随机结合反应。所需的结合特异性一般是由抗体对T细胞表面分子和无关抗原的不同结合能力的参考点来决定的,并因此区别两种不同的抗原,尤其是当两种抗原具有独特的表位时。特异性结合特定表位的抗体被称为“特异性抗体”。
在一些实例中,抗体(例如抗体-IR700分子)特异性结合靶(例如细胞表面蛋白)的结合常数比对于样品或受试者中的其他分子的结合常数高至少103M-1、104M-1或105M-1。在一些实例中,抗体(例如单克隆抗体)或其片段的平衡常数(Kd)为1nM或更低。例如,抗体结合靶例如肿瘤特异性蛋白的亲和力为至少约0.1×10-8M、至少约0.3×10-8M、至少约0.5×10-8M、至少约0.75×10-8M、至少约1.0×10-8M、至少约1.3×10-8M、至少约1.5×10-8M或至少约2.0×10-8M。例如,Kd值可通过竞争ELISA(酶联免疫吸附测定)或使用表面等离子共振设备例如可购自Biacore,Inc.,Piscataway,NJ的Biacore T100确定。
抗体-IR700分子或抗体-IR700缀合物:包括与IR700缀合的抗体例如肿瘤特异性抗体的分子。在一些实例中,所述抗体是特异性结合癌细胞上的表面蛋白的人源化抗体(例如人源化单克隆抗体)。
抗原(Ag):可在动物体内刺激抗体产生或T细胞应答的化合物、组合物或物质,包括被注射或吸收进入动物体内的组合物(例如包括肿瘤特异性蛋白的组合物)。抗原与特异性体液免疫或细胞免疫的产物反应,所述产物包括由异源抗原例如本公开的抗原诱导的那些。“表位”或“抗原决定簇”是指B和/或T细胞对其作出应答的抗原区域。在一个实施方案中,当表位与MHC分子一同呈递时,T细胞对表位作出应答。表位可以由相邻氨基酸或由因蛋白质的三级折叠并列的非相邻氨基酸形成。由相邻氨基酸形成的表位暴露通常在变性溶剂后仍然存在,而三级折叠形成的表位通常在用变性溶剂处理后丢失。表位在独特的空间构象中一般包括至少3个并且更常见地至少5个、约9个或约8-10个氨基酸。确定表位空间构象的方法包括,例如X-射线晶体法和核磁共振。
抗原的实例包括但不限于含有抗原决定簇的肽、脂质、多糖和核酸,例如被免疫细胞识别的那些。在一些实例中,抗原包括肿瘤特异性肽(例如出现在癌细胞表面上的肽)或其免疫原性片段。
癌症:特征为异常或不受控的细胞生长的恶性肿瘤。常常与癌症相关的其他特征包括转移,干扰邻近细胞的正常功能,以异常水平释放细胞因子或其他分泌产物以及抑制或加重炎症应答或免疫应答,侵入周围或远处的组织或器官,例如淋巴结等。“转移性疾病”是指已经离开最初的肿瘤部位并例如经血流或淋巴系统移行至身体其他部位的癌细胞。在一个实例中,通过本公开的方法杀死的细胞是癌细胞。
接触:以直接物理联系的方式包括固体和液体形式放置。接触可在体外(例如与分离的细胞例如肿瘤细胞)或在体内(通过给予受试者(例如有肿瘤的受试者))发生。
减少:使某物的质量、数量或强度减少。在一个实例中,例如与没有抗体-IR700分子时的应答相比,包括一种或多种抗体-IR700分子的治疗性组合物,在用NIR(例如波长为约680nm)以至少1J cm2-的剂量照射后,可使得所述抗体-IR700分子特异性结合的细胞的活力减少。在一些实例中,这种减少通过杀死所述细胞来证明。在一些实例中,相对于用不包含抗体-IR700分子的组合物所观察到的活力,所述细胞的活力减少至少20%、至少50%、至少75%或甚至至少90%。在其他实例中,减少以倍数变化来表示,例如,相对于用不包含抗体-IR700分子的组合物所观察到的活力,所述细胞活力减少了至少2倍、至少3倍、至少4倍、至少5倍、至少8倍、至少10倍或甚至至少15或20倍。这种减少可使用本文公开的方法测量。
IR700(
Figure BDA0000474942740000141
700DX):具有下式的染料:
Figure BDA0000474942740000142
目前可购自LI-COR(Lincoln,NE)。IR700有若干有利的化学性质。氨基反应性的IR700是相对亲水的染料并且可使用IR700的NHS酯与抗体共价缀合。IR700的消光系数(在最大吸收波长689nm下为2.1×105M-1cm-1)还是常规光敏剂例如血卟啉衍生物
Figure BDA0000474942740000143
(630nm下为1.2×103M-1cm-1)间-四氢氯苯;(652nm下为2.2×104M-1cm-1)和单-L-天冬氨酰二氢卟酚e6;NPe6/(654nm下为4.0×104M-1cm-1)的5倍多。
药物组合物:当适当地给予受试者时能够诱导所需的治疗或预防效应的化合物或组合物。药物组合物可包括治疗剂,例如一种或多种抗体-IR700分子。治疗剂或药剂是单独地或与另外的化合物一起诱导所需的应答(例如当给予受试者时诱导治疗或预防效应)的试剂。在具体的实例中,药物组合物包括治疗有效量的至少一种抗体-IR700分子。
可药用载体:用于本公开的可药用载体(运载体)是常规的。Remington’s Pharmaceutical Sciences,by E.W.Martin,MackPublishing Co.,Easton,PA,19th Edition(1995)记载了适用于药物递送一种或多种治疗性化合物例如一种或多种抗体-IR700分子的组合物和制剂。
通常,所述载体的性质将依赖于所采用的具体给药方式。例如,肠胃外制剂通常包括可注射的流体,所述流体包括药学上和生理学上可用的流体,例如水、生理盐水、平衡盐溶液、葡萄糖水溶液、甘油或类似载体。对于固体组合物(例如,粉剂、丸剂、片剂或胶囊形式),常规的非毒性固体载体可包括例如药品级的甘露醇、乳糖、淀粉或硬脂酸镁。除了生物中性载体之外,待给予的药物组合物可含有少量无毒的辅助物质,如润湿剂或乳化剂、防腐剂、pH缓冲剂等,例如乙酸钠或脱水山梨糖醇单月桂酸酯。
光免疫疗法(PIT):一种分子靶向疗法,其利用基于与靶向细胞表面受体的单克隆抗体(MAb)缀合的近红外(NIR)酞菁染料IR700的靶特异性光敏剂。在一个实例中,所述细胞表面受体在癌细胞上特异性地存在,例如HER1、HER2或PSMA,因此可使用PIT杀死这种细胞。当所述抗体-IR700分子结合所述细胞并且用NIR照射所述细胞时,发生所述细胞的细胞死亡,而不会以显著的数量杀死不表达被所述抗体-IR700分子识别的细胞表面受体的细胞。
受试者或患者:包括人和非人哺乳动物的术语。在一个实例中,所述受试者是人或兽类受试者,例如小鼠。在一些实例中,所述受试者是患有癌症或正在进行癌症治疗的哺乳动物(例如人)。
治疗有效量:组合物单独地或与一种或多种另外的治疗剂(例如化学治疗剂)一起足以在用所述试剂治疗的受试者或细胞中达到所需效果的量。试剂(例如抗体-IR700分子)的有效量可依赖于若干因素,包括但不限于,正在治疗的受试者或细胞,具体的治疗剂和治疗性组合物的给药方式。在一个实例中,治疗有效量或浓度足以防止疾病发展(例如转移),推迟疾病进展或者引起疾病消退,或者所述治疗有效量或浓度能够减少由所述疾病例如癌症引起的症状。在一个实例中,治疗有效量或浓度足以延长患有肿瘤的患者的存活时间。
在一个实例中,所需的效应是减少或抑制一种或多种与癌症相关的症状。所述组合物要有效也不必完全消除所述一种或多种症状。例如,与没有抗体-IR700分子时的肿瘤尺寸相比,给予含抗体-IR700分子的组合物然后进行照射可使肿瘤的尺寸(例如肿瘤的体积或重量,或肿瘤的转移)减小,例如减小达至少20%、至少50%、至少80%、至少90%、至少95%、至少98%或甚至至少100%。在一个具体的实例中,所需的效应是杀死细胞群达到所需的量,例如与没有抗体-IR700分子但进行照射时的细胞杀死相比,杀死至少20%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少98%、或者甚至至少100%的细胞。在一个具体的实例中,所需的效应是使患有肿瘤的患者(或最近去除肿瘤的患者)的存活时间增长,例如与没有抗体-IR700分子但进行照射时的存活期相比,存活增长达至少20%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少98%、或者甚至至少100%。
给予人或兽类受试者的包括本公开的抗体-IR700分子之一的试剂的有效量,将依赖于与该受试者相关的多个因素(例如所述受试者的总体健康)而改变。试剂的有效量可通过改变产品的剂量和测量所产生的治疗效应例如肿瘤的消退来确定。有效量还可通过多种体外、体内或原位免疫测定来确定。本公开的试剂可以以获得所需效应所需的单个剂量或多个剂量来给予。然而,有效量可依赖于使用的来源、治疗的受试者、治疗的病症的严重程度和类型以及给药方式。
在具体实例中,抗体-IR700分子的治疗有效剂量为至少0.5毫克/60千克(mg/kg)、至少5mg/60kg、至少10mg/60kg、至少20mg/60kg、至少30mg/60kg、至少50mg/60kg,例如0.5-50mg/60kg,例如当静脉内给予时,剂量为例如1mg/60kg、2mg/60kg、5mg/60kg、20mg/60kg或50mg/60kg。在另一个实例中,抗体-IR700分子的治疗有效剂量为至少10μg/kg,例如至少100μg/kg、至少500μg/kg、或至少500μg/kg,例如10μg/kg-1000μg/kg,例如当肿瘤内或腹膜内给予时,剂量为例如100μg/kg、250μg/kg、约500μg/kg、750μg/kg或1000μg/kg。在一个实例中,治疗有效剂量为至少1μg/ml,例如至少500μg/ml,例如20μg/ml-100μg/ml,例如以局部用溶液剂的形式给予10μg/ml、20μg/ml、30μg/ml、40μg/ml、50μg/ml、60μg/ml、70μg/ml、80μg/ml、90μg/ml或100μg/ml。然而,本领域的技术人员会认识到,也可以使用更高或更低的剂量,例如依赖于具体的抗体-IR700分子。在具体的实例中,这种每日剂量以一个或多个分份剂量(例如2、3或4份剂量)或单个制剂的形式给予。在可药用载体的存在下,在其他治疗剂(例如其他抗肿瘤剂)的存在下,本公开的抗体-IR700分子可单独给予。
通常,给予所述抗体-IR700之后照射的适合剂量为在660-740nm的波长下至少1J cm-2,例如在660-740nm的波长下至少10J cm-2、在660-740nm的波长下至少50J cm-2或在660-740nm的波长下至少100Jcm-2,例如在660-740nm的波长下1-500J cm-2。在一些实例中,所述波长为660–710nm。在具体的实例中,给予所述抗体-IR700分子后照射的适合剂量为在680nm的波长下至少1.0J cm-2例如,在680nm的波长下至少10J cm-2、在680nm的波长下至少50J cm-2或在680nm的波长下至少100J cm-2,例如在680nm的波长下1-5001.0J cm-2。在具体的实例中,在给予所述抗体-IR700分子之后,进行多次照射(例如至少2次、至少3次、或至少4次照射,例如2、3、4、5、6、7、8、9或10次分开给予)。
处理:当用于指用治疗剂处理细胞或组织时,该术语包括使试剂(例如抗体-IR700分子)与所述细胞或组织接触或孵育。经处理的细胞是已经在足以实现所需效应的条件下与一定量的所需组合物接触的细胞。在一个实例中,经处理的细胞是已经在足以使抗体结合所述细胞上表面蛋白的条件下暴露于抗体-700分子中,然后进行照射直至实现足够的细胞杀死的细胞。
肿瘤、瘤形成、恶性肿瘤或癌症:新生物是由过度细胞分裂引起的组织或细胞的异常生长。新生物生长可产生肿瘤。个体中肿瘤的量是“肿瘤负荷”,其可以以所述肿瘤的数目、体积或重量来测量。不转移的肿瘤称为“良性的”。侵入周围组织和/或可转移的肿瘤称为“恶性的”。“非癌组织”是来自其中形成恶性新生物的同一器官但不具有所述新生物的特征性病理的组织。通常,非癌组织在组织学上看起来是正常的。“正常组织”是来自器官的组织,其中所述器官不受该器官的癌症或另外的疾病或病症的影响。“无癌症的”受试者尚未被诊断患有该器官的癌症并且不患有可检测到的癌症。
可以用所要求保护的方法治疗的示例性肿瘤例如癌症包括实体瘤,例如乳腺癌(例如小叶和导管癌)、肉瘤、肺癌(例如非小细胞癌、大细胞癌、鳞状细胞癌和腺癌)、肺间皮瘤、结肠直肠腺癌、胃癌、前列腺腺癌、卵巢癌(例如浆液囊腺癌和粘液囊腺癌)、卵巢生殖细胞肿瘤、睾丸癌和生殖细胞肿瘤、胰腺癌、胆腺癌、肝细胞癌,膀胱癌(包括例如移行细胞癌,腺癌和鳞状细胞癌)、肾细胞腺癌,子宫内膜癌(包括例如腺癌和混合性苗勒氏肿瘤(癌肉瘤))、宫颈内膜、外宫颈部和阴道的癌症(例如各自相同的腺癌和鳞状细胞癌)、皮肤的肿瘤(例如,鳞状细胞癌、基底细胞癌、恶性黑色素瘤、皮肤附属器肿瘤(skin appendage tumor)、卡波西肉瘤,皮肤淋巴细胞瘤,皮肤附属器(adnexal)肿瘤以及各种类型的肉瘤和Merkel细胞癌)、食管癌、鼻咽和口咽的癌症(包括相同的鳞状细胞癌和腺癌)、唾液腺癌、脑和中枢神经系统肿瘤(包括例如神经胶质,神经元和脑膜起源的肿瘤)、外周神经的肿瘤、软组织肉瘤以及骨和软骨的肉瘤,和淋巴瘤(包括B-细胞和T-细胞恶性淋巴瘤)。在一个实例中,所述肿瘤是腺癌。
所述方法还可用于治疗液体肿瘤,例如淋巴细胞、白细胞或其他类型的白血病。在具体的实例中,所治疗的肿瘤是血液的肿瘤,例如白血病(例如急性淋巴细胞白血病(ALL)、慢性淋巴细胞白血病(CLL)、急性髓性白血病(AML)、慢性髓性白血病(CML)、多毛细胞白血病(HCL)、T细胞幼淋巴细胞性白血病(T-PLL)、大颗粒淋巴细胞性白血病和成人型T细胞性白血病)、淋巴瘤(例如霍杰金淋巴瘤和非霍杰金淋巴瘤)和骨髓瘤。
在足以……的条件下:用于描述容许所需活性的任何环境的短语。在一个实例中,“在足以……的条件下”包括给予受试者抗体-IR700分子,足以使得所述抗体-IR700分子能够结合细胞表面蛋白。在具体的实例中,所需的活性是在对所述抗体-IR700分子结合的细胞进行治疗性照射之后杀死所述细胞。
未处理的细胞:未与所需的试剂例如抗体-IR700分子接触过的细胞。在实例中,未处理的细胞是接受其中递送所需试剂载体的细胞。
公开某些具体的实施例并不意味着排除其他的实施方案。另外,本文描述的任何疗法不一定排除其他治疗,但是可与其他生物活性剂或治疗方式结合。
技术概述
用于癌症治疗的常规光动力学疗法(PDT)基于肿瘤中光敏剂的优先累积,以产生对周围组织伤害最小的光毒性(Dougherty et al.J NatlCancer Inst90:889-905,1998)。传统上认为在氧的存在下通过产生ROS,尤其是单线态氧,来介导PDT(Dougherty et al.J Natl Cancer Inst90:889-905,1998)。然而,就现有的光敏剂缺乏肿瘤选择性而言,可在正常组织中观察到相当程度的损伤,导致剂量限制性毒性。因此,如果光敏剂可能有选择性更强的靶向作用并且每个吸收的光子可能有更有效的光毒性,那么可以改善目前的PDT方法。
本文公开了高度靶向的光敏剂,称为抗体-IR700分子。所述光敏剂,IR700,在NIR范围内被激发,产生更深的组织穿透,导致在仅单剂量的外部NIR光照射之后成功地根除皮下异种移植物肿瘤。靶向的光毒性似乎主要依赖于所述抗体-1R700分子与细胞膜的结合,在较小的程度上依赖于内化作用和ROS形成。所述缀合物诱导的荧光可用于非侵入性地引导PIT并监测治疗的结果。
虽然靶向的光敏剂可分布在全身各处,但是只有当施加强光时它才有活性,减少了脱靶效应的可能性。相反地,现有的光敏剂是选择性差的小分子,其不仅结合癌细胞也结合正常细胞,包括皮肤和其他上皮表面,导致不希望的光毒性。另外,在理论上难以进行常规光敏剂的靶特异性递送,因为在到达细胞之后,所述试剂仍必须得内化到细胞器例如线粒体中以使其最有效。已经测试了常规光敏剂和Mab的多种组合可改进选择性(Mewet al.,J Immunol130:1473-1477,1983;Sobolev et al.,Prog Biophys MolBiol73:51-90,2000;Carcenac et al.,Br J Cancer85:1787-93,2001;Vrouenraets et al.,Cancer Res59:1505-13,1999;Vrouenraets et al.,CancerRes61:1970-1975,2001;Hamblin et al.,Cancer Res56:5205-10,1996;Mew et al.,Cancer Res45:4380-6,1985)。然而,已经取得的成功是有限的,尤其是在体内测量疗效时,例如因为常规光敏剂具有低的消光系数,其需要大量的光敏剂与单个抗体分子缀合,因此可能降低亲和力,因为常规光敏剂大多是疏水性的,导致难以使光敏剂与抗体缀合而不减弱免疫反应性和体内靶累积,并且因为常规光敏剂一般吸收可见范围的光,减弱组织穿透性。
本文示出了基于抗体的光敏剂(例如基于mAb的光敏剂),其仅在与癌细胞膜上的靶分子结合时被NIR光激活用于靶向光免疫疗法(PIT)。当与对细胞表面受体特异性的抗体缀合时,荧光团IR700(Licor Co.Lincoln,NE)可成为光敏剂,因此可用于不需要的细胞例如肿瘤或癌细胞的靶特异性光动力学疗法。此外,因为这些试剂还发射用于诊断的荧光,因此其可用于指导光应用于最小化对不相关组织的光暴露和非侵入性监测疗效。基于用三种不同的MAb诱导的光毒性的相似性,所述三种不同的MAb针对表达不同数量的各自靶分子的若干不同细胞,并考虑到从免疫疗法获得的可能的其他益处,该方法可普遍地应用于其他mAb(例如Nanus et al.,J.Urology170:S84-S88,2003和van Dongen et al.,Adv DrugDeliv Rev56:31-52,2004中公开的那些)。
当IR700分子与EGFR抗体(HER1或HER2)或PSMA抗体缀合时,选择性结合所述缀合物的细胞一旦暴露于680nm近红外(NIR)光就被杀死。基于这一新的观察结果,提供了患者疗法。因为该抗体依赖的靶细胞特异性光动力学疗法用NIR光(例如680nm)激发实现并仅在抗体结合时显示出高度选择性的细胞毒性效应,所以该新的使用IR700的抗体依赖的靶细胞特异性光动力学疗法可用于癌症患者,作为以最小的副作用使癌症疗法个性化的方法。
所述抗体-1R700缀合物的选择性源自于其在结合靶细胞的细胞膜之后的激活;未结合的缀合物不会产生光毒性。短期活力测定以及长期增殖测定证明了所述缀合物能够诱导特异性细胞死亡。当处理受体阳性和受体阴性细胞的共培养物时,尽管在所述培养基中存在未结合的抗体-1R700分子,但是仅受体阳性细胞被杀死。该选择性细胞杀死使得对正常细胞造成的损伤最小。
所述抗体-1R700分子必须结合细胞膜才有活性。例如,在光暴露的一秒钟内发生内吞溶酶体破裂。由单线态氧诱导的细胞死亡诱导更慢的细胞凋亡。因为甚至在4℃下通过该方法如此迅速地诱导了细胞膜损伤,所以可假设细胞死亡是由局部加热的水的快速膨胀而造成的,由单线态氧效应造成的影响相对较小。
用叠氮化钠、氧化还原剂和单线态氧清除剂进行处理,仅部分地减少光毒性而不会完全消除所述缀合物的效力。这表明,ROS产生是光毒性效应的一小部分。观察到在与抗体-1R700在4℃下孵育仅1小时之后诱导了光毒性,表明活性不需要所述缀合物的内化。这与目前需要细胞内定位才有效的PDT试剂不同。视频显微术证明了当内化所述抗体-缀合物时,在37℃下孵育多于6小时之后进行光暴露后对膜和溶酶体产生快速且明显的损伤。
