CN103780170B - 用于控制无传感器bldc电机中的电机切换的系统和方法 - Google Patents

用于控制无传感器bldc电机中的电机切换的系统和方法 Download PDF

Info

Publication number
CN103780170B
CN103780170B CN201310199108.3A CN201310199108A CN103780170B CN 103780170 B CN103780170 B CN 103780170B CN 201310199108 A CN201310199108 A CN 201310199108A CN 103780170 B CN103780170 B CN 103780170B
Authority
CN
China
Prior art keywords
voltage
demodulation
motor
signal
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310199108.3A
Other languages
English (en)
Other versions
CN103780170A (zh
Inventor
杰森·威廉·劳伦斯
马尔科·约翰·科博伊希
斯蒂芬·詹姆斯·桑切斯
约翰·L·梅兰森
米罗斯拉夫·奥利亚恰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cirrus Logic Inc
Original Assignee
Cirrus Logic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/800,327 external-priority patent/US9000696B2/en
Application filed by Cirrus Logic Inc filed Critical Cirrus Logic Inc
Publication of CN103780170A publication Critical patent/CN103780170A/zh
Application granted granted Critical
Publication of CN103780170B publication Critical patent/CN103780170B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开一种用于控制无传感器BLDC电机中的电机切换的系统,所述电机具有三个定子绕组的集合。控制器单元包括控制信号发生器、存储器装置、处理单元、信号采集装置和模数转换器。具有多个开关的功率级接收来自控制信号发生器的控制信号和来自电源的功率信号。功率级用非对称脉冲宽度调制信号驱动三个定子绕组的集合中的两个绕组,并留下三个定子绕组中的一个定子未受驱动。处理单元获得未驱动绕组上的解调制的测量电压。处理单元还与功率级通信以在解调制的测量电压超越阈值时改变三个定子绕组中受驱动的两个绕组。

Description

用于控制无传感器BLDC电机中的电机切换的系统和方法
交叉引用
本申请案是2013年3月13日申请的标题为“Circuit and Method for SensorlessControl of a Permanent Magnet Brushless Motor During Start-up”的美国申请案第13/800,327号的部分接续申请案,且本申请案请求2012年5月25日申请的标题为“Circuitand Method for Sensorless Control of a Brushless Motor During Start-up”的美国临时申请案第61/651,736号的权益,所述美国临时申请案以全文引用的方式并入本文中。
技术领域
本发明通常涉及电机控制器,且更特定地涉及在启动期间用于永磁无刷电机的无传感器控制的系统和方法。
背景技术
有传感器的无刷电机技术是众所周知的且有益于低速下的最小缺陷控制和可靠旋转。有传感器的系统具有一或多个传感器,所述一或多个传感器与电机控制器连续通信,为所述电机控制器指示转子所处位置、转子的转速及转子是向前转还是反向转。有传感器的系统中的传感器增加成本并提供可损坏或磨损的额外零件,增加耐久性和可靠性问题。无传感器系统可读取电源连接中的电流脉冲来确定旋转和速度。无传感器系统趋向于能够控制较高速度(例如,每分钟转数(“RPM”))下的电机,但可能在极低的启动速度下遭受负载下的“抖动”,导致性能不如有传感器的无刷电机。
抖动是无传感器无刷电机系统在初始启动速度下所发生的现象且通常在电机已获得足够速度后就不再存在。抖动产生的原因是,在低速或零速下,无传感器的算法没有足够的信息来决定激励哪个绕组及以何种顺序激 励绕组。用于启动无传感器系统的一种常见解决方案是激励一个绕组对来将转子锁定在已知位置。随后以预定义速率和PWM占空比换向电机绕组,直到转子达到用于使无传感器控制参与的足够高的速度。然而,尤其在存在随时间变化的负载时,即使是此解决方案也将会在启动期间导致抖动。对于具有最小初始转矩或可预测的初始转矩的负载,可减少抖动或可使抖动难以察觉。然而,一些电机应用/使用情景(例如使电动自行车开始上坡)需要用于启动的显著转矩,并且初始转矩是非常不可预测的。无传感器无刷电机系统的使用有时由于低速高转矩操作而受阻,比如电动车辆/自行车的攀岩或复杂和精细的场地赛,因为在这些困难情境中,可发生显著抖动并可导致电机过早烧毁。
图1是处于三相功率级的电机控制系统10的方块图,如先前技术中所知。许多三相电机控制系统10包括具有控制信号发生器12的控制器、栅极驱动器14及功率级16。在无传感器控制的情况下,还包括反馈电路,具体是检测网络18和电流感测电路20,所述电流感测电路20利用感测电阻器RSENSE。一般来说,无传感器控制的目标是检测电机对施加的脉冲宽度调制(PWM)源电压的响应来识别转子位置和运动。
类似地,电流感测电路20可用于检测横越被驱动绕组的电机电流的幅值和方向。经常使用低侧分流监控。图1图示用于低侧监控的常用配置。本领域技术人员可易采用替代性电流感测技术,例如监控(包括高侧监控)每个逆变器支路中的相电流,且此替代性技术是本领域一般技术人员所熟知的。
控制信号发生器12通常从低电压源供电。因此,栅极驱动器14的功能包括将低电压控制信号移位到匹配功率级16的输入要求的电平。功率级16包括半导体开关装置。图1中图示MOSFET,但可使用其他装置,例如绝缘栅极双极型晶体管(insulated gate bipolartransistors;IGBT)。可使控制信号产生来自电源Vpwr的梯形(又称为方块或6步换向)或正弦波驱动。脉冲宽度调制通常在无刷DC(BLDC)电机控制中与梯形驱动一起使用。要求较低声频噪音或较低转矩波动的系统得益于正弦波驱动。
关于PWM驱动技术的领域的技术人员理解产生梯形控制、正弦波控制或其他控制的各种模式。可通过电机相和/或一或多个相电流上的电压检测电机对PWM驱动的响应。
如图1中所示,对于无刷DC电机控制,驱动功率级16,以使得电流流入第一电机相(例如,U相)中并离开第二电机相(例如,V相)。电机30中的转子(未图示)位置指定驱动哪一相位对来力图实现转子的最大转矩和平滑(无抖动)旋转。反馈控制用于推断转子位置。
图2是Y形连接电机30的图示说明,如先前技术中所知。所述图示说明中的Y形连接电机30具有单极对永磁转子32,所述单极对永磁转子32经定位以使得所述单极对永磁转子32的南极34接近U相36的绕组。在所述条件下,对本领域技术人员显而易见的是,W相38和V相40是适合驱动以便发起转子32旋转的相位对。永磁转子32的极性确定流经所述相位的电流的方向。因此,功率级16将W相38连接至Vpwr并将V相40连接至地面24,导致电流流入W相38中并离开V相40,如用电流箭头所表示。如图2中所示,电流流经线圈W相38和V相40的净效应是电磁体的形成,所述电磁体具有W相38处的北极和V相40处的南极。此电磁体在永磁N极42和形成在W相38处的电磁N极之间产生排斥力,并在永磁N极42和形成在V相38处的电磁S极之间产生吸引力。