本公开的抗体-1R700缀合物使得能够对靶组织进行检测。这使得能够用PIT鉴定特定的损伤,而不用照射整个区域。诊断所需的剂量(50μg)显著低于治疗所需的剂量(300μg)。用治疗剂量可改进抗体的瘤内分布。因为结合的和未结合的试剂都发出荧光,所以在治疗剂量下有相对高的背景信号。虽然如此,在PIT后,经治疗的肿瘤的荧光减少并最终消失,这提供了一种监测所述治疗的方法。
游离的IR700和经代谢分解的IR700,在1小时内容易地排泄到尿中而不在任何特定器官中累积。PIT的另一组分,用NIR进行光照射(例如在690nm下),除了在热剂量下,不可能具有毒性。与电离辐射(例如X射线或γ射线)不同,NIR光的累积照射剂量应该没有限制(图9)。因此,重复的PIT可用于长期治疗癌症患者。观察到,用3种不同的方案进行的重复PIT(在单次剂量的抗体-IR700缀合物下进行3或4次分次NIR照射,在多个剂量的抗体之后每两周进行4个周期的PIT)控制了肿瘤再生长,导致了不具有肿瘤的存活多于4个月。
本文还示出了与PIT一起使用抗体-1R700缀合物可增强纳米尺寸的试剂到肿瘤的递送,例如在PIT后持续约8小时。通过使用人为(humeral)因素(包括耗尽血管内皮生长因子(VEGF)或用血管毒性剂损伤细胞)激活,纳米尺寸的试剂可以靶向血管内皮细胞。基于这些观察结果,提供了用于PIT后增强其他抗新生物治疗物到肿瘤的递送的方法。在一个实例中,例如与在没有给予抗体-1R700缀合物和进行PIT的情况下所述抗新生物治疗物到肿瘤的递送相比,所述抗新生物治疗物到肿瘤的递送(或所述抗新生物治疗物的效力)增加达至少20/%、至少25%、至少30%、至少40%、至少50%、至少75%、至少80%、至少90%或甚至至少95%。
杀死细胞和治疗肿瘤的方法
本公开提供了杀死细胞例如靶细胞的方法。所述细胞表达在其表面上的蛋白质,例如肿瘤特异性抗原,所述蛋白质可特异性地结合与染料IR700缀合的抗体(在本文中称为抗体-IR700分子)。所述细胞与治疗有效量的一种或多种抗体-IR700分子在使得所述抗体能够特异性结合所述细胞表面蛋白的条件下接触(例如在可药用载体例如在药学和生理学上可接受的流体的存在下)。例如,所述抗体-IR700分子可存在于在药学上有效的载体中,例如水、生理盐水、平衡盐溶液(例如PBS/EDTA)、葡萄糖水溶液、麻油、甘油、乙醇或其结合物等作为载体。所述载体和组合物可以是无菌的并且剂型适于给药方式。
在允许所述一种或多种抗体-IR700分子结合其细胞表面上的靶的条件下接触或给予所述一种或多种抗体-IR700分子之后,在使得能够杀死所述细胞的条件下照射所述细胞,例如在660-710nm的波长下以至少1Jcm-2的剂量进行照射。在一个实例中,所述细胞与所述抗体-IR700分子接触与进行照射之间有至少10分钟、至少30分钟、至少1小时、至少4小时、至少8小时、至少12小时或至少24小时(例如1-4小时、30分钟-1小时、10分钟-60分钟或30分钟-8小时)。NIR激发光波长允许穿透入组织至少若干厘米。例如,通过使用带有散光器尖端(tip)的光纤耦合激光二极管,可将NIR光递送到若干厘米的位于体表深处原本难接近的肿瘤。除了治疗实体癌之外,可以靶向循环的肿瘤细胞,因为当它们通过浅表血管时,可被激发(例如使用本文公开的NIR LED可穿戴设备)。本公开的方法还可用作用于移植排斥的疗法。
所述方法还包括使所述细胞与一种或多种另外的治疗剂接触。发明人已经确定,在进行照射(例如在660-710nm的波长下以至少10J cm-2、至少20J cm-2、至少30J cm-2、至少40J cm-2、至少50J cm-2、至少70Jcm-2、至少80J cm-2或至少100J cm-2,例如至少10-100J cm-2的剂量照射)之后,有约8小时的时间窗口,在此期间经所述PIT处理的细胞对另外的试剂(例如纳米尺寸的试剂,例如直径约为至少1nm、直径为至少10nm、直径为至少100nm、或直径为至少200nm,例如直径为1-500nm的那些)的摄取出人意料且极佳地被增强。因此,可以在进行所述PIT的同时或在所述PIT之后使一种或多种另外的治疗剂与所述细胞接触。在一个实例中,在照射之后,例如照射所述细胞后约0-8小时(例如照射后至少10分钟、至少30分钟、至少60分钟、至少2小时、至少3小时、至少4小时、至少5小时、至少6小时或至少7小时,例如照射后不超过10小时、不超过9小时或不超过8小时,例如1小时-10小时、1小时-9小时、1小时-8小时、2小时-8小时或4小时-8小时),给予所述另外的治疗剂。在另一个实例中,就在照射之前(例如照射前约10分钟-120分钟,例如照射前10分钟-60分钟或10分钟-30分钟)给予所述另外的治疗剂。
在一些实例中,将所述抗体-IR700分子/PIT与所述另外的疗法(例如抗肿瘤剂)结合增强了肿瘤治疗的效力。例如,将抗体-IR700分子/PIT与另外的疗法(例如抗肿瘤剂)结合可使得到的肿瘤体积比单独用所述抗体-IR700分子/PIT或单独用所述另外的疗法治疗所得到的肿瘤体积小,也就是说,有协同效应。在一个实例中,用组合疗法治疗的肿瘤的体积比单独用所述抗体-IR700分子/PIT或单独用另外的疗法治疗的肿瘤的体积小至少2倍、至少3倍、至少4倍、或甚至至少5倍(例如在治疗后的至少7天、至少10天、至少14天、至少30天、至少60天、至少90天或至少120天后)。在一个实例中,用所述组合疗法治疗的肿瘤的体积比对照未治疗的肿瘤的体积小至少5倍、至少6倍、至少7倍、或甚至至少10倍(例如在治疗后的至少7天、至少10天、至少14天、至少30天、至少60天、至少90天或至少120天后)。在另一个或另外的实例中,将所述抗体-IR700分子/PIT与所述另外的疗法(例如抗新生物剂)结合,相对于如果单独用所述抗体-IR700分子/PIT或单独用所述另外的疗法治疗所述肿瘤时所述受试者的存活时间,可增长具有肿瘤的受试者的存活时间,也就是说,有协同效应。在一个实例中,用所述组合疗法治疗的具有肿瘤的受试者的存活时间比单独用所述IR-700分子/PIT或单独用所述另外的疗法治疗的具有肿瘤的受试者的存活时间长至少2倍、至少3倍、至少4倍、至少5倍、至少6倍、至少7倍或至少10倍(例如,在指定的时间后,例如在治疗后至少14天、至少30天、至少60天、至少90天、至少120天、至少6个月、至少12个月、至少24个月或至少5年,用所述组合疗法治疗的存活受试者比如果单独用任一种疗法治疗的受试者多)。在一个实例中,用所述组合疗法治疗的具有肿瘤的受试者的存活时间是具有未治疗肿瘤的受试者的存活时间至少5倍、至少10倍、至少15倍、或者甚至至少20倍(例如在治疗后至少7天、至少10天、至少14天、至少30天、至少60天、至少90天、至少120天,在治疗后至少6个月、至少12个月、至少24个月或至少5年后,用所述组合疗法治疗的存活受试者比未治疗的受试者多)
示例性的另外的治疗剂包括抗新生物剂,例如化学治疗性的或抗血管生成的试剂或疗法,例如放射疗法。在一个实例中,所述试剂是化学疗法免疫抑制剂(例如利妥昔单抗、类固醇)或细胞因子(例如GM-CSF)。化学治疗剂在本领域是已知的(参见,例如,Slapak and Kufe,Principlesof Cancer Therapy,第86章Harrison's Principles of Internal Medicine,第14版;Perry et al.,Chemotherapy,Ch.17in Abeloff,Clinical Oncology2nd ed.,2000Churchill Livingstone,Inc;Baltzer and Berkery.(eds):Oncology Pocket Guide to Chemotherapy,2nd ed.St.Louis,Mosby-YearBook,1995;Fischer Knobf,and Durivage(eds):The CancerChemotherapy Handbook,4th ed.St.Louis,Mosby-Year Book,1993)。可与本文提供的方法一起使用的示例性化学治疗剂包括但不限于卡铂、顺铂、紫杉醇、多西紫杉醇、多柔比星、表柔比星、托泊替康、伊立替康、吉西他滨、噻唑呋林(iazofurine)、吉西他滨、依托泊苷、长春瑞滨、他莫昔芬、戊司泊达、环磷酰胺、甲氨蝶呤、氟尿嘧啶、米托蒽醌、Doxil(脂质体包裹的多柔比星(doxiorubicine))和长春瑞滨。在一些实例中,所述另外的治疗剂与纳米颗粒缀合(或连接),例如直径为至少1nm的纳米颗粒(例如直径为至少10nm、直径为至少30nm、直径为至少100nm、直径为至少200nm、直径为至少300nm、直径为至少500nm或直径为至少750nm,例如直径为1nm-500nm、1nm-300nm、1nm-100nm、10nm-500nm或10nm-300nm)。
所述方法还可用于在体外(例如通过将所述细胞与所述抗体-IR700分子和一种或多种治疗剂在培养物中孵育)或体内(例如通过给予所述受试者一种或多种抗体-IR700分子和一种或多种治疗剂)杀死细胞。例如,可给予待治疗的受试者治疗有效量的一种或多种抗体-IR700分子,然后用治疗的照射剂量照射所述受试者(或所述受试者中的肿瘤或肿瘤细胞)并给予一种或多种另外的治疗剂(例如在所述照射后约8小时内)。
在一个实例中,使靶细胞与一种或多种抗体-IR700分子接触,然后进行照射并给予另外的治疗剂,可杀死表达与所述抗体特异性结合的细胞表面蛋白的靶细胞。例如,相对于没有用一种或多种抗体-IR700分子处理然后进行照射并给予一种或多种治疗剂,本公开的方法可杀死至少10%,例如至少20%、至少40%、至少50%、至少80%、至少90%或更多的经处理的细胞。
在一个实例中,给予具有肿瘤的受试者一种或多种抗体-IR700分子,结合进行照射和给予一种或多种治疗剂,可杀死表达可与所述抗体特异性结合的细胞表面蛋白的细胞,从而治疗所述肿瘤。例如,本公开的方法可减小肿瘤的尺寸或体积,使肿瘤生长变慢,减少或减慢所述肿瘤转移(例如通过减少转移的数量或减少转移的体积或尺寸)或其组合。例如,相对于没有给予一种或多种抗体-IR700分子然后进行照射,本公开的方法可减小肿瘤细胞尺寸或体积和/或转移的肿瘤细胞体积(或转移肿瘤的数量),例如达至少10%,例如达至少20%、至少40%、至少50%、至少80%、至少90%或更多。另外,本公开的方法可导致与肿瘤和/或转移肿瘤相关的症状减少。在一个实例中,相对于没有给予所述抗体-IR700分子然后进行照射,给予本公开的组合物减慢肿瘤的生长,例如达至少10%,例如达至少20%、至少40%、至少50%、至少80%、至少90%或更多。监测肿瘤体积/尺寸/转移的方法在本领域是常规的。在一些实例中,例如相对于没有给予一种或多种抗体-IR700分子、进行照射并给予一种或多种治疗剂,本公开的方法可增长受试者(例如具有肿瘤的受试者或先前去除过肿瘤的受试者)的存活时间,例如增长至少20%、至少40%、至少50%、至少80%、至少90%或更多。例如,相对于没有给予抗体-IR700分子、进行照射并给予一种或多种治疗剂的情况下的平均存活时间,本公开的方法可使受试者的存活时间增长达至少3个月、至少6个月、至少12个月、至少18个月、至少24个月、至少36个月或更多。
给予治疗有效量的抗体-IR700分子然后进行治疗有效量的照射并给予一种或多种治疗剂,能够在体内选择性地杀死肿瘤细胞,并且能够在体内减少肿瘤的重量或体积。通过相对于正常细胞选择性地杀死肿瘤细胞,意指所述方法能够比杀死正常细胞(例如,不表达与所给予的抗体特异性结合的细胞表面蛋白的细胞)更有效地杀死肿瘤细胞。
本公开的方法可用于治疗体内固定的肿瘤以及循环中的肿瘤(例如白血病细胞、转移、循环的肿瘤细胞)。然而,循环的细胞因其自身性质而不能暴露于光下太久。因此,如果待杀死的细胞是在全身各处循环的细胞,那么可通过使用可穿戴或可覆盖部分身体的装置来实现所述方法。例如,可长期穿着这样的装置。可使用纳入发出NIR的发光二极管(LED)和电池组的日常可穿戴物品(例如,腕表、珠宝(例如项链或手镯)、毯子、衣服(例如内衣、短袜和鞋内插入物)和其他日常可穿戴物品)。这样的装置长期在装置下面的皮肤上产生光,导致浅表血管在长时间内连续暴露于光下。当循环的肿瘤细胞通过所述装置下面的区域时,它们暴露于所述光下。作为实例,腕表和手镯形式的这种装置可包括一系列的NIR LED和电池电源组以可在每天的大部分时间戴着它。
给予所述一种或多种抗体-IR700分子(例如静脉内)之后,循环细胞结合所述抗体-IR700缀合物并变得容易被PIT杀死。当这些细胞在靠近日常穿戴物品(例如手镯或腕表)中LED的血管内流动时,它们会暴露于NIR光,使它们对细胞杀死敏感。可根据诊断结果和细胞类型调整光的剂量。
在一些实例中,所述方法还包括监测所述疗法,例如对肿瘤细胞的杀死。在这样的实例中,如上所述,使所述抗体-IR700缀合物与所述细胞接触并照射所述细胞。然而,可使用更低剂量的所述抗体-IR700缀合物和NIR光(因为可能不需要细胞杀死,只是监测所述疗法)。在一个实例中,用于进行监测的所给予的抗体-IR700缀合物的量少至少2倍(例如比所述治疗剂量少至少3、4、5、6、7、8、9或10倍)。在一个实例中,用于进行监测的所给予的抗体-IR700缀合物的量比所述治疗剂量少至少20%或至少25%。在一个实例中,进行监测所使用的NIR光的量是所述治疗剂量的至少1/1000或至少1/10000。这使得能够对正在被处理的细胞进行检测。例如,通过使用这样的方法,可监测肿瘤和转移的尺寸。
在一些实例中,可在手术例如内镜操作的过程中使用所述方法。例如,在如上所述使所述抗体-IR700缀合物与所述细胞接触并照射所述细胞之后,不仅会导致细胞杀死,还使得外科医生或其他医疗服务提供者能够看见肿瘤的边缘,帮助确保完全切除所述肿瘤(例如皮肤、乳房、肺、结肠或前列腺的肿瘤)并且所述边缘是干净的。在一些实例中,更低剂量的所述抗体-IR700缀合物可用于进行可视化,例如比在所述治疗剂量少至少2倍(例如少至少3、4、5、6、7、8、9或10倍)
提供了能够实时地检测或监测细胞杀死的方法。这种方法可用于例如确保足够量的抗体-IR700分子和/或一种或多种治疗剂,或足够量的照射被递送给细胞或肿瘤,促进细胞杀死。这些方法使得能够在形态改变变得明显之前对细胞杀死进行检测。在一个实例中,所述方法包括使具有细胞表面蛋白的细胞与治疗有效量的一种或多种抗体-IR700分子(例如至少0.01nM、至少0.1nM、至少1nM或至少10nM,例如0.1-2nM、0.5-1.5nM,例如1nM的所述一种或多种抗体-IR700分子)接触,其中所述抗体特异性结合所述细胞表面蛋白;在660-740nm的波长下以至少20Jcm-2的剂量照射所述细胞;在照射所述细胞后约0-48小时(例如照射所述细胞后至少1小时、至少2小时、至少4小时、至少6小时、至少12小时、至少18小时、至少24小时、至少36小时、至少48小时或至少72小时,例如照射所述细胞后1分钟-30分钟、10分钟-30分钟、10分钟-1小时、1小时-8小时、6小时-24小时或6小时-48小时)用荧光寿命成像检测所述细胞,从而实时地检测所述细胞杀死。缩短的FLT作为由PIT诱导的急性膜损伤的指示物。因此,在足以使IR700FLT缩短达至少25%,例如至少40%、至少50%、至少60%或至少75%的条件下照射所述细胞。在一个实例中,在660nm-740nm(例如680nm-700nm)的波长下以至少20J cm-2或至少30J cm-2,例如至少40J cm-2或至少50-2J cm-2或至少60J cm-2,例如30-50J cm-2的剂量照射所述细胞。
在一些实例中,实时地检测细胞杀死的方法包括使所述细胞与一种或多种另外的治疗剂接触,例如在照射所述细胞后约0-8小时。可在使所述细胞与一种或多种另外的治疗剂接触之前或之后进行实时成像。例如,如果在给予所述一种或多种抗体-IR700分子之后通过实时成像确定细胞杀死不足,那么就可以使所述细胞与一种或多种另外的治疗剂接触。然而,在一些实例中,所述细胞与所述抗体-IR700分子和另外的治疗剂接触之后实时地检测细胞杀死。
示例性细胞
所述靶细胞可以是不需要的细胞或不需要其生长的细胞,例如肿瘤细胞。所述细胞可以是在培养物中生长的,或存在于待治疗的哺乳动物(例如癌症患者)中。可用所要求保护的方法处理任何靶细胞。在一个实例中,所述靶细胞表达在其他正常的(需要的)细胞的表面上基本上没有的细胞表面蛋白,可选择特异性结合这种蛋白的抗体并针对该蛋白产生抗体-IR700分子。在一个实例中,所述细胞表面蛋白是肿瘤特异性蛋白。在一个实例中,所述细胞表面蛋白是CD25,其可用于靶向与不需要的移植排斥相关的细胞。
在一个实例中,所述肿瘤细胞是癌细胞,例如癌症患者的细胞。可用本公开的方法杀死的示例性细胞包括如下肿瘤的细胞:液体肿瘤例如白血病——包括急性白血病(急性淋巴细胞性白血病、急性髓细胞性白血病、和成髓细胞性白血病、前髓细胞性白血病、骨髓单核细胞性白血病、单核细胞性白血病和红白血病)、慢性白血病(例如慢性髓细胞性(粒细胞性)白血病和慢性淋巴细胞性白血病)、真性红细胞增多症、淋巴瘤、霍奇金病、非霍奇金淋巴瘤、多发性骨髓瘤、Waldenstrdm巨球蛋白血症、重链病)。在另一个实例中,所述细胞是实体瘤细胞,例如肉瘤和癌,纤维肉瘤、粘液肉瘤、脂肪肉瘤、软骨肉瘤、成骨肉瘤和其他肉瘤,滑膜瘤、间皮瘤、尤因氏瘤、平滑肌肉瘤、横纹肌肉瘤、结肠癌、胰腺癌、乳癌、卵巢癌、前列腺癌、肝细胞癌、肺癌、结肠直肠癌、鳞状细胞癌、基底细胞癌、腺癌(例如胰、结肠、卵巢、肺、乳房、胃、前列腺、宫颈或食管的腺癌)、汗腺癌、皮脂腺癌、乳头状癌、乳头状腺癌、髓样癌、支气管癌、肾细胞癌、肝细胞瘤、胆管癌、绒毛膜癌、维尔姆斯氏瘤、宫颈癌、睾丸肿瘤、膀胱癌和CNS肿瘤(例如神经胶质瘤、星形细胞瘤、髓母细胞瘤、颅咽管瘤(craniopharyogioma)、室管膜瘤、松果体瘤、血管母细胞瘤、听神经瘤、少突神经胶质瘤、脑膜瘤(menangioma)、黑素瘤、神经母细胞瘤和视网膜母细胞瘤)。
示例性受试者
在一些实例中,使用本公开的方法治疗具有肿瘤(例如本文描述的肿瘤)的受试者。在一些实例中,先前已经治疗(例如手术或化学去除)过所述肿瘤,随后使用本公开的方法杀死可能余留在所述患者中的任何剩余的不需要的肿瘤细胞。
本公开的方法可用于治疗任何哺乳动物受试者,例如具有肿瘤(例如癌症)的人,或先前已经去除或治疗过肿瘤的人。需要本公开疗法的受试者可包括患有癌症的人受试者,其中所述癌细胞在其表面上表达可特异性结合所述抗体-IR700分子的肿瘤特异性蛋白。例如,本公开的方法可单独地或结合放射或其他化学疗法用作最初的癌症治疗。本公开的方法还可用于先前的放射或化学疗法无效的患者。因此,在一些实例中,所述受试者是已经接受其他疗法但这些其他疗法尚未提供所需的治疗效应的受试者。本公开的方法还可用于具有局部癌和/或转移癌的患者。
在一些实例中,所述方法包括选择会从本公开的疗法受益的受试者,例如选择具有表达可与抗体-IR700分子特异性结合的细胞表面蛋白(例如肿瘤特异性蛋白)的肿瘤的受试者。例如,如果确定受试者患有表达HER2的乳癌,那么可选择所述受试者用抗HER2-IR700分子例如实施例1中记载的Tra-IR700进行治疗,随后如本文所述照射所述受试者。
示例性细胞表面蛋白
在一个实例中,要杀死的靶细胞的细胞表面上的蛋白不以显著的量存在于其他细胞上。例如,所述细胞表面蛋白可以是仅存在于靶细胞类型上的受体。
在具体的实例中,所述细胞表面蛋白是肿瘤特异性蛋白(在本领域中也称为肿瘤特异性抗原),例如EGF受体家族的成员(例如HER1、2、3和4)和细胞因子受体(例如CD20、CD25、IL-13R、CD5、CD52等)。肿瘤特异性蛋白是癌细胞特有的,或者是与其他细胞例如正常细胞相比在癌细胞上更丰富的那些蛋白。例如,HER2主要存在于乳癌,而HER1主要存在于腺癌,所述腺癌可存在于许多器官,例如胰、乳房、前列腺和结肠。
可在靶细胞上存在的示例性的肿瘤特异性蛋白(对该蛋白特异的抗体可用于制备抗体-IR700分子)包括但不限于:多种MAGE(黑色素瘤相关抗原E)的任一种,包括MAGE1(例如GenBank登录号M77481和AAA03229)、MAGE2(例如GenBank登录号L18920和AAA17729)、MAGE3(例如GenBank登录号U03735和AAA17446)、MAGE4(例如GenBank登录号D32075和A06841.1)等;多种酪氨酸酶中的任一种(例如GenBank登录号U01873和AAB60319);突变型ras;突变型p53(例如GenBank登录号X54156、CAA38095和AA494311);p97黑色素瘤抗原(例如GenBank登录号M12154和AAA59992);与乳腺肿瘤相关的人乳脂肪球(HMFG)(例如GenBank登录号S56151和AAB19771);多种BAGE(人B型黑色素瘤相关抗原E)的任一种,包括BAGE1(例如GenBank登录号Q13072)和BAGE2(例如GenBank登录号NM_182482和NP_872288);多种GAGE(G抗原)的任一种,包括GAGE1(例如GenBank登录号Q13065)或GAGE2-6的任一种;多种神经节苷脂、CD25(例如GenBank登录号NP_000408.1和NM_000417.2)。
其他肿瘤特异性抗原包括与子宫颈癌相关的HPV16/18和E6/E7抗原(例如GenBank登录号NC_001526、FJ952142.1、ADB94605、ADB94606和U89349)、与乳癌相关的粘蛋白(MUC1)-KLH抗原(例如GenBank登录号J03651和AAA35756)、与结肠直肠癌相关的CEA(癌胚抗原)(例如GenBank登录号X98311和CAA66955)、与例如黑色素瘤相关的gp100(例如GenBank登录号S73003和AAC60634)、与黑色素瘤相关的MART1抗原(例如GenBank登录号NP_005502)、与卵巢和其他癌症相关的癌抗原125(CA125,也称为粘蛋白16或MUC16)(例如GenBank登录号NM_024690和NP_078966);与肝癌相关的α-胎儿球蛋白(AFP)(例如GenBank登录号NM_001134和NP_001125);与结肠直肠癌、胆道癌、乳癌、小细胞肺癌和其他癌症相关的Lewis Y抗原;与腺癌相关的肿瘤相关糖蛋白72(TAG72);和与前列腺癌相关的PSA抗原(例如GenBank登录号X14810和CAA32915)。
其他示例性的肿瘤特异性蛋白还包括但不限于与实体瘤新血管系统以及前列腺癌相关的PMSA(前列腺膜特异性抗原;例如GenBank登录号AAA60209和AAB81971.1);与乳癌、卵巢癌、胃癌和子宫癌相关的HER-2(人表皮生长因子受体2,例如GenBank登录号M16789.1、M16790.1、M16791.1、M16792.1和AAA58637),与肺癌、肛门癌、胶质母细胞瘤以及腺癌相关的HER-1(例如GenBank登录号NM_005228和NP_005219);与黑色素瘤、肉瘤、睾丸癌和其他癌症相关的NY-ESO-1(例如GenBank登录号U87459和AAB49693)、hTERT(aka端粒末端转移酶)(例如GenBank登录号NM_198253和NP_937983(变体1),NM_198255和NP_937986(变体2));蛋白酶3(例如GenBank登录号M29142、M75154、M96839、X55668、NM00277、M96628、X56606、CAA39943和AAA36342)和维尔姆斯瘤1(WT-1,例如GenBank登录号NM_000378和NP_000369(变体A),NM_024424和NP_077742(变体B),NM_024425和NP_077743(变体C),以及NM_024426和NP_077744(变体D))。
在一个实例中,所述肿瘤特异性蛋白是与慢性淋巴细胞性白血病相关的CD52(例如GenBank登录号AAH27495.1和CAI15846.1);与急性骨髓性白血病相关的CD33(例如GenBank登录号NM_023068和CAD36509.1);和与非霍奇金淋巴瘤相关的CD20(例如GenBank登录号NP_068769NP_031667)。
因此,本公开的方法可用于治疗表达肿瘤特异性蛋白的任何癌症。
示例性抗体-IR700分子
本领域技术人员会认识到,因为细胞表面蛋白序列是公众可用的(例如如上所示的),制备或购买对这样的蛋白特异的抗体(或其他可与IR700缀合的小分子)是常规的。例如,如果选择肿瘤特异性蛋白HER2作为靶,那么可购买或产生对HER2特异的抗体(例如曲妥单抗)并将其与所述IR700染料连接。在一个实例中,用至少两种不同的抗体-IR700分子治疗患者。在一个实例中,所述两种不同的抗体-IR700分子对同一蛋白(例如HER-2)特异,但是对所述蛋白的不同表位(例如HER-2的表位1和表位2)特异。在另一个实例中,所述两种不同的抗体-IR700分子对两种不同的蛋白或抗原特异,例如一种抗体对CD4特异,另一种抗体对CD25特异,其可用于例如治疗T细胞白血病。例如,可将抗HER1-IR700和抗HER2-IR700作为混合物一起注射,以有利于杀死带有HER1或HER2的细胞。其他具体实例提供在下表中。在一个实例中,所述抗体是人源化单克隆抗体。可使用常规方法产生抗体-IR700分子,例如下文实施例1中描述的那些。因此,本公开还提供了抗体-IR700分子、包括这种分子的组合物和包括这种分子的试剂盒(例如包括一种或多种抗体-IR700分子和化学治疗剂,或分子靶向剂,或其结合物的试剂盒)。
Figure BDA0000474942740000311
Figure BDA0000474942740000321
还可使用靶向IL-2Rα受体(CD25)的巴利昔单或达克珠单抗产生用于治疗移植排斥的抗体-IR700分子。
给予抗体-IR700分子和另外的治疗剂
抗体-IR700分子和另外的治疗剂(例如抗新生物剂)可与细胞在体外接触,例如通过将所述抗体-IR700分子和另外的治疗剂加入细胞在其中生长的生长培养基中,或者抗体-IR700和另外的治疗剂可与细胞在体内接触,例如通过给予待治疗的受试者所述抗体-IR700分子和另外的治疗剂。
可以使用本领域已知的任何方法局部或全身给予例如具有肿瘤(例如癌症)或先前已经去除了肿瘤(例如通过外科手术)的受试者所述抗体-IR700分子和另外的治疗剂。虽然提供了具体的实例,但是本领域的技术人员应理解,可使用本公开的抗体-IR700分子和另外的治疗剂的替代给予方法。这样的方法可包括例如使用导管或可植入的泵以在几小时至几天的时间内连续输注到需要治疗的受试者中。
在一个实例中,所述抗体-IR700分子和另外的治疗剂以胃肠外方式给予,包括直接注射或输注到肿瘤中(肿瘤内)。在一些实例中,通过向所述肿瘤施用所述抗体-IR700分子和另外的治疗剂,例如通过将所述肿瘤浸浴在含有所述抗体-IR700分子和另外的治疗剂的溶液中或通过将所述抗体-IR700分子和另外的治疗剂淋到所述肿瘤上,将所述抗体-IR700分子和另外的治疗剂给予至肿瘤。
另外或或者,可将本公开的组合物全身(例如静脉内、肌肉内、皮下、皮内、腹膜内、皮下或口服)给予具有肿瘤(例如癌)的受试者。
要给予受试者的所述抗体-IR700分子(和另外的治疗剂)的剂量不限于绝对的范围,但会依赖于所述组合物的性质和其活性成分以及其不希望的副作用(例如针对所述抗体的免疫应答)、正在治疗的受试者和正在治疗的病症的类型以及给药的方式。通常,所述剂量是治疗有效量,例如,足以实现所需生物效应的量,例如有效减少所述肿瘤的尺寸(例如体积和/或重量),或减缓所述肿瘤进一步生长或减少不需要的所述肿瘤症状的量。另外的治疗剂的剂量是本领域已知的。
对于静脉内给予所述抗体-IR700分子,单次治疗给予受试者的示例性剂量范围可以是0.5-100mg/60kg体重、1-100mg/60kg体重、1-50mg/60kg体重、1-20mg/60kg体重,例如约1或2mg/60kg体重。在又另一个实例中,腹膜内或瘤内给予抗体-IR700分子的治疗有效量可以是10μg-5000μg的抗体-IR700分子/1kg体重,例如10μg/kg-1000μg/kg、10μg/kg-500μg/kg或100μg/kg-1000μg/kg。
在一个实例中,给予人患者的抗体-IR700分子的剂量为至少50mg,例如至少100mg、至少300mg、至少500mg、至少750mg或甚至1g。
用本公开的抗体-IR700分子(和另外的治疗剂)进行的治疗可以在一天内完成,或者可以以相同或不同的剂量在多天内重复进行。重复治疗可以在同一天、连续数天或每1-3天、每3-7天、每1-2周、每2-4周、每1-2月或甚至以更长的间隔时间进行。
照射细胞
所述细胞与一种或多种抗体-IR700分子接触之后,照射所述细胞。照射的方法是本领域熟知的。因为只有表达所述细胞表面蛋白的细胞会被所述抗体识别,所以仅有那些细胞会有足量的所述抗体-IR700分子与其结合。这降低了发生不需要的副作用的可能性,例如杀死正常细胞,因为所述照射仅会杀死结合所述抗体-IR700分子的细胞,而不杀死其他细胞。
在一些实例中,在体外照射细胞,例如在组织培养皿中。在其他实例中,在体内照射细胞,例如照射先前已经给予抗体-IR700分子的受试者。在一些实例中,照射所述受试者,例如可照射所述受试者中的肿瘤。
在660-710nm的波长下例如660-700nm、680-7000nm、670-690nm,例如680nm以治疗剂量的放射照射所述细胞。在具体的实例中,以至少1J cm-2,例如至少10J cm-2、至少30J cm-2、至少50J cm-2、至少100Jcm-2或至少500J cm-2,例如1-1000J cm-2、1-500J cm-2、30-50J cm-2、10-100J cm-2或10-50J cm-2的剂量照射所述细胞。
可一次或多次照射细胞(或患者)。因此,照射可以在一天内完成,或者可以在多天内以相同或不同的剂量重复进行(例如在至少2个不同时间、3个不同时间、4个不同时间、5个不同时间或10个不同时间照射)。重复照射可以在同一天、连续数天或每1-3天、每3-7天、每1-2周、每2-4周、每1-2月或甚至以更长的间隔时间进行。
含有NIR LED的示例性装置
可以使用任何类型的可穿在或置于身体上且便于将NIR LED纳入的物品。在一个实例中,所述装置是患者被置于其中的室。这种装置可用于治疗在血液或淋巴中循环的肿瘤细胞,例如血液或淋巴中存在的白血病、淋巴瘤以及转移的细胞。在一些实例中,这种装置可用于治疗皮肤上存在的肿瘤细胞,例如黑色素瘤。
为了杀死所有在身体中循环的细胞,可能需要长期穿戴所述装置,例如数周或数月。因此,可将这些装置纳入到日常物品衣服、珠宝和睡衣例如毯子中。这些装置使得可使用便携的日常物品衣服和珠宝将患者暴露于NIR光,以便于治疗依然是私密的并且不会干扰日常活动。例如,纳入了NIR LED的项链可根据患者的品味定制并且在白天不显眼地戴着用于PIT治疗(例如,通过杀死通过颈部的颈动脉和其他脉管系统的肿瘤细胞)。在治疗期间同一患者可穿着具有类似的“日常”性质的多种装置(毯子、手镯、项链、内衣、短袜、鞋内插入物等)。例如,睡觉时,患者可使用所述NIR毯子。所述装置还可包括电源,例如电池,和冷却元件以防止这种装置(例如毯子)过热。
在一个实例中,所述装置是珠宝,例如戒指、手表、手镯或项链。在另一个实例中,所述物品是衣服或配件,例如衬衫、腰带、裤子、内衣、短袜、外套、鞋内插入物、围巾、帽子、护腕、手套等。在另一个实例中,所述装置是可以覆盖身体的物品,例如毯子或毛巾。在另一个实例中,所述装置是使皮肤直接暴露的全身光室(这种装置还可包括电源和/或冷源)。
通过穿戴纳入了一个或多个NIR LED(例如至少2个、至少3个、至少4个、至少5个、至少10个、至少20个或至少50个NIR LED)的装置,存在于血液或淋巴中的待杀死的肿瘤细胞或其他细胞暴露于由所述NIR LED(例如发射660-740nm,例如670-700nm或680-720nm的光的NIR LED)产生的光下。从所述NIR LED发射的光可透过皮肤和血管(例如颈动脉或皮肤中的微血管),因此使得所述光能够激活与所述靶细胞结合的抗体-IR700分子,从而杀死与所述抗体-IR700分子结合的细胞。可在所述装置中排列所述NIR LED以确保靶向皮肤或血管或淋巴系统。
在本文提供的方法中可使用的NIR LED装置是可商购的。下文列出了来自一个制造商Marubeni America的适用产品。第一个产品,模化的LED,功率低但是它可在较长的暴露时间内使用。其他选择具有更高的功率,因此可得益于用于额外冷却的装置。除了包装在25mm×18mm金属盒中的最后一个,其他都适用于可穿戴装置,例如手镯、项链、内衣、短袜、手套、帽子和其他可穿戴物品。所有均可用于毯子、手提式装备或室。
例如,Marubeni America Corporation(tech-led.com/index.shtml)提供了以下具有透镜选项以设置照射模式的NIR LED:Molded LED(www.tech-led.com/data/L680-AU.pdf),直径为5mm,总照射功率为4mW,计算功率密度为5mW cm-2,和电源要求为1.8V20mA;SurfaceMount LED,3.5mm×2.7mm,总照射功率为3mW,计算功率密度为32mW cm-2,电源要求为1.9V50mA;Super Beam(tech-led.com/Superbeam_LEDs.shtml),7.6mm×7.6mm,总照射功率为20-52mW,计算功率密度为34-90mW cm-2,电源要求为1.65V100mA;High Power Surface Mount(tech-led.com/SMB_BL_LEDs.shtml),5mm×5mm或直径7mm,总照射功率为90mW,计算功率密度为360mWcm-2,电源要求为2.4V500mA;和High Power Illuminators(tech-led.com/High_Power_Illuminators.shtml),25mm×18mm,总照射功率为150mW,计算功率密度为33mW cm-2,电源要求为10V120mA。或者,可制造以相似功率用短且强的间歇脉冲发出690nm的光的装置。
在体外实验的过程中,功率密度为2.2mW cm-2(或2.2mJ s-1cm-2)的NIR光诱导了细胞死亡。假设组织的衰减系数为4cm-1,那么在5.8mm处光的强度会下降至10%,在12mm处下降至1%。这表明,对于体内应用,需要的功率密度必须大10-100倍。即,在一些实例中,由NIR LED装置发出的光的剂量为至少20mW cm-2、例如至少50mW cm-2、至少100mW cm-2、至少150mW cm-2、至少200mW cm-2或至少300mW cm-2。可以将多个NIR LED排列在二维阵列中,以覆盖更大的面积。在一个实例中,激光器被用作NIR光源,作为LED的替代物。
NIR LED可以由电源(其可以直接或间接地为所述装置的一部分)提供电力。电源需求取决于所述装置中LED的数量。例如,可使用一个或多个电池为NIR LED提供电力。对于一些LED,4AA电池可以为串联的3个LED提供电力。碱性AA电池额定为最大3000mAh,因此这种配置在20、50和100mA时提供最长达150、60和30hr的电力。
在一些实例中,所述装置还包括冷却装置(其可以直接或间接地为所述装置的一部分)。例如,散热器可用于被动或主动冷却。另一种替代方案是热电效应(Peltier)。这会需要额外的电力,但是它可用于其中电源需求将需要插入交流电适配器的应用。
可与本公开的方法一起使用的另一种类型的装置是带有NIR LED的手电筒样装置。这种装置可用于在给予PIT试剂后在外科手术期间损伤的局部治疗,或者纳入到内窥镜中以将NIR光应用到体表。医师或有资格的卫生人员可使用这种装置来对身体上的特定靶进行直接治疗。
使用可穿戴的NIR LED进行治疗
如本文所述,本公开的方法对于癌细胞是高度特异的。然而,为了杀死在身体内循环或皮肤上存在的所述细胞,患者可穿戴纳入了NIR LED的装置。在一些实例中,所述患者使用至少两种装置,例如在白天使用服物或珠宝,在夜晚使用毯子。在一些实例中,所述患者同时使用至少两种装置,例如两件衣物。使用便携的日常物品衣服和珠宝时,这些装置可使患者暴露于NIR光,以至于治疗依然是私密的并且不会干扰日常活动。在一些实例中,可以在白天不显眼地穿着所述装置进行PIT治疗。
在一个实例中,使用本文所描述的方法,给予所述患者一种或多种抗体-IR700分子。然后,患者穿戴纳入了NIR LED的装置,使得能够进行长期治疗和对血液或淋巴中或皮肤上存在的肿瘤细胞的治疗。在一些实例中,所述剂量为至少1J cm-2、至少10J cm-2、至少20J cm-2或至少30Jcm-2,例如20J cm-2或30J/cm2。在一些实例中,在一段时间内重复给予所述抗体-IR700分子(例如每两周或每月),以确保体内存在治疗水平的所述分子。
在一些实例中,所述患者穿戴或使用所述装置或装置的结合物,持续至少1周,例如至少2周、至少4周、至少8周、至少12周、至少4个月、至少6个月或甚至至少1年。在一些实例中,所述患者穿戴或使用所述装置或装置的结合物,持续至少每天4小时,例如至少每天12小时、至少每天16小时、至少每天18小时或每天24小时。很有可能的是,同一患者可在治疗期间穿戴多种具有类似的“日常”性质的装置(毯子、手镯、项链、内衣、短袜、鞋内插入物)。在夜间,所述患者可使用所述NIR LED毯子或其他覆盖物。
另外的治疗
如上所述,在给予一种或多种抗体-IR700分子之前、期间或之后,所述受试者可接受一种或多种其他治疗。在一个实例中,所述受试者接受一种或多种治疗以除去或减小肿瘤,然后给予所述抗体-IR700分子。
可与本公开的PIT方法联合使用的这种疗法(其在PIT后约8小时提高肿瘤对另外的治疗剂的可达性)的实例,但不限于,外科治疗以除去或减小肿瘤(例如外科切除、冷冻疗法或化疗栓塞)以及抗肿瘤药物治疗(其可包括放射治疗剂、抗新生物化学治疗剂、抗生素、烷化剂和抗氧化剂、激酶抑制剂和其他试剂)。在一些实例中,所述另外的治疗剂与纳米颗粒缀合。可使用的另外的治疗剂的具体实例包括微管结合剂、DNA嵌合剂或交联剂、DNA合成抑制剂、DNA和/或RNA转录抑制剂、抗体、酶、酶抑制剂和基因调节剂。这些试剂(其以治疗有效量给予)和治疗可单独或联合使用。这种试剂的方法和治疗剂量是本领域技术人员已知的,可由熟练的临床医师确定。
“微管结合剂”是指与微管相互作用以使微管形成稳定或不稳定从而抑制细胞分裂的试剂。可与本公开的抗体-IR700分子疗法结合使用的微管结合剂的实例包括但不限于紫杉醇、多西他赛、长春碱、长春地辛、长春瑞滨(诺维本)、埃博霉素、秋水仙碱、多拉司他汀15、诺考达唑、鬼臼毒素和根霉素。也可以使用这种化合物的类似物和衍生物,并且所述类似物和衍生物是本领域普通技术人员已知的。例如,适合的埃博霉素和埃博霉素类似物记载于国际公开No.WO2004/018478中。可使用紫杉烷,例如紫杉醇和多西他赛,以及美国专利No.6,610,860、5,530,020和5,912,264教导的紫杉醇的类似物。