由于N极和S极相互吸引,如果电磁体在此电流流动配置中持续足够长的时间,那么所得转矩将使永磁N极42立即移动到V相40之后的位置并使永磁S极34立即移动到W相之前的位置,且将停止永磁转子32的旋转。为了保持永磁转子32的旋转,功率级16必须换向到新的相位对。最佳换向点是转子位置相对于未驱动相位(未由Vpwr驱动的相位)的线圈的函数。在图2中,U相36是未驱动相位。理想情况下,转子角度将相对于与未驱动相位的线圈的对准跨越-30°到+30°。由于此60°的跨度是一次电气转动的六分之一,所以所述60°的跨度通常被称为一个六分周。
图3是由表1进一步定义的6步换向方法,如先前技术中所知。考虑到图2中所示的条件,在表1中概述且在图3中进一步说明通常被称为6步换向方法的步骤的顺序的高级描述。
表1:用于图2中所示的Y形连接电机的六步换向顺序
6步换向顺序导致一次电气转动。考虑到此简化的实例,应理解,当此六步方法完成时,将驱动被适当驱动的永磁转子进行一次机械转动。极对数量的增加导致每机械转动的电气转动的数量的等量增加。比较表1和图2,应理解,图2说明顺序步骤0,其中从W相38推动永磁N极42并由吸引力拉到V相40。当永磁S极34到达U+30°位置时,功率级16换向到驱动电流从W相38到U相36的顺序步骤1,致使U相变成电磁S极。因此,U相36排斥或推动永磁S极34,且相38吸引S极从而继续永磁转子32的顺时针运动。对无刷永磁电机的无传感器控制的多数现有解决方案利用对称脉冲宽度调制信号。图4A是一个对称脉冲宽度调制信号的一个实例的图示说明,如先前技术中所知。对称脉冲宽度调制信号的一个循环可包括针对时间跨度TA的正电压V+,以及针对时间跨度TB的负电压V-,其中V+和V-的绝对值相等且最大PWM周期是TA+TB。在V+下度过的时间跨度引用为信号的激励部分,且在V-下度过的时间跨度引用为信号的去激励部分。图4B是一个非对称脉冲宽度调制信号的一个实例的图示说明,如先前技术中所知。所述信号包括在V+下的时间跨度T1和在近似0V下的第二时间跨度T2。T1和T2的和表示PWM周期。具有用于无刷永磁电机的控制系统将是有益的,所述控制系统可控制根据非对称脉冲宽度调制信号操作的电机。
因此,迄今为止,行业中存在对于解决上述缺陷和不足的未解决的需求。
发明内容
本发明的实施方式提供用于驱动多相无传感器无刷电机的定子绕组集合的系统和方法。在架构方面简要地描述,除了其他实施方式以外,系统的一个实施方式可如以下实施。系统含有控制器单元,所述控制器单元包含控制信号发生器、电机存储器装置、处理单元和信号采集装置。具有多个输入的栅极驱动器由控制信号发生器馈送。具有多个开关的功率级由栅极驱动器控制并连接到电源,功率级通过所述电源提供非对称脉冲宽度调制信号。具有定子绕组的定子由功率级基于多个开关的状态馈送非对称脉冲宽度调制信号。电压感测电路连接定子绕组和控制器单元。电流感测电路连接功率级的输出和控制器单元。处理器比较来自电压感测电路和电流感测电路的信息以控制栅极驱动器。
本发明也可被视为提供一种控制电机切换的方法。方法包括以下步骤:在三个绕组的集合中的两个绕组上驱动非对称脉冲宽度调制信号;测量三个绕组的集合中的未驱动绕组的电压;解调制测量的电压;以及在解调制测量电压超过阈值时改变受驱动的两个绕组。
在查阅以下图式和详细说明之后,本发明的其他系统、方法、特征和优点将对或将变得对本领域技术人员显而易见。旨在所有所述额外系统、方法、特征和优点包括在所述描述中、在本发明的范围之内及受到附随权利要求书的保护。
附图说明
可参考以下图式更好地理解本发明的许多方面。图式中的组件未必按比例绘制,而是着重于清楚说明本发明的原理。此外,在图式中,相同的元件符号指代遍及多个视图的相应部件。
图1是处于三相功率级的电机控制系统的方块图,如先前技术中所知。