以下类的化合物可以与本文公开的PIT方法一起使用:适合的DNA和/或RNA转录调节剂——包括但不限于放线菌素D、柔红霉素、多柔比星,其衍生物和类似物也适于与本公开的疗法联合使用。可给予受试者的DNA嵌合剂和交联剂包括但不限于顺铂、卡铂、奥沙利铂、丝裂霉素例如丝裂霉素C、博来霉素、苯丁酸氮芥、环磷酰胺以及其衍生物和类似物。适于用作治疗剂的DNA合成抑制剂包括但不限于甲氨蝶呤、5-氟-5'-脱氧尿苷、5-氟尿嘧啶及其类似物。适合的酶抑制剂的实例包括但不限于喜树碱、依托泊苷、福美坦、曲古抑菌素以及其衍生物和类似物。影响基因调节的适合的化合物包括导致一个或多个基因的表达增加或减少的试剂,例如雷洛昔芬、5-氮杂胞苷、5-氮杂-2'-脱氧胞苷、他莫昔芬、4-羟三苯氧胺、米非司酮以及其衍生物和类似物。激酶抑制剂包括可防止生长因子磷酸化和激活的Gleevac、易瑞沙(Iressa)和特罗凯(Tarceva)。
可以或不可以归入以上一种或多种类别的其他治疗剂,例如抗肿瘤剂,也适于与本公开的PIT疗法联合给予。举例来说,这种试剂包括阿霉素、芹菜素、雷帕霉素、折布拉林、西咪替丁以及其衍生物和类似物。
在一些实例中,还可给予接受所述治疗性抗体-IR700分子组合物的受试者白细胞介素-2(IL-2),例如经静脉内给予。在具体实例中,从给予所述肽之后的那一天开始每8小时在15分钟内以静脉内推注的方式给予至少500000IU/kg的剂量的IL-2(Chiron Corp.,Emeryville,CA),持续最长达5天。可根据受试者的耐受性漏给剂量。
在一些实例中,本公开的抗体-IR700分子可以与细胞毒性T淋巴细胞抗原-4的全人抗体(抗CTLA-4)共同给予(或者在照射之前或之后不久给予)。在一些实例中,受试者接受至少1mg/kg的抗-CTLA-4(例如每3周3mg/kg或者初次剂量为3mg/kg随后剂量减少至每3周1mg/kg)。
在一个实例中,手术除去(例如经冷冻疗法)、照射、化学治疗(例如经化疗栓塞)或以其结合处理至少一部分的肿瘤(例如转移肿瘤),然后给予本公开的疗法(例如给予抗体-IR700分子)。例如,可外科手术切除有转移瘤的受试者的全部或部分所述肿瘤,然后给予本公开的疗法。在实例中,用抗体-IR700分子治疗和照射之后给予一种或多种化学治疗剂。在另一个具体实例中,所述受试者具有转移肿瘤,并且在给予本公开的疗法的同时被给予放射疗法、化疗栓塞疗法或放射疗法和化学栓塞疗法。
实施例1
合成IRDye700缀合的曲妥单抗(抗-Her2)
该实施例描述了用于将单克隆抗体曲妥单抗缀合至IRye700DXNHS Ester的方法。本领域技术人员会认识到,使用类似的方法可以将任何抗体,例如对靶细胞表面蛋白特异的任何单克隆抗体,缀合至IRDye700DX NHS Ester。
将人源化HER2抗体曲妥单抗(Tra;Genentech,San Francisco,CA)(1mg,6.8nmol)与IRDye700DX NHS Ester(IR700;LI-CORBioscience,Lincoln,NE)(66.8μg,34.2nmol,在DMSO中5mmol/L)在0.1mol/L Na2HPO4(pH8.5)中在室温下孵育30-120分钟。曲妥单抗是针对人表皮生长因子受体(EGFR)2(HER2)酪氨酸激酶受体的胞外域的重组人源化单克隆抗体(mAb)。用Sephadex G50柱(PD-10;GEHealthcare,Piscataway,NJ)纯化所述混合物。用Coomassie Plus蛋白质测定试剂盒(Pierce Biotechnology,Rockford,IL)通过用UV-Vis系统(8453Value System;Agilent Technologies,Palo Alto,CA)测量595nm下的吸光值来确定蛋白浓度。用UV-Vis系统通过吸光值来测量IR700的浓度,以确认与每个曲妥单抗分子缀合的荧光团分子的数量。每个曲妥单抗的IR700的数量约为3。
通过分析型体积排阻HPLC(SE-HPLC)和十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)来确认所述Tra-IR700缀合物的纯度。使用Beckman System Gold(Fullerton,CA)进行SE-HPLC,所述BeckmanSystem Gold配有型号126的溶剂递送模块、型号168的UV检测器和JASCO荧光检测器(激发689nm,700nm下发射),并受32Karat软件控制。在TSKgel G2000SWxl(Tosoh Bioscience LLC,Montgomeryville,PA)上进行SE色谱,使用磷酸缓冲盐溶液(PBS)以0.5mL/分钟洗脱45分钟。用4%-20%的梯度聚丙烯酰胺凝胶(Invitrogen,Carlsbad,CA)进行SDS-PAGE。在分离所述蛋白后立即用带有用于激发的内部670nm的激光器和用于发射的705nm长通滤光片的Fujifilm FLA-5100荧光扫描仪(Valhalla,NY)分析荧光强度。用Multigage软件(Fujifilm)分析每条带的荧光强度。然后用Colloidal Blue Staining Kit(Invitrogen)染色并数字扫描所述凝胶。用ImageJ软件分析每条带中的蛋白浓度。如通过高效液相色谱(HPLC)和十二烷基硫酸钠聚丙烯酰胺凝胶电泳SDS-PAGE所确定的,证明了曲妥单抗-1R700(Tra-1R700)和帕尼单抗-1R700(Pan-1R700;见实施例8)制剂具强连接,并且不含有可检测的MAb聚集物。
为了确定IR700缀合物的体外结合特性,使用Indo-Gen操作对所述缀合物进行125I标记。放射性标记的抗体的比放射强度为8.52mCi/mg(曲妥单抗)和7.84mCi/mg(帕尼单抗)(见下文实施例8)。观察到,使用每种MAb缀合物分别实现了73.38±0.39%(125I-Tra-IR700)和78.61±0.89%(125I-Pan-IR700)的结合,通过用过量的天然的未缀合的MAb(低于1.4%)进行阻断确认了结合的特异性。因为用相同的方法测量的125I-Tra和125I-Pan的免疫反应性分别为78±2%和82±3%,所以确认了与IR700缀合的MAb的最小损失。如以前所述进行免疫反应性测定。简言之,胰蛋白酶消化后,将2×106个3T3/HER2或A431细胞重悬于含1%牛血清白蛋白(BSA)的PBS中。加入125I-Tra-IR700或125I-Pan-IR700(1mCi,0.2μg)并在冰上孵育1小时。洗涤细胞、离心(pellet),缓慢倒出上清并在2470Wizard2γ-计数器(Perkin Elmer,Shelton,CT)中计数。在抗体过量的条件下(200μg未标记的曲妥单抗或帕尼单抗)检测对所述细胞的非特异性结合。
实施例2
选择性杀死HER2+细胞
该实施例描述了用于表明实施例1中描述的曲妥单抗-IR700化合物(本文称为Tra-IR700)可用于选择性杀死表达HER2(HER2+)的细胞而对HER2阴性(HER2-)细胞具有最小的负作用的方法。
转染HER2基因的NIH3T3(3T3/HER2+)细胞用于靶光动力学疗法(PDT)。采用表达DsRed荧光蛋白而不表达HER2的Balb/3T3细胞(Balb/3T3/DsRed)作为对照。在37℃、95%空气和5%二氧化碳的气体环境中,在增湿培养箱中,在组织培养皿中,在补充有10%胎牛血清和1%青霉素/链霉素的RPMI1640中培养细胞。
用BX51或IX81显微镜(Olympus America,Melville,NY)进行荧光显微术。设置滤光片以检测IR700,所述滤光片由590-650nm激发滤光片和665-740nm带通发射滤光片组成。为了检测DsRed蛋白,采用了由480-550nm激发滤光片和590nm长通发射滤光片组成的滤光片组。
进行荧光显微术以测试IR700在3T3/HER2+细胞中的亚细胞定位。将细胞接种到底部有盖玻片的培养皿中并孵育24小时。将10μg/mL的Tra-IR700加入培养基。如图1a所示,在冰上孵育1小时后,在细胞表面上检测到Tra-IR700,在37℃下孵育6小时后,Tra-IR700主要位于溶酶体,表明发生逐渐的内化作用。用LysoTracker Green(Invitrogen,Carlsbad,CA)(通过由420-480nm激发滤光片和520nm长通发射滤光片组成的滤光片组检测)共染色,表明IR700与内吞溶酶体区室共定位(图1b)。在用Tra-1R700孵育1小时和6小时后,激发光(荧光显微镜;功率密度为2.2mW cm-2)诱导了荧光以及代表坏死性细胞死亡的细胞肿胀、小泡形成和小泡破裂(图1c)。
对于光免疫疗法(PIT),将细胞接种在35mm底部有盖玻片的培养皿上并孵育24小时。将培养基替换为含10μg/mL的Tra-IR700的新鲜培养基并在37℃孵育6小时。用磷酸缓冲盐溶液(PBS)洗涤后,将培养基替换为无酚红培养基。使用功率密度为2.6mW cm-2的红色发光二极管(LED;FluorVivo;INDEC Systems Inc.,Capitola,CA)以670nm-690nm的光照射细胞,所述功率密度由光功率计(PM100,Thorlabs,Newton,NJ)测量。在用LIVE/
Figure BDA0000474942740000411
可固定绿死细胞染色试剂盒(Fixable GreenDead Cell Stain Kit)(Invitrogen)处理1小时后,评估细胞活力。处理后,将细胞用胰蛋白酶处理并用PBS洗涤。在细胞悬液中加入绿色荧光活性染料并在室温下孵育30分钟。然后,在流式细胞仪(FACS Calibur,BD BioSciences,San Jose,CA)上分析细胞。
如图1c所示,以1.0J cm-2照射3T3/HER2+细胞导致代表细胞膜出芽和肿胀的快速坏死性细胞死亡。
实施例3
确定照射剂量
为了确定响应不同光照射剂量的光毒性,使用LIVE/
Figure BDA0000474942740000412
可固定绿死细胞染色试剂盒通过流式细胞仪测定PDT处理的3T3/HER2+细胞。在所述处理后一小时内进行可检测细胞膜受损的细胞的LIVE/DEAD测定。如图1d所示,在PIT1小时后,响应Tra-IR700介导的PDT的细胞死亡是光剂量依赖性的。在无PIT或Tra-IR700的情况下细胞没有显示出明显的光毒性。
实施例4
随时间测量细胞活力
为了随时间监测细胞活力,如实施例2所述标记并照射细胞,随后使用如实施例2所述的显微术随时间(5天)监测细胞。
如图1f所示,光毒性细胞死亡仅在用Tra-IR700处理的3T3/HER2+细胞中观察到,而在未照射的组(无PIT)或照射但未接受Tra-IR700的组(无Tra-IR700)中未观察到。
实施例5
Tra-IR700的靶特异性光毒性
如实施例2中所述进行PIT。如图1g所示,在与Tra-1R700孵育1小时和6小时之间光毒性没有显著差异,表明Tra-1R700的膜结合足以诱导细胞死亡。当Tra-1R700位于内吞溶酶体区室时(图1b),其还在照射后随着细胞肿胀和小泡形成诱导了小泡破裂。然而,这似乎不是细胞死亡的主要原因,因为在4℃孵育1小时内,在Tra-1R700未定位于内吞溶酶体的情况下,观察到了细胞死亡。在照射之前不洗涤细胞不会影响光毒性效应,这表明细胞膜结合对于所述缀合物的光毒性效应是重要的,而不仅仅是所述缀合物的存在就能达到该效应。此外,仅IR700染料(200nM;等同于Tra-1R700缀合物的IR700浓度)不会纳入到所述细胞中或在细胞中诱导光毒性(图1h和图2b)。另外,光毒性被过量的未缀合的曲妥单抗剂量依赖地阻断(图2c和2d)。此外,Tra-1R700不诱导对A431细胞的疗效(图1i)。这些结果证实所述细胞死亡依赖于Tra-1R700的特异性膜结合。
活性氧(ROS)涉及与常规PDT相关的细胞死亡。为了弄清光子诱导的氧化还原反应(例如单线态氧(1O2))在用Tra-1R700产生光毒性的过程中的作用,当照射细胞时,向培养基加入氧化还原猝灭剂叠氮化钠(NaN3)。在叠氮化钠的存在下细胞死亡的百分数以剂量依赖的方式部分地降低(图1j)。
为了证实所述光毒性是靶特异性的,将3T3/HER2+细胞和Balb/3T3/DsRed细胞(转染有DsRed荧光蛋白的亲代HER2阴性Balb/3T3)共培养,并在用Tra-IR700在37℃孵育1或6小时之后以1.0J cm-2照射。Tra-1R700以HER2特异性的方式分布而表达DsRed的Balb/3T3细胞在照射时未显示出光毒性(图3a)。另外,LIVE/DEAD绿染色证明了HER2特异性的细胞死亡诱导,如通过多色荧光显微术(图3b)和流式细胞仪分析(图3c)所确定。
实施例6
Tra-IR700减少HER2+细胞的增殖
将3T3/HER2细胞以1×104的密度接种到35mm细胞培养皿中。第二天,如实施例2所述,将细胞与或不与Tra-IR700孵育,然后照射。在细胞接种后第1、3和5天通过台盼蓝染料排除测定法确定了细胞活力。对于处理或未处理的对照,胰蛋白酶消化后在血细胞计数器上计数有活力的细胞。还在每个时间点在显微镜下为细胞生长拍照。
如图1e所示,与仅用Tra-IR700、仅用PDT处理或不进行处理的细胞相比,用Tra-IR700处理然后经受2.0J cm-2的PDT的细胞的活力明显降低。
实施例7
Tra-IR700在体内选择性杀死HER2+细胞
该实施例描述了用于表明Tra-IR700可在体内治疗HER2+肿瘤的方法。本领域技术人员会了解,类似的方法可以与其他肿瘤/抗体-IR700结合物一起使用。
用异氟醚麻醉6-8周龄雌性纯合子无胸腺裸鼠(Charles River,NCI-Frederick,Frederick,MD)。在所述小鼠的左侧背部皮下注射3T3/HER2+或Balb/3T3细胞(两百万个)。细胞注射后四天,静脉内给予50或300μg的Tra-IR700。用体内荧光成像系统(Pearl Imager,LI-CORBiosciences,Lincoln,NE)证实了Her2特异性Tra-IR700在肿瘤异种移植物中累积。观察到了3T3/HER2+肿瘤特异性IR700-Tra定位。相反,Balb/3T3肿瘤没有显示出Her2特异性的IR700荧光。
为了评估在体内用IR700-Tra进行的靶向PIT的效能,将一百万个3T3/HER2+或Balb/3T3细胞皮下注射到雌性裸鼠的两侧背部。当两种肿瘤的体积都达到约70mm3时(约4天),将动物随机分为5组,每组有至少12只动物,用于以下处理:(1)无处理;(2)静脉内注射300μg曲妥单抗,无PIT;(3)静脉内注射300μg Tra-IR700,无PIT;(4)对3T3/HER2肿瘤以50J/cm2进行PIT,无Tra-IR700;(5)静脉内注射300μg Tra-IR700,以50J/cm2进行PDT。
给予Tra-IR700后24小时,在接受PIT的小鼠中,照射围绕包括所述肿瘤的右侧背部直径为1cm的区域(剂量水平为50J cm-2)。具有所述肿瘤的左侧背部用黑带遮盖以防止其暴露于光。每日监测响应PIT的效应,每周两次用测径器测量肿瘤体积直至其达到500-1000mm3,此时用二氧化碳气体对小鼠实施安乐死。为了确定肿瘤体积,用外部测径器确定最大的纵径(长)和最大的横径(宽)。用以下公式计算基于测径器测量结果的肿瘤体积;肿瘤体积=长×宽2×0.5。除非另有说明,数据表示为来自三次实验的最小值的均值±sem。使用统计程序(GraphPad Prism;GraphPad Software,La Jolla,CA)进行统计分析。对于多重比较,使用具有事后检验的单因素方差分析(ANOVA)(具有事后检验的Kruskal–Wallis检验)。使用Kaplan-Meier存活曲线分析来评估每个组的累积存活概率——在本文中确定为肿瘤体积不能达到500mm3,使用具有Bonferroni氏多重校正的时序检验来比较结果。认为P<.05表明有统计学上的显著差异。
如图4a和4b所示,在处理后4、7、10和14天,50J cm-2照射导致3T3/HER2+肿瘤中显著的肿瘤生长抑制,而未处理的肿瘤没有表现出任何对肿瘤生长的可检测到的效应。另外,照射Balb/3T3肿瘤没有显示出显著的疗效。此外,在所述处理期间或之后没有发现致死性副作用。
实施例8
合成IRDye700缀合的
Figure BDA0000474942740000441
(抗HER1)
帕尼单抗
Figure BDA0000474942740000442
——一种针对人EGFR的全人源化IgG2MAb——购自Amgen(Thousand Oaks,CA),使用实施例1中描述的方法将其缀合至IR700。该化合物被称为帕尼单抗-IR700或Pan-IR700。每个帕尼单抗上的IR700数量约为3。
实施例9
Pan-IR700选择性杀死HER1+细胞
该实施例描述了用于表明实施例8中描述的Pan-IR700化合物可用于选择性杀死表达HER1的细胞(HER1+),而对HER1阴性细胞(HER1-)的负面影响最小的方法。
表达EGFR的A431细胞用作所述靶HER1+细胞。使用表达DsRed荧光蛋白而不表达HER1/EGFR的Balb/3T3细胞(Balb/3T3/DsRed)作为对照。在37℃、95%空气和5%二氧化碳的气体环境中,在增湿培养箱中,在组织培养瓶中,在补充有10%胎牛血清和1%青霉素/链霉素的RPMI1640中培养细胞。将A431或Balb/3T3/DsRed细胞接种到底部有盖玻片的培养皿上,孵育24小时。将Pan-IR700加入培养基,其浓度为10μg/mL,在冰上孵育1小时或在37℃孵育6小时,然后用PBS洗涤细胞。用磷酸缓冲盐溶液(PBS)洗涤后,将培养基替换为无酚红培养基。
如实施例2中所述,进行荧光显微术以检测IR700的抗原特异性定位。在冰上孵育1小时后,在A431细胞的细胞表面上检测到Pan-IR700,在37℃孵育6小时后,Pan-IR700主要位于溶酶体。Balb/3T3/DsRed细胞没有观察到显著的IR700信号。
如实施例2和3所述进行PIT。如图5a所示,以0.5-2J cm-2照射A431细胞以剂量依赖的方式导致了快速的细胞死亡——表现为细胞膜的出芽和溶胀。如图5b所示,与未处理的对照细胞相比,激发光剂量显著地影响了靶细胞的细胞死亡百分数。另外,暴露于Pan-1R700而无激发光或有光暴露而无Tra-1R700都没有显著的细胞毒性。然而,帕尼单抗本身由于HER1的下调和信号抑制而对A431细胞有显著的疗效(Yang etal.,Cancer Res59:1236-43,1999)。
还使用在A431细胞和Balb/3T3/DsRed(HERI阴性)共培养的细胞中Pan-1R700介导的PIT证实了靶特异性光毒性(图5c)。总之,除了未缀合的帕尼单抗显示出显著的生长抑制而未缀合的曲妥单抗在所用的剂量下不减少生长以外,Tra-1R700和Pan-1R700分别对HER2阳性(3T3/HER2)和HER1阳性(A431)细胞显示出相同的疗效。
实施例10
Pan-IR700在体内选择性杀死HER1+细胞
该实施例描述了用于表明Pan-IR700可在体内治疗HER1+肿瘤的方法。本领域技术人员会认识到,类似的方法可以与其他肿瘤/抗体-IR700结合物一起使用。
用异氟烷麻醉6-8周龄雌性纯合子无胸腺裸鼠(Charles River,NCI-Frederick,Frederick,MD)。在所述小鼠的左侧背部皮下注射一百万个A431细胞。细胞注射后四天,静脉内给予50或300μg的Pan-IR700。
为了证实Pan-IR700的抗原特异性定位,在注射A431细胞的同时,在右侧背部皮下注射1×106个3T3/HER2细胞(HER1阴性)。在标示的时间点用Pearl Imager(LI-COR Biosciences)使用700nm荧光通道获得荧光图像。将肿瘤和背景的兴趣区(ROI)都置于含有相同像素数的尺寸相等的区域。使用以下公式计算肿瘤/背景比率(TBR):TBR=((平均肿瘤强度)–(平均背景强度))/((平均无肿瘤强度)–(平均背景强度))。
如图6a所示,Pan-IR700位于所述A431肿瘤。A431肿瘤中Pan-1R700的荧光强度随天数逐渐降低,而肿瘤/背景比率(TBR)增加(图6b和6c)。所述3T3/HER2肿瘤的荧光强度与背景(无肿瘤病灶)的荧光强度相同。当静脉内给予300μg Pan-1R700时,注射后第一天所述A431肿瘤的荧光强度是注射50μg的3倍多,然而,由于高背景信号,TBR更低(图6b和6c)。因为在接受50μg Pan-1R700注射的小鼠中,发现照射后抗肿瘤活性较低(与300μg相比),所以使用更高的注射剂量(图6h)。用IR700荧光确定Tra-1R700的生物分布,因为当使用双标记的放射标记的Pan-1R70015时放射性和荧光的组织水平可能由于其不同的排泄途径和分解代谢而有所不同。除了可能由于分解代谢的和未结合的染料的排泄而在第一天膀胱累积IR700外,IR700没有其他特异性的定位(图6d)。
如图6d所示,与未经PIT处理的肿瘤不缩小相比,给予Pan-IR700后的PIT处理在第2天开始使肿瘤缩小。
为了确定Pan-IR700或仅载体然后进行PIT的效应,使用了以下方法。为了确定肿瘤体积,用外部测径器确定了最大纵径(长)和最大横径(宽)。用以下公式计算基于测径器测量结果的肿瘤体积;肿瘤体积=长×宽2×0.528。在如上所述注射A431细胞后4天,选择体积达到约40mm3的肿瘤用于研究。将动物随机分为8组,每组有至少12只动物,用于以下处理:(1)无处理;(2)静脉内注射300μg帕尼单抗,无PIT;(3)静脉内注射300μgPan-IR700,无PIT;(4)以30J/cm2进行PIT而无Pan-IR700;(5)静脉内注射游离的IR700染料,剂量等价于300μg的Pan-IR700,以30J cm-2进行PIT;(6)静脉内注射50μg Pan-IR700;以30J cm-2进行PIT;(7)静脉内注射50μg Pan-IR700和250μg帕尼单抗,以30J cm-2进行PIT;和(8)静脉内注射300μg Pan-IR700,以30J cm-2进行PIT。处理后,每日监测小鼠,每周两次测量肿瘤体积直至所述肿瘤体积达到500mm3,此时用二氧化碳气体对小鼠实施安乐死。为了测试短期毒性,每周两次反复静脉内给予非荷瘤小鼠300μg Pan-IR700,持续4周。
如图6e所示,在处理后的第3、7、10、14和17天,用Pan-IR700和30J cm-2照射的处理导致了A431(HER1+)肿瘤中显著的肿瘤生长抑制,而未处理的肿瘤没有表现出任何可检测到的对肿瘤生长的效应。另外,如图6f所示,用Pan-IR700和30J cm-2照射的处理导致了具有A431(HER1+)肿瘤的小鼠的存活时间显著增加。此外,在所述处理期间或之后没有发现任何致死性副作用。图6g示出了用Pan-IR700处理(之后无PIT疗法或有PIT疗法)后4天,细胞的显微图像。病理分析显示,在Pan-1R700介导的PIT后仅存在很少的有活力的A431肿瘤细胞,并且在所述肿瘤结节中观察到了具有炎症改变的大块肉芽形成。还观察到,浅表形成了组织水肿。为了评估Pan-1R700的急性期毒性,发明人每周两次反复静脉内给予300μg Pan-1R700,持续4周,但是与对照组相比,直至第8周(n=4)都没有观察到不良效应。
实施例11
HuJ591-IR700在体内选择性杀死PSMA+细胞
该实施例描述了用于表明HuJ591-IR700可在体内治疗前列腺特异性膜抗原(PSMA)+肿瘤(例如在前列腺癌中存在的那些)的方法。本领域技术人员会认识到,类似的方法可以与其他肿瘤/抗体-IR700结合物一起使用。
J591——一种针对人PSMA的全人源化IgG2MAb——获自康奈尔大学的Neil Bander教授,使用实施例1中描述的方法将其缀合至IR700。该化合物称为J591-IR700。每个J591上的IR700的数量约为2。
用异氟烷麻醉6-8周龄雌性纯合子无胸腺裸鼠(Charles River,NCI-Frederick,Frederick,MD)。在第0天,在所述小鼠的背底部皮下注射两百万个PC3-PIP细胞(PSMA+),在所述小鼠的背上部皮下注射PC3-FLU细胞(PSMA-)。在第3天,腹膜内给予100μg的PSMA-IR700。
为了确认J591-IR700的抗原特异性定位,在注射PC3-PIP细胞的同时,在不同区域皮下注射2×106个PC3-FLU细胞(PSMA-)。在标示的时间点用Pearl Imager(LI-COR Biosciences)使用700nm荧光通道获得荧光图像,如实施例7和10中所述。
如图7所示,J591-IR700位于所述PC3-PIP肿瘤。非特异性血池和高渗透性和滞留效应(EPR效应)隐约地显示出PC3-FLU(PSMA-)肿瘤。
为了确定在存在或不存在PIT的情况中HuJ591-IR700的效应,照射所述小鼠的右侧,而不照射左侧,如实施例7和10中所述。具体地,在第4天,小鼠右侧肿瘤接受50J/cm2的PIT,在第5天右侧肿瘤接受100J/cm2的PIT(并获得图像),在第11天,给予J591-IR700(100μg,腹膜内)并获得图像,在第12天右侧肿瘤接受50J/cm2的PIT,在第13天右侧肿瘤接受100J/cm2的PIT,在第19天,给予J591-IR700(100μg,腹膜内)。在第20天,获得图像,切除所述肿瘤并对其进行成像。如图7所示,与未经PIT处理的肿瘤不缩小相比,给予J591-IR700后的PIT处理在第5天开始使肿瘤缩小。
实施例12
抗体-IR700分子在体外的选择性杀死
该实施例描述了显示本公开的抗体-IR700化合物选择性杀死表达适当蛋白的细胞的另外的结果。光免疫疗法(PIT)描述于实施例2中。
如图8所示,Tra-1R700特异性地杀死表达HER2的3T3/1-IER2、SHAW、SKOV3和MDA-MB-453细胞,Pan-1R700特异性地杀死表达HER1的A431和MDA-MB-468细胞,huJ591-1R700特异性地杀死表达前列腺特异性膜抗原(PSMA)的LNCaP细胞。
实施例13
曲妥单抗-IR700治疗转移灶
该实施例描述了用于表明Tra-IR700可治疗肺部转移灶的方法。
将表达HER2的3T3/HER2细胞(50万-200万个细胞)静脉内注射到雌性裸鼠的尾部静脉中。在注射所述肿瘤细胞后5天,静脉内注射曲妥单抗-IR700(100μg)。因为在离体(ex vivo)成像中用Tra-IR700定位证实有多个微小的肺部转移灶,在曲妥单抗-IR700注射后2天用30J/cm2的NIR光从身体外侧治疗肺部。观察到肺转移灶被清除了,并且观察到所述小鼠的总存活时间与不接受Tra-IR700的小鼠相比有所增长。
实施例14
实时监测体内急性坏死性癌细胞死亡
该实施例描述了用于使用荧光寿命成像实时监测由近红外光免疫疗法诱导的体内急性坏死性癌细胞死亡的方法。虽然描述了Pan-IR700的具体实例,但是应认识到其他抗体-IR700分子可用于其他肿瘤。
如本文所述,基于单克隆抗体的高特异性光疗法(光免疫疗法;PIT)利用与mAb缀合的近红外(NIR)酞菁染料IRDye700DX(IR700)。NIR光暴露可导致即时的靶选择性的体外坏死性细胞死亡。检测即时的体内细胞死亡更加困难,因为肿瘤需要至少3天才开始缩小尺寸。在本实施例中,在PIT之前和之后评估荧光寿命(FLT)以监测NIR介导的mAb-1R700PIT的即时细胞毒性效应。抗EGFR的帕尼单抗-IR700用于靶向表达EGFR的A431肿瘤细胞。使用多种剂量的NIR光的PIT在体外在细胞片状沉淀物中进行,在体内在小鼠皮下异种移植的肿瘤中进行。在PIT之前和PIT之后0、6、24和48小时获得FLT测量结果。在体外,以更高剂量的NIR光的PIT即时地导致了A431细胞中FLT缩短更多。在体内,在30J/cm2的阈值NIR剂量或更高的NIR剂量之后,PIT诱导即时缩短经治疗的肿瘤中的FLT。相反,更低水平的NIR光(10J/cm2或更小)不诱导FLT缩短。基于这些观察结果,甚至在靶向的肿瘤中可看到形态改变之前,可使用FLT成像监测mAb-1R700诱导的PIT的早期的和大块的细胞毒性效应。
材料和方法
试剂。帕尼单抗——一种针对人EGFR或HER1的全人源化IgG2单克隆抗体(MAb)——购自AMGEN Inc.。水溶性的硅-酞菁衍生物IRDye700DX NHS酯(IR700;C74H96N12Na4027S6Si3,分子量为1954.22)购自LI-COR Bioscience。所有其他使用的化学品都是试剂级别的。
1R700缀合的帕尼单抗。帕尼单抗(1mg,6.8nmol)与IR700(66.8jig,34.2nmol,在DMSO中5mmol/L)在0.1mollL Na2HPO4(pH8.6)中在室温下孵育1小时。然后,用Sephadex G50柱(PD-10;GE Healthcare)纯化所述混合物。用Coomassie Plus蛋白质测定试剂盒(PierceBiotechnology)通过测量595nm下的光吸收(8453Value System;AgilentTechnologies)来确定所述蛋白浓度。通过用光谱法吸收来测量IR700的浓度以证实每个帕尼单抗分子上缀合的荧光团分子的平均数量。对于1:4.5的反应条件,每个抗体的IR700数量约为4。向所述样品中加入0.4%SDS使荧光团彼此分离,有效地引起去猝灭(dequenching)。具体缀合的猝灭效率(QE)定义为有SDS时的荧光强度除以无SDS时的荧光强度。证实了pH7.2下的帕尼单抗-1R700缀合物(Pan-1R700)具有约4.0的QE。Pan-1R700以储备溶液的形式保存于4℃的冰箱中。
荧光寿命测量。用eXplore OptixTm-MX2系统(ART AdvancedResearch Technologies,Inc.)进行FLT实验(Hutchinson et al.,BiophysJ68:1574-82,1995;Ma et al.,Appl Opt46:1650-7,2007)。使用固定的脉冲激光二极管作为波长670nm时的激发光源。在图像平面上选择具有1.5mm斑点大小的兴趣区(ROI)进行测量。激光功率自动选择为不会使光子检测器饱和的最高功率。通过使用ART OptiView(ART AdvancedResearch Technologies,Inc.)进行寿命分析。计算寿命值和寿命图(lifetimemapping)以用Fit TPSF工具将荧光时间点扩展函数(TPSF)拟合为单指数模型。
用于体外和体内模型的光免疫疗法。用波长为680-700nm的红色发光二极管(LED)(Tech-LED,Marubeni America Co.)光进行PIT(Mitsunaga et al.,Bioconjug Chem.23:604-9,2012)。用光功率计(PM100,Thorlabs)测量功率密度。
确定Pan-IR700的FLT。用PBS稀释制备了浓度为2.5、5、20、40pg/mL的Pan-IR700样品。使用Optix MX2系统在室温下在1.7ml离心管内确定每个样品的荧光强度和寿命。为了研究使用Pan-1R700的PIT的效应,在以0、2、4、8、15、30J/cm2的PIT剂量照射所述样品之后测量了浓度为50pg/mL的每个样品的FLT。
细胞系。HER1阳性细胞系A431与帕尼单抗缀合物一起用于HER1靶向研究。在37℃下、5%CO2中在含有10%胎牛血清(Life Technologies)、0.03%L-谷氨酰胺、100单位/mL青霉素和100pg/mL链霉素的RPMI1640(Life Technologies)中培养所述细胞系。
A431细胞片状沉淀物的FLT研究。将细胞接种于75mm2细胞培养瓶上,并培养直至汇合。然后,向培养基加入Pan-IR700缀合物(1pg/mL),在37℃孵育细胞24小时。一旦孵育完成,将细胞从所述培养瓶中移出,并离心获得片状沉淀物。将所得的细胞沉淀物用PBS洗涤3次,并置于1.7mL离心管中。然后,获得每个样品的荧光强度和寿命。
为了研究Pan-IR700缀合物的细胞内化作用的效应,将A431细胞接种于75mm2培养瓶上,并与Pan-1R700孵育1、2、4、6、15和24小时。除去所述培养瓶并获得A431细胞片状沉淀物后,获得所述A431片状沉淀物的FLT测量结果。所述A431细胞片状沉淀物与Pan-IR700孵育过夜后,以0、2、4、8、15、30J/cm2的剂量照射细胞片状沉淀物。此后,这些片状沉淀物用PBS轻柔地洗涤一次,获得荧光强度和寿命图像。为了检测IR700的抗原特异性定位并且为了确认PIT之前和之后A431细胞的形态变化,使用装备有以下滤光片的Olympus BX61显微镜(OlympusAmerica)进行荧光显微术:590-650nm激发滤光片、665-740nm带通发射滤光片。还获得了透射光微分干涉相差图像(DIC)。将A431细胞接种于底部有盖玻片的培养孔上并孵育24小时。向所述培养基加入Pan-IR700(10pg/mL),孵育所述细胞6或24小时。一旦完成,所述细胞就用PBS洗涤一次并在PIT之前或之后实施荧光显微术。
小鼠模型。在雌性裸鼠(National Cancer Institute AnimalProduction Facility)背部两侧皮下注射A431细胞(HER1+,HER2—,1×106个细胞)。在细胞注射后6-9天进行实验。
PIT后的体内FLT成像研究。将荷瘤小鼠分成3组,每组5只小鼠,用于以下PIT照射剂量:10、30和50J/cm2。准备5只不进行PIT的小鼠作为对照。在PIT前24小时,将100μg的Pan-IR700经尾部静脉静脉内注射至每只小鼠。用PIT治疗背部右侧的A431肿瘤,同时对侧的对照肿瘤用铝箔来隔离光暴露。进行PIT后,在以下时间点获得FLT图像:0、6、24和48小时。0小时的图像采集在PIT之后立即进行。计算背部两侧肿瘤在FLT图像中每个ROI的最大斑点值。
组织学分析。为了在用各种NIR光剂量进行PIT之后立即地(5分钟内)评估连续的组织学变化,实施了显微术(BX51,Olympus America)。在0、10、30和50J/cm2的NIR光暴露后,立即将A431肿瘤收集在10%福尔马林中。用H-E染色将连续的10-μm切片固定在载玻片上。
数据分析。使用统计程序(GraphPad Prism;GraphPad Software)进行了统计分析。使用Mann-Whitney's U检验比较经处理的肿瘤和未经处理的肿瘤的寿命值。使用student’s t检验比较经处理的肿瘤与无处理的对照的寿命。P<0.05被认为表明了有统计学上的显著差异。
结果
FLT与溶液中的Pan-IR700浓度无关。各种浓度的Pan-IR700的FLT大致相同,为3.56+/-0.081ns;3.62(2.5pg/mL)、3.58(5pg/mL)、3.44(20pg/mL)、3.60ns(40pg/mL),而荧光强度与浓度成比例地下降(图10A和10B)。
仅NIR光暴露不会影响Pan-IR700的FLT。单独照射Pan-IR700(50pg/mL)并测量FLT。荧光强度和寿命都不会因剂量为0、2、4、8、15、30J/cm2的LED照射而改变。所述FLT约为3.44+/-0.058ns。
Pan-IR700的细胞内摄作用延长了IR700FLT。A431细胞的FLT随着与Pan-1R700孵育的持续时间的增长而增长。孵育1、2、4、6、15和24小时,A431细胞片状沉淀物的FLT分别为2.98、3.05、3.13、3.15、3.36和3.41ns。在孵育15小时后,IR700的FLT达到峰值并显示不再进一步延长(图10D)。
更强的NIR光暴露使含IR700的A431细胞的FLT缩短。具有更大的NIR光剂量的PIT会诱导在暴露于NIR光之前与Pan-IR700孵育24小时的A431细胞片状沉淀物的FLT缩短更多(图10C)。在0、8、15和30J/cm2的剂量下,PIT将A431片状沉淀物的FLT分别缩短至3.28、3.09、2.94和2.85ns。
PIT诱导了A431细胞中典型的坏死性细胞死亡以及溶酶体的破裂。在显微术下,在孵育后24小时,Pan-1R700见于细胞膜上和内吞溶酶体内。暴露于NIR光后,在细胞膜和溶酶体中诱导了即时损伤。在细胞膜中看到了多发性小泡形成,以PIT诱导的坏死性细胞死亡为特征(图11)。
有效的PIT在体内诱导了IR700的FLT即时缩短。在体内给予100pg的Pan-IR700后1天,A431肿瘤的平均FLT为3.27+/-0.46ns(n=40)。在对实验肿瘤进行NIR光剂量为30和50J/cm2的PIT后立即诱导了FLT的显著缩短(右背部,30J/cm2;下降至同一小鼠未处理肿瘤的61.5%+/-5.05%;p<0.01,50J/cm2;下降至同一小鼠未处理肿瘤的69.0%+110.92%;p<0.05)。
在NIR光剂量为30和50J/cm2的PIT后6小时,在PIT处理的肿瘤中和其周围发现了IR700FLT的短暂延长,但是在PIT后>24小时,IR700FLT继续缩短。10J/cm2的PIT没有显示出FLT的短暂延长。在未处理的对照肿瘤中IR700FLT在后期时间点也略微缩短(图12A)。
对同一小鼠中暴露与未暴露于30和50J/cm2的NIR光的肿瘤之间的IR700FLT的比较,表明在PIT后0、24和48小时有明显差异(p<0.05;图12B和12C)。在PIT后6小时,IR700FLT的差异在统计学上不显著,是因为在被暴露的肿瘤周围漫射短暂地增加。暴露和未暴露于10J/cm2NIR光的肿瘤的IR700FLT在任何时间点都未显示出显著的差异(图12D)。
与无处理对照(0J/cm2)相比,用50和30J/cm2的PIT处理的肿瘤中的FLT显著缩短(p<0.01)。50和30J/cm2的PIT分别将FLT立即缩短至69.1+/-10.9%和61.5+/-5.1%。仅用10J/cm2照射的A431肿瘤在PIT后没有立即显示出显著的FLT缩短。与未处理对照相比,在PIT后48小时,FLT仅缩短了7.7%(图13A)。有趣的是,在PIT处理的小鼠中未经照射的肿瘤的FLT比未处理小鼠缩短得稍多,但是这些变化是不显著的,然而,对处理的肿瘤的NIR光剂量越大,FLT变得越短(图13B)。这些变化可能是由少量的光透过软组织从“处理”的一侧漫射到“未处理”一侧而引起的,从而解释了效应的剂量依赖性。
组织学分析
对处理的肿瘤进行的显微术显示了在PIT后健康或受损但可能有活力的肿瘤细胞簇有多种程度的坏死和微出血。当给予30或50J/cm2的NIR光时,坏死性损伤是弥散且强烈的并且存活的肿瘤细胞的量减少。相反,当给予10J/cm2的NIR光时,仅在有限的区域内发现坏死性细胞损伤,而相对大面积的有活力的癌细胞占所述组织的大多数(图13C)。
讨论