图2是Y形连接电机的图示说明,如先前技术中所知。
图3是由表1进一步定义的6步换向方法,如先前技术中所知。
图4A是一个对称脉冲宽度调制信号的一个实例的图示说明,如先前技术中所知。
图4B是一个非对称脉冲宽度调制信号的一个实例的图示说明,如先前技术中所知。
图5是根据本发明的第一示范性实施方式的处于三相功率级的电机控制系统的方块图。
图6是表示图2所示的电机相的解调制信号的图示说明。
图7是表示图2中所示的的电机相的解调制信号在高转矩和电流的影响下的图示说明。
图8是根据本发明的第一示范性实施方式的图7中所示的U相上的解调制未驱动电压的部分的图示说明。
图9是根据本发明的第一示范性实施方式的示范性电压感测电路,所述示范性电压感测电路可结合图5中的电机控制系统使用。
图10是根据本发明的第一示范性实施方式的示范性电流感测电路,所述示范性电流感测电路可结合图5中的电机控制系统使用。
图11是根据本发明的第一示范性实施方式的解调制未驱动相位信号的图示说明,所述解调制未驱动相位信号与图5的电机控制系统相关联。
图12是根据本发明的第一示范性实施方式的流程图的图示说明,所述流程图图示使用图5的电机控制系统110的方法。
具体实施方式
图5是根据本发明的第一示范性实施方式的用于无传感器无刷永磁DC电机30的处于三相功率级116的电机控制系统110的方块图。电机控制系统110包括控制器单元160,所述控制器单元160具有控制信号发生器112、存储器装置162、处理单元164、信号采集装置166和模数转换器170。控制信号发生器112将六个输入馈送到栅极驱动器114中。可由独立电源(未图示)供电的栅极驱动器114控制功率级116中的六个MOSFET开关168。开关的操作决定电流从电源Vpwr流动穿过电机30中的定子绕组36、38、40。
电压感测电路118和电流感测电路120用于电机的闭合环路控制。功率级116具有成对分组的6个开关。每一开关对配置为半桥。每一开关具有控制输入。功率级116输出连接到3相BLDC电机绕组U 36、绕组V 40、绕组W 38。功率级116由电压源Vpwr供应,所述电压源Vpwr向绕组U 36、V 40、W 38供应非对称脉冲宽度调制信号。电压源Vpwr的电流返回路径通过电流感测电阻器 RSENSE直通地面。用于梯形控制的脉冲宽度调制无刷DC电机30的功率级116通常一次激励三个绕组36、38、40的集合中的两个电机绕组。
在未驱动相位下可获得电压信号。所述电压信号可用于通过与PWM切换速率同步地解调制未驱动相电压来产生换向信号。解调制被定义为从未驱动相电压提取换向信号的过程。一般来说,解调制需要参考某一电压基准相对于底层PWM信号在特定时间取样未驱动相电压。解调制也可能需要对所述样品上执行数学运算。在所述实施中,单个样品在PWM周期的激励部分的后半部中获得,并且所述样品参考供应电压的一半(1/2)。针对每一PWM周期重复过程以产生换向信号。当存在近零驱动电流时,换向信号具有一半的(1/2)电气转动的周期性。所述换向信号的形状与永磁转子32对定子绕组36、38、40的作用有关。在PWM信号的激励部分期间,可通过仅考虑未驱动相位与参考电压之间的电压差来执行解调制。当将实质上大于零的电流驱动到主动端子对中时,信号具有新增的分量,所述新增的分量具有完整电循环的周期性。
图6是表示图2和图3中所示的电机相的解调制未驱动相位信号的图示说明。下标D指示信号来自解调制的未驱动绕组。在此,针对1/2电循环图示相对于转子角度相互叠加的未驱动相位信号。可通过监控未驱动相位信号和以电机电流的函数的值换向来决定适当的换向时间,所述未驱动相位信号来源于解调制的未驱动相位信号。随着电流增加,比较值将改变,但图6代表通过驱动绕组的近零电流。
如图6中所示,虚线UD表示当U相36在换向顺序步骤0期间断开并且用PWM波驱动W相38和V相40时所产生的解调制信号。所述驱动组合为产生x轴上从旋转位置1.25到1.75点的大多数转矩的连接,所述旋转位置为六分周位置。