荧光显微术研究显示,在37℃,Pan-IR700在A431细胞中逐渐地内化至溶酶体中(图11)。随着Pan-IR700的内化(图10D),IR700FLT以孵育时间的函数变得更长。最后,IR700在溶酶体中积累。在暴露于阈强度的NIR光之后,Pan-IR700诱导了即时的外层细胞膜损伤和对溶酶体造成的损伤,导致IR700在细胞质内累积并到细胞外隙中。该损伤与IR700FLT的显著减少有关。这暗示Pan-IR700缀合物自身的细胞内化延长了IR700FLT,因为其在内吞溶酶体中累积。然而,通过破坏膜结构(包括溶酶体膜),PIT可诱导细胞死亡并将长FLT的IR700释放到细胞质中,于是FLT明显缩短。因此,FLT缩短作为由PIT诱导的急性膜损伤的指示物。
在体外的癌细胞中和在体内的肿瘤中,用有效治疗光剂量的NIR进行PIT处理,可导致IR700的FLT缩短。在体外FLT的缩短依赖于NIR光暴露的剂量(图10C)。在体内用亚最佳剂量的NIR光(10J/cm2)进行的PIT未显示出显著的IR700FLT缩短。这些差异可归因于接受PIT效应的癌细胞群。图7证明,NIR光暴露为50J/cm2或更大的PIT可根除A431肿瘤。30J/cm2的PIT不足以完全根除肿瘤但是会引起肿瘤萎缩和生长延迟,表明虽然没有杀死所有的细胞但是大多数都严重或不可逆地受损(Mitsunaga et al.,Bioconjug.Chem.23:604-9,2012)。
进行单次有效剂量的NIR光处理的30分钟内,观察到了在体内处理的肿瘤的FLT缩短,表明肿瘤尺寸和形状改变前数天具有生物效应。虽然损伤的尺寸被认为是细胞死亡的主要指示物,但是它的发生不会快到能够确定治疗是否已经起作用。在其中如果需要可再次施用光的PIT的具体情况中,需要更加即时地读出细胞死亡。尺寸改变的发生不会快到足以用于监测细胞毒性效应。对于优选一口气完成处理的外科和内镜操作,尤其如此(Mitsunaga et al.,Bioconjug.Chem.23:604-9,2012)。FLT,因为其是肿瘤状况的即时读出,所以可在治疗后立即评估PIT对癌细胞的疗效并在操作期间帮助决定是否需要额外剂量的NIR光(Kosaka et al.,Int J Cancer129:1671-7,2011;Longmire et al.,Cancer Sci100:1099-104,2009)。
有趣的是,在最初FLT缩短之后,在PIT后约6小时,FLT短暂地变长。到PIT后24小时,FLT再次减少(图12)。因为观察到IR700FLT随着IR700内化而延长,所以认为在PIT引起细胞膜破裂之后,IR700漏至细胞外隙中,在细胞外隙中IR700被响应与细胞坏死相关的细胞因子的释放而动员起来的巨噬细胞内化。这受到PIT后6小时的组织学结果的支持,所述组织学结果显示出由巨噬细胞组成的炎性浸润物,所述巨噬细胞进入先前由有活力的肿瘤占据的空间(Mitsunaga et al.,Nat Med17:1685-91,2011)。因此,IR700FLT的暂时延长可以是有效的细胞损伤的标志,在所述细胞损伤之后开始组织修复,所述组织修复可能由碎片DNA和脂双层诱导的趋化因子释放或toll样受体系统介导(Emeagi et al.,Cancer Res72:1342-52,2012;Shiratsuchi et al.,J Immunol172:2039-47,2004;Zhu et al.,Cell24:615-29,2006)。
荧光蛋白(FP)是用于在体内监测肿瘤生长的潜在替代物(Kimuraet al.,J Cell Biochem110:1439-46,2010;Tsai et al.,Anticancer Res30:3291-4,2010;Yamamoto et al.,Cancer Res64:4251-6,2004;Hoffmanand Yang,Nat Protoc1:1429-38,2006)。使用FP的荧光成像更适于纵向监测光疗法的效应(Jiang et al.,Cell Cycle5:1198-201,2006;Hoffman andYang,Nat Protoc1:775-82,2006)。急性地,无论所述细胞的活力如何FP都会保持其信号,FP甚至在坏死的细胞中可能被巨噬细胞摄取。因此,即使FLT需要对荧光信号进行后处理并使用相对昂贵的设备,但是与FP相比它更适于检测急性的变化(Hoffman and Yang,Nat Protoc1:928-35,2006;Hoffman,Nat Rev Cancer5:796-806,2005)。使用FP的荧光成像已经用于纵向监测PIT的疗效(Mitsunaga et al.,Bioconjug Chem23:604-9,2012)。然而,PIT诱导的急性细胞死亡仅可以用光学方法(例如FLT)检测,而长期改变可用FP测量。虽然FLT是可临床转移的(translatable),而需要细胞转染的FP不太可能在临床上使用。
该数据证明了Pan-IR700的FLT是一种不依赖于溶液中Pan-IR700的浓度或光暴露的稳定的测量方法。例如,在不同的浓度下或在各种剂量的NIR光暴露之后,体外Pan-IR700溶液不会改变其FLT。因此,仅周围的化学微环境似乎能影响IR700FLT。虽然IR700通常是发荧光的并且反映肿瘤负荷,但是在溶酶体中进行分解代谢和光漂白之后,可减少荧光,从而导致组织活力模糊。然而,这些光化学和生物化学改变不会影响FLT。因此,FLT缩短是比IR700荧光强度更好的生物标记物。
总之,FLT可用于在外科或内镜操作的过程中,近实时地评估采用mAb-IR700缀合物的PIT的细胞毒性效应。FLT在内吞溶酶体内化的过程中延长,但是在细胞损伤后快速缩短。由于迁移的巨噬细胞的内化作用,FLT在PIT后约6小时再次短暂地延长。此后,FLT平稳地减少。因此,FLT成像使得能够在形态变化变得明显之前评估PIT的效应。
实施例15
联合光免疫疗法和化学疗法
本实施例描述了用于联合PIT和用于癌症治疗的其他疗法例如化学治疗的方法。其证明了在PIT期间产生的渗透性增加增强了纳米尺寸试剂的递送。
材料和方法
细胞。表达HER1的A431细胞用于PIT。在37℃、95%空气和5%二氧化碳的气体环境中,在增湿培养箱中,在组织培养瓶中,在补充有10%FBS和1%青霉素-链霉素的RPMI1640中培养细胞。
试剂。IRDye700DX NHS酯(IR700;C74H96N12Na4O27S6Si3,分子量为1954.22)和IRDye800CW NHS酯(IR800;C50H54N3Na3O17S4,分子量为1166.20)购自LI-COR Bioscience。帕尼单抗——一种针对人表皮生长因子受体(EGFR;HER1)的全人源化IgG2单克隆抗体(mAb)——购自Amgen。曲妥单抗——一种针对人EGFR2(HER2)的重组人源化mAb——购自Genentech。Qtracker800非靶向量子点购自Invitrogen。所使用的全部其他化学品均是试剂级别的。
合成IR700和IR800缀合的mAb。染料与mAb的缀合根据上文实施例中报导的方法进行。每种mAb(1mg,6.8nmol)与IR700(60.2μg,30.8nmol)或IR800(35.9μg,30.8nmol)在0.1mol l-1Na2HPO4(pH8.6)中在室温孵育1小时。用Sephadex G50柱(PD-10;GEHealthcare)纯化所述混合物。用光谱法(8453Value System;AgilentTechnologies)通过吸光率来测量染料和蛋白质的浓度,以确认每个mAb分子上缀合的荧光团分子的数量。
光免疫疗法之后的体内纳米药物递送。六至八周龄雌性纯合子无胸腺裸鼠购自Charles River(National Cancer Institute Frederick)。在治疗期间,用异氟烷麻醉小鼠。在每个小鼠的右侧和左侧背部皮下注射200万个A431细胞。在细胞注射后5天,静脉内给予100μg的Pan-IR700,1天后,用NIR光照射任一侧的肿瘤,所述NIR光来自于红色发光二极管,波长为670-690nm,并且用光功率计(PM100(Thorlabs))测量的功率密度为10-100J cm-2。PIT后1小时,静脉内注射Pan-IR800(100μg)、Qtracker800非靶向量子点(32.5pmol)或枸橼酸柔红霉素脂质体(DaunoXome)(30mg kg-1),用Pearl Imager(LI-COR Biosciences)和Maestro Imager(CRi)获得体内荧光图像。对于MR成像,PIT后1小时静脉内给予SPIO(Feridex),获得MR图像。在进行离体成像后,将所述肿瘤切除,冷冻并用石蜡包埋用于组织学研究和荧光显微术研究。
体内荧光成像。在右侧和左侧背部注射200万个A431或3T3-HER2细胞后五天,在乳房垫注射MDA-MB-468细胞后7天,选择体积约75mm3的肿瘤。用荧光照相机(Pearl Imager,LI-COR Biosciences)使用700和800nm的荧光通道检测IR700和IR800的信号。Qdot800用Maestro体内成像系统(CRi)使用带通滤光片(范围为575-605nm)(激发)和超过800nm的长通NIR滤光片(发射)检测。柔红霉素的荧光图像也用Maestro使用503–555nm的带通滤光片(激发)和超过580nm的长通绿色滤光片(发射)获得。对于NIR,可调式发射滤光片可以自动地以10nm的增量阶梯状地从650增至950nm,和从500增至800nm,并且绿色滤光片组在恒定曝光量下。光谱荧光图像由自发荧光谱以及来自Qdot800和柔红霉素的谱组成,那时它们是未混合的(使用商品化软件(Maestro software;CRi),基于它们的谱型)。在进行体内成像后立即用二氧化碳处死小鼠。在进行离体成像后,将所述肿瘤切除、冷冻或用石蜡包埋用于组织学研究和荧光显微术研究。
治疗性研究。为了确定肿瘤疗法的优异EPR效应的有效性,如下研究PIT是否可以增强枸橼酸柔红霉素脂质体的疗效。在所述小鼠的右侧背部皮下注射100万个A431细胞。为了确定肿瘤体积,用外部测径器确定了最大纵径(长)和最大横径(宽)。基于测径器测量结果,通过如下公式计算肿瘤体积;肿瘤体积=长×宽×0.5。选择体积达到约40mm3的肿瘤。选择的小鼠随机分成4组,每组至少10只小鼠,用于以下处理:(1)无处理;(2)枸橼酸柔红霉素脂质体(6mg kg-1);(3)PIT(50J cm-2);(4)PIT(50J cm-2),1小时后,枸橼酸柔红霉素脂质体(6mg kg-1)。处理后,每日监测所述小鼠,每周两次测量它们的肿瘤体积直至其达到750mm3,此时用二氧化碳气体对小鼠实施安乐死。
荧光显微术。制备了10μm厚的冷冻或石蜡切片,使用配备有以下滤光片的Olympus BX81显微镜(Olympus America,Inc.,Melville,NY)检测了肿瘤切片的荧光:激发波长为590-650nm和480-550nm,对于IR700、Qdot800和柔红霉素,发射波长分别为662.5-747.5nm、765-855nm和590nm长通。还获得了透射光微分干涉相差图像。根据标准方案进行H&E染色和普鲁士蓝染色。
二次注射的最佳时机。为了确定二次注射的最佳时机,在PIT处理后1、6和24小时,静脉内给予荷A431小鼠Pan-IR800(100μg),根据上述的方案用Pearl Imager进行动态成像持续1小时。
统计学分析。除非另有说明,数据表示为来自最少三次实验的均值±平均数标准差。使用统计程序(GraphPad Prism;GraphPad Software)进行统计分析。对于多重比较,使用了单因素方差分析(ANOVA)和事后检验(具有事后检验的Kruskal-Wallis检验)。使用Kaplan-Meier存活曲线分析来评估每个组的累积存活概率(在本文中其被确定为肿瘤体积不能达到750mm3),使用时序检验和Bonferroni多重校正来比较结果。P<0.05被认为表明有统计学上的显著差异。
结果
PIT增加肿瘤中的灌流
为了验证PIT处理后肿瘤中灌流的改变,在荷A431(HER1阳性)小鼠中评估了PEG化的量子点800(非靶向Qdot800)的动态分布。在注射IR700缀合的抗HER1的mAb(帕尼单抗)(Pan-IR700)后1天,用单次剂量的NIR光(50J cm-2)处理A431肿瘤。在光照射后1小时给予Qdot800,进行体内动态成像研究。Qdot800的直径平均值为50nm,其通过尺寸排阻HPLC和SDS-PAGE确定。在1小时内在PIT处理的肿瘤中观察到了Qdot800的快速积累,而在不暴露于NIR光的对照肿瘤中没有检测到显著的摄取(图14A)。在PIT处理的肿瘤中,在第1分钟至第60分钟之间的信号强度(SI)的增加速率是对照肿瘤的25.7倍,其作为优异的EPR指数通过以下方程式计算:[(SI第60分钟的PIT-SI第60分钟的背部)-(SI第1分钟的PIT-SI第1分钟的背部)]/[(SI第60分钟的对照-SI第60分钟的背部)-(SI第1分钟的对照-SI第1分钟的背部)](图14B)。到第24小时为止,PIT处理的肿瘤中的信号高保留,表明Qdot800的长期滞留。
病理分析和荧光显微镜研究揭示,PIT导致了肿瘤细胞的坏死性损伤以及在PIT处理的肿瘤中Qdot800广泛分布在坏死的区域和间质中(图14C)。CD31染色证明了所述肿瘤中的大多数血管是衰老的并且周围的肿瘤细胞也严重受损(图14C)。在另一方面,在对照肿瘤中A431细胞大多是存活的并且Qdot800的荧光信号集中在主血管的附近(图14C)。
临床用磁共振成像(MRI)造影剂,超顺磁性氧化铁(SPIO)(直径200nm)面临确定渗透性的断点的挑战。在注射SPIO后5分钟内,在PIT处理的肿瘤中信号强度显著下降,而在对照肿瘤中观察到略微的下降(图15A)。在第60分钟,PIT处理的肿瘤中的信号强度的降低速率比对照肿瘤高。在PIT处理的肿瘤中,SPIO在坏死的区域和间质中累积,这用普鲁士蓝染色确认(图15B)。分别用钆(Gd)标记的聚乙二胺树状大分子(polyamidoamine dendrimer)(第6代)(G6-Gd)和USPIO作为T1和T2造影剂获得了类似的结果。G6-Gd(直径10nm)在PIT处理的肿瘤中随时间条纹状(streakly)分布,相反,在对照肿瘤中仅肿瘤表面上的主血管被清楚地描绘出来。
USPIO(直径30nm)也被PIT处理的肿瘤快速地摄取,尤其是在间质和坏死的区域中,如普鲁士蓝染色所显示的那样。这些结果证明,直径为至少200nm的纳米颗粒展示出其大量且快速地泄漏到PIT处理的肿瘤组织中,因此该优异的EPR方法可应用于癌症治疗。
PIT可增强抗癌药物的递送和效能
在荷A431的小鼠中,用二次注射帕尼单抗(直径10nm)检验所述优异的EPR方案。帕尼单抗是一种临床上用于治疗表达EGRR的转移性结肠直肠癌的治疗性单克隆抗体。还已经验证了帕尼单抗可用于乳癌、肺癌、头癌和颈癌。PIT促进了Pan-IR800在处理的肿瘤中在10-60分钟内的渗透性,而在对照肿瘤中没有检测到信号强度的改变,与包括Qdot800和G6-Gd的纳米颗粒一致(图16A)。确定了实现抗癌药物(Pan-IR800)的充分递送所需的有效光剂量。在PIT处理的肿瘤中IR800的信号强度以光剂量依赖的方式随时间增加(图16B),在探针注射后1分钟至60分钟之间,在PIT处理的肿瘤中Pan-IR800的优异的EPR指数显著高于对照肿瘤。在用高剂量的NIR光照射的组中,在对照肿瘤中观察到信号强度的略微增加,可能是因为散射的NIR光从受照射的一侧横穿过来(图16A)。病理研究显示,当暴露于高剂量的NIR光时,在PIT处理的肿瘤中坏死性细胞死亡更强烈。有趣的是,PIT引起的灌流的改变在处理后随时间逐渐消失,并且在24小时内完全停止(图16C和16D),表明血管和肿瘤组织之间的屏障的修复或血流的完全阻断。这些结果表明,二次注射的最佳时间是6小时前。基于在用针对3种表达不同数量的各自的靶分子的不同细胞(A431(HER1阳性)、3T3-HER2(HER2阳性)和MDA-MB-468(HER1阳性)的两种不同的mAb(帕尼单抗和曲妥单抗)诱导的PIT之后肿瘤中灌流变化的相似性,因此该优异的EPR通常可应用于其他mAb和抗原(图18)。
为了检验分子非靶向的治疗剂用于基于优异的EPR效应的有效癌症治疗的可能性,扫描包含柔红霉素的脂质体(枸橼酸柔红霉素脂质体;DX)(直径50nm)并将其应用于治疗性研究。与SPIO和USPIO一样,DX快速累积并在PIT处理的肿瘤中保留1小时(图17A和17B)。在第60分钟在PIT处理的肿瘤中信号强度的增加速率与对照肿瘤中相比更高(图17C)。与Qdot800类似,DX围绕PIT处理的肿瘤中的存活肿瘤组织广泛分布,部分观察到IR700(指示存活的肿瘤细胞)和DX的共定位,然而,在对照肿瘤中DX的信号位于主血管的附近(图17D)。在肿瘤的边缘和核心都证明了有该现象。在Pan-IR700注射后1天,用单次剂量的光(50J cm-2)处理A431肿瘤。在四组荷A431小鼠(每组n≥10)中确定所述方法的效能。发明人处理的所有肿瘤的体积小于750mm3,因为更大的肿瘤与副作用(皮下出血、肿瘤出血或虚弱状态)有关,根据发明人所在机构的动物照料和使用指导方针,要求发明人安乐处死所述小鼠。与未处理的对照小鼠、仅用DX和仅用PIT处理的小鼠相比,在使用PIT和DX联合疗法的A431肿瘤中肿瘤体积显著减小(图17E),使用PIT和DX联合疗法的小鼠的存活比其他组显著延长(图17F)。在PIT+DX组中,没有观察到明显的体重下降。
在另一个实验中,用Tra-IR700注射3T3/HER2小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。在PIT处理后1小时给予Tra-IR800。如图19A所示,在10分钟内仅右侧肿瘤被清楚地显示出来。因此,Tra-IR800仅在肿瘤暴露于NIR光的区域累积。在另一个实验中,用Pan-IR700注射荷MDA-MB-468小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。PIT处理后1小时给予Pan-IR800。如图19B所示,在10分钟内仅右侧肿瘤清楚地显示出来。
用Pan-IR700注射A431小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。在PIT处理后1小时,给予USPIO。如图20A所示,在5分钟内仅右侧肿瘤清楚地显示出来。普鲁士蓝染色和HE染色示于图20B。PIT后G6-Gd的动态图像。用Pan-IR700注射A431小鼠,24小时后,NIR光(50J/cm2)照射右侧肿瘤。在PIT处理后1小时给予G6-Gd。如图20C所示,在5分钟内仅右侧肿瘤清楚地显示出来。
确定了肿瘤边缘和核心区域中的荧光显微镜研究。图21A的IR700信号示出了存活的A431细胞。含有柔红霉素的脂质体广泛地分布在PIT处理的肿瘤组织中,并且部分地观察到IR700和含有柔红霉素的脂质体的共定位。尤其在核心区域,DX可被吸收到局部坏死的区域中。图21B示出治疗后体重的改变。组之间没有明显的差异。
总之,抗体-IR700PIT疗法仅在所述抗体缀合物结合细胞膜时有效,而在所述抗体缀合物未结合或未用NIR光照射时未显示出光毒性。另外,PIT诱导了优异的增强的渗透性效应(Super EPR效应),所述效应帮助递送纳米尺寸的试剂。因此,使用MAb-IR700的PIT联合纳米尺寸的试剂可用于治疗诊断学,用于高选择性和有效性的癌症治疗。
鉴于本公开的原理可应用于许多可能的实施方案,应认识到举例说明的实施方案仅是本公开的实例,不应被认为是对本发明范围的限制。相反,本发明的范围由下述的权利要求书限定。因此,申请人要求保护所有在这些权利要求的范围和精神内的所有发明。