如果用向右推的转矩驱动电机,当到达1.75点时,电机在适当方向上旋转,并且从WV相到WU相的换向应发生在1.75点处。同样,如果转子在正被顺时针电气驱动时逆时针旋转,例如在山坡上启动电动踏板车,那么UD具有介于1.25与1.75之间的负斜率。如果到达了1.25点,则应切换到之前的换向相UV或换向顺序步骤5。所述点与解调制的信号UD相关联,达到1.5伏或-1.5伏分别用于向前或向后换向,在图6中图示为THRESHOLD(阈值)。 当到达x轴上的1.75时,在换向到WU相之后,将随后产生与V相40相关联的解调制信号,即VD。如果到达1.25(被迫反向),将随后产生与W相相关联的解调制信号,即WD
如果来自永磁体的换向信号分量占主导地位,则直接决定换向时间。得到来自未驱动相位的换向信号,并且在达到预定值时,使电机提前到下一个相位或先前的相位。因为负载可能在与启动时所需旋转相反的方向上旋转,所以先前的相位超前很重要。对于最大转矩,重要的是换向电平相对精确。
当所需启动转矩较高时,需要使实质上大于零的电流通过驱动绕组来产生高转矩。当驱动绕组电流较高时,更难根据未驱动相位信号确定换向断点。当电流已超出近零电平时,换向信号实质上关于旋转位置变换。
图7是表示图2中所示的的电机相的解调制信号在高转矩和电流的影响下的图示说明。在先前识别的换向断点处(当转子角度为1.25和1.75时)的解调制的未驱动绕组(UD)信号的固有值为0V和3V。因此,如图6中所示,如果电机控制器以用于换向的-1.5V和1.5V的阈值操作,则电机将不能获得借助适当的电机换向所获得的最大有效转矩。在向前运动的情况下,换向将过早,导致转移到将提供较少转矩的换向顺序步骤。在电机向后旋转的情况下,换向可能太迟而不能根据先前的换向步骤实现高转矩。另外,在略高电流下,可能产生不能完全换向的结果,从而引导控制器错误地尝试在错误的方向上驱动电机。电流对解调制信号的效应对于偶数六分周和奇数六分周(与1、3、5相反的换向顺序步骤0、2、4)可能不同。电机特性指示与偶数六分周相关联的解调制信号的部分随着电流成比例地变化,并且与奇数六分周相关联的解调制信号的部分随着电流成反比例地变化。
图8是根据本发明的示范性实施方式的图7中所示的U相上的解调制未驱动电压的部分的图示说明。本文中所描述的用于电机配置的UD的理想换向点是当转子角度在1.25和1.75处的时候。如图2中所示,相对于驱动绕组的所述转子位置在顺时针方向上产生最大转矩。然而,在没有传感器定义转子位置的情况下,解调制未驱动电压和阈值用于识别转子何时在1.25和1.75处。在驱动绕组上方的近零安培下,-1.5V和1.5V的阈值是有效的。在图8中,对于在驱动绕组上方的实质上大于零安培的电流,阈值需要为0V 和3V。图8仅为大于零的电流的一个示范性图示说明。随着电流变化,UD波形状改变,尽管所述UD波不改变周期性。
同样地,可程序化电机控制器112以修改阈值作为通过驱动绕组的电流的函数,或所述电机控制器112可修改未驱动绕组(例如,UD)中的解调制电压作为电流的函数的表示。如相对于图6的图7中所示,可见可将大约+1.5V的修改值添加到上限阈值和下限阈值以在适当位置换向UD,或者可通过减去大约1.5V来修改UD信号以更好地将解调制电压校准到阈值。如可见,修改的阈值交错有在旋转角度1.25和1.75处的原始UD。类似地,修改的U与在旋转角度1.25和1.75的原始阈值相交。关于所述概念的另一变化可涉及同时修改UD和阈值。
对阈值及/或解调制电压信号的修改可能比识别适当换向点的所述简单示例更复杂。上限阈值及下限阈值可由不同的值修改并可在相反(正/负)方向上移位。对UD波的修改可包括调整及/或修改波的斜率。可进行对UD波形及/或阈值的修改作为通过驱动相位的电流的函数或作为脉冲宽度调制信号的函数,所述电流由电流感测电路或模型撷取。