Claims (23)

1.一种杀死细胞的方法,包括:
使含细胞表面蛋白的细胞与治疗有效量的一种或多种抗体-IR700分子接触,其中所述抗体特异性结合所述细胞表面蛋白;
在660-740nm的波长下以至少1J cm-2的剂量照射所述细胞;和
在照射所述细胞之后约0-8小时,使所述细胞与一种或多种治疗剂接触,从而杀死所述细胞。
2.一种实时检测细胞杀死的方法,包括:
使含细胞表面蛋白的细胞与治疗有效量的一种或多种抗体-IR700分子接触,其中所述抗体特异性结合所述细胞表面蛋白;
在660-740nm的波长下以至少30J cm-2的剂量照射所述细胞;
在照射所述细胞后约0-48小时,用荧光寿命成像检测所述细胞,从而实时检测所述细胞杀死。
3.权利要求1的方法,还包括:
在照射所述细胞后约0-48小时,用荧光寿命成像检测所述细胞。
4.权利要求1-3任一项的方法,其中所述细胞是肿瘤细胞。
5.权利要求3的方法,其中所述肿瘤细胞是癌细胞。
6.权利要求5的方法,其中所述癌细胞是乳房、肝、结肠、卵巢、前列腺、胰、脑、子宫颈、骨、皮肤或肺的癌细胞。
7.权利要求5的方法,其中所述癌细胞是血液的癌细胞。
8.权利要求1-7任一项的方法,其中所述细胞表面蛋白是肿瘤特异性蛋白。
9.权利要求8的方法,其中所述肿瘤特异性蛋白包括HER1、HER2、CD20、CD25、CD33、CD52、CD44、CD133、Louis Y、间皮素、CEA或前列腺特异性膜抗原(PSMA)。
10.权利要求1-9任一项的方法,其中所述抗体-IR700分子包括帕尼单抗-IR700分子、曲妥单抗-IR700分子、Basilitumab-IR700分子、赛尼哌-IR700分子、Simitect-IR700分子或J591-IR700分子。
11.权利要求1-10任一项的方法,其中在680nm的波长下照射所述细胞。
12.权利要求1-11任一项的方法,其中所述一种或多种抗体-IR700分子包括至少两种不同的抗体-IR700分子,其中第一抗体-IR700分子对第一抗原特异,第二抗体-IR700分子对所述第一抗原的不同表位特异或者对第二抗原特异。
13.权利要求1-12任一项的方法,其中所述细胞在受试者中,并且使所述细胞与所述一种或多种抗体-IR700分子和所述一种或多种治疗剂接触,包括给予所述受试者治疗有效量的所述一种或多种抗体-IR700分子和所述一种或多种治疗剂。
14.权利要求1-13任一项的方法,其中所述细胞在受试者中,并且照射所述细胞包括:
照射所述受试者;和/或
照射所述受试者中的肿瘤。
15.权利要求1-14任一项的方法,其中所述细胞在受试者的血液中,并且其中照射所述细胞包括通过使用所述受试者穿戴的装置来照射所述血液,其中所述装置包含近红外(NIR)发光二极管(LED)。
16.权利要求1-15任一项的方法,其中所述细胞在受试者中,并且所述方法还包括:
选择具有表达可特异性结合抗体-IR700分子的细胞表面蛋白的肿瘤的受试者。
17.权利要求1-16任一项的方法,其中所述方法使所述肿瘤的体积或尺寸相对于没有治疗减少达至少25%。
18.权利要求13-17任一项的方法,其中相对于没有给予所述抗体-IR700分子和照射,所述方法使所述受试者的存活时间增加。
19.权利要求1或3-18任一项的方法,还包括:
使所述细胞与低于治疗有效量的量的一种或多种抗体-IR700分子接触;和
在660-740nm的波长下以至少0.001J cm-2的剂量照射所述细胞,从而容许对所述细胞进行检测。
20.一种组合物,包含帕尼单抗-IR700分子、曲妥单抗-IR700分子或J591-IR700分子。
21.一种可穿戴装置,包含:
衣服、珠宝或覆盖物;和
被纳入到所述衣服、珠宝或覆盖物中的NIR LED。
22.权利要求21的可穿戴装置,还包含被纳入到所述衣服、珠宝或覆盖物中的电源和/或冷源。
23.一种杀死受试者血液中的肿瘤细胞的方法,包括:
给予所述受试者治疗有效量的一种或多种抗体-IR700分子,其中所述抗体特异性结合所述肿瘤细胞上的细胞表面蛋白;和
用NIR LED以660-740nm的波长和以至少20Jcm-2的剂量照射所述肿瘤细胞,从而杀死所述细胞,其中所述NIR LED存在于所述受试者穿戴的权利要求21-22任一项的可穿戴装置中。
CN201280043973.2A 2011-07-11 2012-06-27 光敏抗体-荧光团缀合物 Pending CN103781495A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710729452.7A CN107929733A (zh) 2011-07-11 2012-06-27 光敏抗体‑荧光团缀合物

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/180,111 US8524239B2 (en) 2010-07-09 2011-07-11 Photosensitizing antibody-fluorophore conjugates
US13/180,111 2011-07-11
PCT/US2012/044421 WO2013009475A1 (en) 2011-07-11 2012-06-27 Photosensitizing antibody-phuorophore conjugates

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201710729452.7A Division CN107929733A (zh) 2011-07-11 2012-06-27 光敏抗体‑荧光团缀合物

Publications (1)

Publication Number Publication Date
CN103781495A true CN103781495A (zh) 2014-05-07

Family

ID=46579316

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280043973.2A Pending CN103781495A (zh) 2011-07-11 2012-06-27 光敏抗体-荧光团缀合物
CN201710729452.7A Pending CN107929733A (zh) 2011-07-11 2012-06-27 光敏抗体‑荧光团缀合物

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201710729452.7A Pending CN107929733A (zh) 2011-07-11 2012-06-27 光敏抗体‑荧光团缀合物

Country Status (6)

Country Link
EP (1) EP2731626B1 (zh)
JP (6) JP6127045B2 (zh)
CN (2) CN103781495A (zh)
CA (1) CA2841120C (zh)
ES (1) ES2718812T3 (zh)
WO (1) WO2013009475A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470705A (zh) * 2014-08-08 2017-03-01 美国政府(由卫生和人类服务部的部长所代表) 在体内和在体外的靶标的光控移除
CN106573054A (zh) * 2014-06-02 2017-04-19 利康公司 酞菁探针及其用途
CN107789743A (zh) * 2016-08-31 2018-03-13 北京至感传感器技术研究院有限公司 无创肿瘤治疗装置
CN107929949A (zh) * 2016-10-13 2018-04-20 北京至感传感器技术研究院有限公司 无创肿瘤治疗装置
CN108136017A (zh) * 2015-06-16 2018-06-08 弗劳恩霍夫应用研究促进协会 用于检测和消除皮肤癌细胞的特异性光免疫治疗诊断试剂及其制备方法
CN108136039A (zh) * 2015-08-18 2018-06-08 阿斯皮利安治疗学股份有限公司 用于光免疫疗法的组合物、联用及相关方法
CN108137701A (zh) * 2015-08-07 2018-06-08 美国政府(由卫生和人类服务部的部长所代表) 用于治疗癌症的针对抑制细胞的近红外光免疫疗法(nir-pit)
CN108136215A (zh) * 2015-08-18 2018-06-08 阿斯皮利安治疗学股份有限公司 酞菁染料偶联物的制造方法及稳定偶联物
CN112272676A (zh) * 2018-04-10 2021-01-26 美国政府(由卫生和人类服务部的部长所代表) 靶向癌细胞的近红外光免疫疗法与宿主免疫激活的联合使用
US11364298B2 (en) 2010-07-09 2022-06-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Photosensitizing antibody-fluorophore conjugates
CN116096425A (zh) * 2020-09-11 2023-05-09 Jsr株式会社 复合体和光免疫疗法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373998B2 (ja) * 2017-05-02 2023-11-06 コーネル・ユニバーシティー 有効性がより大きくかつ毒性がより少ない腫瘍標的指向方法及び試薬
JP6897483B2 (ja) * 2017-10-18 2021-06-30 株式会社ニコン 光照射装置、光照射プログラム、及び光照射装置の駆動方法
US20200405860A1 (en) * 2018-03-09 2020-12-31 The Jikei University Conjugate of antibody targeting blood vessels and photosensitizer
CN112153942A (zh) * 2018-05-07 2020-12-29 株式会社岛津制作所 治疗辅助装置
TW202003042A (zh) * 2018-06-01 2020-01-16 美商樂天醫藥生技股份有限公司 酞菁染料結合物之組合物
US20190388702A1 (en) * 2018-06-20 2019-12-26 Olympus Corporation Tumor treatment method
WO2020049632A1 (ja) 2018-09-04 2020-03-12 オリンパス株式会社 光照射デバイス送達装置および光治療方法
WO2020049629A1 (ja) 2018-09-04 2020-03-12 オリンパス株式会社 光照射デバイス送達装置および光治療方法
JP2022065214A (ja) * 2019-02-28 2022-04-27 テルモ株式会社 治療方法および治療システム
WO2020205623A1 (en) 2019-03-29 2020-10-08 Rakuten Medical, Inc. Methods for photoimmunotherapy and related biomarkers
WO2021021882A1 (en) * 2019-07-30 2021-02-04 Rakuten Medical, Inc. Near-infrared (nir) photoimmunotherapy (pit) for the treatment of cancers using anti-cd25 antybody-phthalocyanine dye conjugate and anti-pd1 antibody
US20220288208A1 (en) * 2019-08-07 2022-09-15 Rakuten Medical, Inc. Cetuximab-ir700 conjugate compositions
WO2021038729A1 (ja) * 2019-08-27 2021-03-04 株式会社島津製作所 治療支援装置および治療支援方法
EP4023287A4 (en) * 2019-08-27 2023-05-17 Shimadzu Corporation TREATMENT SUPPORT DEVICE AND THERAPEUTIC LIGHT CONTROL METHOD
JPWO2021044627A1 (zh) * 2019-09-06 2021-03-11
JP7382771B2 (ja) * 2019-09-24 2023-11-17 朝日インテック株式会社 光照射デバイス、及び、光照射システム
CN114450064A (zh) * 2019-09-30 2022-05-06 泰尔茂株式会社 照射器械及治疗方法
JP7308123B2 (ja) 2019-10-17 2023-07-13 朝日インテック株式会社 光照射デバイス、及び、光照射システム
JPWO2021157655A1 (zh) * 2020-02-05 2021-08-12
JPWO2021199975A1 (zh) * 2020-03-30 2021-10-07
IT202000014974A1 (it) * 2020-06-23 2021-12-23 Univ Degli Studi Padova Anticorpo anti-cla coniugato ad una molecola fotosensibilizzante per l’uso nelle malattie della cute
JP7472988B2 (ja) * 2020-08-19 2024-04-23 株式会社島津製作所 治療支援システムおよび治療支援装置
JP2023541446A (ja) * 2020-09-16 2023-10-02 オン ターゲット ラボラトリーズ エルエルシー 腫瘍標的化nir薬剤を使用する循環腫瘍細胞の検出
AU2022213415A1 (en) * 2021-01-29 2023-08-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Near infrared photoimmunotherapy (nir-pit) combination therapy to treat cancer
CN114859042B (zh) * 2021-02-03 2023-11-03 广东菲鹏生物有限公司 一种鉴别结合突变型抗原的抗体的方法及试剂
US20240190994A1 (en) 2021-03-25 2024-06-13 The University Of Tokyo Fusion protein between antigen-binding molecule and streptavidin variant
US12115223B2 (en) 2021-04-22 2024-10-15 The University Of Tokyo Conjugate of biotin-modified dimer and phthalocyanine dye
EP4382609A1 (en) 2021-07-29 2024-06-12 The University of Tokyo Fusion protein between antigen-binding molecule and streptavidin variant
WO2023100829A1 (ja) 2021-11-30 2023-06-08 第一三共株式会社 プロテアーゼ分解性マスク抗体
KR20240141757A (ko) 2022-02-09 2024-09-27 다이이찌 산쿄 가부시키가이샤 환경 응답성 마스킹 항체 및 그 이용
JP7225458B1 (ja) 2022-05-10 2023-02-20 株式会社エクサウィザーズ 情報処理方法、コンピュータプログラム及び情報処理装置
WO2024006965A1 (en) 2022-06-30 2024-01-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Cd25-specific antibodies and uses thereof
WO2024102941A1 (en) 2022-11-11 2024-05-16 Rakuten Medical, Inc. Engineered interleukin-15 polypeptides, complexes and uses thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
CA2130578A1 (en) 1992-04-17 1993-10-28 Geewananda P. Gunawardana Taxol derivatives
US7521531B2 (en) * 1996-08-28 2009-04-21 Immunomedics, Inc. Methods for the purification of stable radioiodine conjugates
US5912264A (en) 1997-03-03 1999-06-15 Bristol-Myers Squibb Company 6-halo-or nitrate-substituted paclitaxels
DE19717904A1 (de) * 1997-04-23 1998-10-29 Diagnostikforschung Inst Säurelabile und enzymatisch spaltbare Farbstoffkonstrukte zur Diagnostik mit Nahinfrarotlicht und zur Therapie
AR030188A1 (es) 2000-02-02 2003-08-13 Univ Florida State Res Found Compuestos de taxano sustituidos con esteres en el c7; composiciones farmaceuticas que los contienen y proceso para tratar un sujeto mamifero que sufre de una condicion que responde a los taxanos
AU2002348477A1 (en) * 2001-05-01 2002-12-23 The General Hospital Corporation Photoimmunotherapies for cancer using photosensitizer immunoconjugates and combination therapies
US20030031627A1 (en) * 2001-07-31 2003-02-13 Mallinckrodt Inc. Internal image antibodies for optical imaging and therapy
JP2003284757A (ja) * 2002-01-24 2003-10-07 Seputo:Kk ヒーター付赤色光線治療器
AUPS146502A0 (en) * 2002-03-28 2002-05-09 Traynor, Neil Methods and apparatus relating to improved visual recognition and safety
JP4074136B2 (ja) * 2002-05-29 2008-04-09 浜松ホトニクス株式会社 蛍光寿命分布画像測定装置およびその測定方法
MXPA05002113A (es) 2002-08-23 2005-06-03 Sloan Kettering Inst Cancer Sintesis de epotilonas, intermediarios para ellas, analogos y usos de los mismos.
US20040202666A1 (en) * 2003-01-24 2004-10-14 Immunomedics, Inc. Anti-cancer anthracycline drug-antibody conjugates
WO2006073419A2 (en) * 2004-04-01 2006-07-13 Gang Zheng Lipoprotein nanoplatforms
GB0504278D0 (en) * 2005-03-02 2005-04-06 Khanzada Javed Personal adornment
DE102005059338A1 (de) * 2005-12-08 2007-06-14 Carl Zeiss Jena Gmbh Verfahren und Anordnung zur Untersuchung von Proben
CN101669206A (zh) * 2007-03-29 2010-03-10 皇家飞利浦电子股份有限公司 包括弹性材料层的发光设备
GB0819594D0 (en) * 2008-10-24 2008-12-03 Univ Coimbrra Process
US8771741B2 (en) * 2009-01-23 2014-07-08 The Penn State Research Foundation In vivo photodynamic therapy of cancer via a near infrared agent encapsulated in calcium phosphate nanoparticles
US8524239B2 (en) * 2010-07-09 2013-09-03 The United States of America as represented by the Secrectary, Department of Health and Human Services Photosensitizing antibody-fluorophore conjugates

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EBEN L. ROSENTHAL: "In Vivo Detection of Head and Neck Cancer Orthotopic Xenografts by Immunofluorescence", 《THE LARYNGOSCOPE》 *
JOY L. KOVAR 等: "Lincoln- University of Nebraska,A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models", 《ANALYTICAL BIOCHEMISTRY》 *
MAKOTO MITSUNAGA 等: "Cancer cell–selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules", 《NATURE MEDICINE》 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11364297B2 (en) 2010-07-09 2022-06-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Photosensitizing antibody-fluorophore conjugates
US11364298B2 (en) 2010-07-09 2022-06-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Photosensitizing antibody-fluorophore conjugates
CN106573054A (zh) * 2014-06-02 2017-04-19 利康公司 酞菁探针及其用途
CN112999347A (zh) * 2014-06-02 2021-06-22 乐天医药生技股份有限公司 酞菁探针及其用途
CN106470705B (zh) * 2014-08-08 2020-03-31 美国政府(由卫生和人类服务部的部长所代表) 在体内和在体外的靶标的光控移除
CN106470705A (zh) * 2014-08-08 2017-03-01 美国政府(由卫生和人类服务部的部长所代表) 在体内和在体外的靶标的光控移除
CN111388672A (zh) * 2014-08-08 2020-07-10 美国政府(由卫生和人类服务部的部长所代表) 在体内和在体外的靶标的光控移除
CN108136017A (zh) * 2015-06-16 2018-06-08 弗劳恩霍夫应用研究促进协会 用于检测和消除皮肤癌细胞的特异性光免疫治疗诊断试剂及其制备方法
CN108137701A (zh) * 2015-08-07 2018-06-08 美国政府(由卫生和人类服务部的部长所代表) 用于治疗癌症的针对抑制细胞的近红外光免疫疗法(nir-pit)
US11013803B2 (en) 2015-08-07 2021-05-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Near infrared photoimmunotherapy (NIR-PIT) of suppressor cells to treat cancer
US11147875B2 (en) 2015-08-18 2021-10-19 Rakuten Medical, Inc. Compositions, combinations and related methods for photoimmunotherapy
CN108136215B (zh) * 2015-08-18 2022-04-29 乐天医药生技股份有限公司 酞菁染料偶联物的制造方法及稳定偶联物
CN112494659B (zh) * 2015-08-18 2023-08-08 乐天医药生技股份有限公司 酞菁染料偶联物的制造方法及稳定偶联物
CN108136039A (zh) * 2015-08-18 2018-06-08 阿斯皮利安治疗学股份有限公司 用于光免疫疗法的组合物、联用及相关方法
US11141483B2 (en) 2015-08-18 2021-10-12 Rakuten Medical, Inc. Methods for manufacturing phthalocyanine dye conjugates and stable conjugates
CN108136215A (zh) * 2015-08-18 2018-06-08 阿斯皮利安治疗学股份有限公司 酞菁染料偶联物的制造方法及稳定偶联物
US11154620B2 (en) 2015-08-18 2021-10-26 Rakuten Medical, Inc. Compositions, combinations and related methods for photoimmunotherapy
CN112494659A (zh) * 2015-08-18 2021-03-16 乐天医药生技股份有限公司 酞菁染料偶联物的制造方法及稳定偶联物
CN114699525A (zh) * 2015-08-18 2022-07-05 乐天医药生技股份有限公司 酞菁染料偶联物的制造方法及稳定偶联物
CN114681623A (zh) * 2015-08-18 2022-07-01 乐天医药生技股份有限公司 酞菁染料偶联物的制造方法及稳定偶联物
CN107789743A (zh) * 2016-08-31 2018-03-13 北京至感传感器技术研究院有限公司 无创肿瘤治疗装置
CN107929949A (zh) * 2016-10-13 2018-04-20 北京至感传感器技术研究院有限公司 无创肿瘤治疗装置
CN112272676A (zh) * 2018-04-10 2021-01-26 美国政府(由卫生和人类服务部的部长所代表) 靶向癌细胞的近红外光免疫疗法与宿主免疫激活的联合使用
CN116096425A (zh) * 2020-09-11 2023-05-09 Jsr株式会社 复合体和光免疫疗法

Also Published As

Publication number Publication date
ES2718812T3 (es) 2019-07-04
JP2018162315A (ja) 2018-10-18
JP2020100664A (ja) 2020-07-02
JP2024032721A (ja) 2024-03-12
JP6127045B2 (ja) 2017-05-10
WO2013009475A8 (en) 2014-02-13
CN107929733A (zh) 2018-04-20
JP2021105054A (ja) 2021-07-26
JP2014523907A (ja) 2014-09-18
JP2017071654A (ja) 2017-04-13
WO2013009475A1 (en) 2013-01-17
EP2731626A1 (en) 2014-05-21
EP2731626B1 (en) 2018-12-19
WO2013009475A9 (en) 2013-03-07
CA2841120A1 (en) 2013-01-17
CA2841120C (en) 2020-10-27

Similar Documents

Publication Publication Date Title
CN103781495A (zh) 光敏抗体-荧光团缀合物
US20220288210A1 (en) Photosensitizing antibody-fluorophore conjugates
AU2020294224B2 (en) Photo-controlled removal of targets in vitro and in vivo
Deken et al. Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session
Colombo et al. HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches
US9017729B2 (en) Method and composition for hyperthermally treating cells
CN112272676A (zh) 靶向癌细胞的近红外光免疫疗法与宿主免疫激活的联合使用
US9233157B2 (en) Method and composition for hyperthermally treating cells
Roy et al. Enzyme Prodrug Therapy with Photo-Cross-Linkable Anti-EGFR Affibodies Conjugated to Upconverting Nanoparticles
Liu et al. Enhancing Tumor Immunotherapy by Multivalent Anti‐PD‐L1 Nanobody Assembled via Ferritin Nanocage
US20230242554A1 (en) Photosensitizing dye
Lum Near-Infrared Photoimmunotherapy Targeting Cadherin-17 for Gastrointestinal Cancer Treatment
JP2024505519A (ja) がんを処置するための近赤外光免疫療法(nir-pit)併用療法
Kalot Bioevaluation of aza-BODIPYs versatility for cancer NIR-II fluorescence imaging and Boron Neutron Capture Therapy application
Kennedy Modulating gold nanoparticle in vivo delivery for photothermal therapy applications using a T Cell Delivery System
van den Bosch The use of monoclonal antibodies in near-infrared fluorescence (NIRF) tumour targeted (intraoperative) imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140507

RJ01 Rejection of invention patent application after publication