图9是根据本发明的示范性实施方式的示范性电压感测电路118,所述示范性电压感测电路118可结合图5中的电机控制系统110使用。电压感测电路118放置在功率级输出116与控制器单元信号采集装置166之间的第一控制环路的反馈路径中。电压感测电路118包括电阻器网络,所述电阻器网络包含耦接到一起的电阻R1、R2、R3、R4和R5,如图9中所示。电压感测电路118具有连接到三个电机端子U 36、V 40、W 38的三个输入。电压感测电路118叠加来自每一相位36、38、40的电机电压响应并根据来自信号采集装置166的输入要求将结果按电平划分。结果包括未驱动相位上的电压。尽管相似的电机控制配置包括电压感测电路118,但所述电路经引导以撷取反EMF信号并定期地过滤掉未驱动相电压以得到更清晰的反EMF信号。
图10是根据本发明的示范性实施方式的示范性电流感测电路120,所述示范性电流感测电路120可结合图5中的电机控制系统110使用。电流感测电路120放置在电流感测电阻器RSENSE与控制器单元信号采集装置166之间的第二控制环路的反馈路径中。电流感测电路120的电源电压电平与控制器单元160的电源电压电平大致相同。如图5中所示,电流感测电路120包括放大器 174,所述放大器174经配置用于横越RSENSE的电压差分测量。设置放大器174的输入共模电压和增益,使得放大器输出在大约中间供应处来促进监控在正反方向上流动的RSENSE电流。
电机控制系统110可用于控制电机30,例如图2中所图示的电机30。图11是根据本发明的第一示范性实施方式的解调制未驱动相位信号的图示说明,所述解调制未驱动相位信号与电机控制系统110相关联。信号V和信号W是电机30的两个端子上的驱动信号。,当以图3中所示的换向顺序的步骤0操作电机时,W+栅极和V-栅极将在激励时闭合同时其他四个栅极断开。W-栅极和V-栅极将在去激励时闭合,断开来自电压源Vpwr的绕组的集合,并且将W相和V相相互连接并且接地。通常,驱动相电压将为介于接地电压与电源电压之间的值。取决于电机尺寸和构造以及其他因素,典型的切换频率在1KHz到25KHz的范围中。在未驱动相位下的信号在图11中图示为信号U。信号U根据转子位置变化,所述转子位置改变定子中的磁场。通过相对于参考电压测量在激励相期间的电压来得到用于位置感测的解调制未驱动相位信号UD。所测量的电压与参考电压的所述比较是解调制步骤的至少一部分。将所述解调制信号与确定的阈值(例如图6中所示的阈值)比较,且所述解调制信号用于确定换向断点,在换向断点处,功率级输出将切换到待驱动的下一个绕组对。图11中UD的图示说明类同于图6中的UD曲线的1.25到1.75的转子角度部分,其中转子恒定速度旋转。
图12是根据本发明的第一示范性实施方式的流程图的图示说明,所述流程图说明使用图5的电机控制系统110的方法。应注意,流程图中的任何过程描述或方块应理解为表示包括一或多个指令的模块、区段、代码的部分或步骤,所述一或多个指令用于实施过程中的特定逻辑功能,并且替代实施包括在本发明的范围内,在本发明中,如将由本发明的所属领域中的技术人员理解,根据所涉及的功能性,可自所图示或论述的次序(包括实质上同时地或以相反次序)执行功能。
如由方块202所示,在三个绕组的集合中的两个绕组上驱动非对称脉冲宽度调制信号。测量三个绕组的集合中的未驱动绕组的电压(方块204)。解调制测量的电压(方块206)。当解调制测量电压超过阈值时,驱动三个绕组的集合中的绕组的不同对(方块208)。
改变受驱动的两个绕组的步骤可包含在解调制测量电压已超过阈值达设定时段后改变受驱动的相位。未驱动电压信号可遭受噪音,并且所述噪音可引起过早并暂时超越阈值。验证解调制测量电压继续超过阈值达一段时间减小由于噪音而非正确识别的转子位置而超越阈值的可能性。
可将阈值设定为脉冲宽度调制信号的函数。举例来说,随着脉冲宽度调制信号的振幅增加,阈值的绝对值应增加以适当补偿值也在增加的未驱动绕组电压。可预设阈值并可修改阈值作为脉冲宽度调制信号的特性的函数。类似地,可在电机控制器内修改解调制测量电压值作为脉冲宽度调制信号的函数,以允许解调制测量电压值在适当转子旋转角处与阈值相交。解调制测量电压可通过调整解调制测量电压而修改。
虽然脉冲宽度调制信号可用于计划修改阈值或解调制测量电压的方式,但可能有用的另一值为驱动绕组之上的电流。电机控制器可使用电流感测电路以识别驱动绕组之上的电流值。可修改解调制的测量电压作为通过驱动绕组的电流的函数。可修改阈值作为通过驱动绕组的电流的函数。
解调制的测量电压或阈值可使用基于电机的特性和电机的操作条件中的至少一者的补偿模型修改。例如,补偿模型可为多项式、样条、对数曲线或三角的模型。电机的特性可包括电阻、电感、反EMF常数、凸极性、惯性、摩擦损耗、涡电流与磁滞损耗以及磁铁材料属性。电机的操作条件可包括驱动相位中的电流(可测量或模型化所述电流)、施加到定子的电压、温度、转矩及速度。每一六分周可与不同的补偿模型相关联。
第一示范性换向断点计算
将脉冲宽度调制信号提供至电平下的两个绕组,所述电平提供两个绕组之上的近零平均电流(Imin)。获得第一电压数据集合,所述电压数据集合表示横跨至少整个六分周的未驱动相36上的电机电压响应信号。对应于第一未驱动电压数据集合中的每一数据点,收集表示驱动相电流的第一电流数据集合。用提供中间电平驱动相电流(又称为Imid)的脉冲宽度调制信号重复过程,并且用提供近似最大驱动相电流(又称为Imax)的脉冲宽度调制信号再次重复过程。
基于第一电流数据集合和第二电流数据集合计算表示电流的中间电平值的影响的第一系数集合。
CoeffmidCurrent=(VMTR(Imid)-VMTR(Imin))/(Imid-Imin)
其中VMTR为基于未驱动相36的解调制电机电压响应信号。
基于第一电流数据集合和第三电流数据集合计算表示电流的最大电平值的影响的第二系数集合。
CoeffmaxCurrent=(VMTR(Imax)-VMTR(Imin))/(Imax-Imin)
与偶数六分周相比,在奇数六分周中,电流对换向信号的效应是不同的。因此,针对偶数六分周和奇数六分周产生所述第一系数集合和第二系数集合。
CoeffmidCurrent(奇数)
CoeffmidCurrent(偶数)
Coeffmaxcurrent(奇数)
CoeffmaxCurrent(偶数)
所得系数值可在特定条件下直接使用。举例来说,如果应用因为电机驱动已知负载而以特定的电流运行,那么系数可储存在查找表中。在每一操作电流电平下,可随后从表读取系数并用以补偿所述电流的未驱动相位信号。
修改阈值及/或解调制的电压的另一方法包括将所得系数值转化为偶数六分周和奇数六分周的斜率和截距值,所述斜率和截距值通常可随后应用于电流值的广泛集合。斜率和截距值储存在存储器中。
作为电流的函数的系数计算为:
系数(I)=斜率*Iavg+截距
在所述方程式中,Iavg为在此实例中通过呈不同配置的放大器174获得的平均驱动相电流,所述放大器174监控低侧分流电阻器并且通常描述为图5和图10中的电流感测方块。在PWM循环的开启部分和关闭部分中取样和数字化放大器输出。数字化地处理所述值以产生PWM循环中的平均电机相电流。可从存储器装置162获得斜率和截距值。六分周奇偶性决定使用奇数六分周还是偶数六分周的斜率和截距数据。
斜率有效地计算为ΔV/ΔI,因此系数(I)具有电阻单元。
作为电流的函数的校正因子随后计算为:
VCF(I)=Iavg*系数 (I)
控制器单元存储器装置162含有表示电机特性的常数值。换向断点的一或多个常数值储存在存储器装置162中。斜率和截距值储存在存储器装置162中。
处理单元164基于储存和测量的数据执行算术运算。具体地说,计算校正因子VCF(I),并且解调制在未驱动相位上的电机电压响应。处理单元164反转每隔一个六分周中的解调制信号的极性,以使得解调制信号相对于所施加转矩的方向的斜率绝对与六分周无关。处理单元164使用根据绕组电流的校正因子修改解调制信号。处理单元164基于换向断点之间的解调制信号的斜率计算解调制信号的方向,从而确定旋转方向。将在连续的换向断点之间取得的第一和第二解调制信号数据点之间的差值与阈值比较。大于阈值的差值指示正斜率,而小于阈值的差值指示负斜率。通过与阈值比较的方式定义斜率是任意的。例如,小于阈值的差值也可同样定义正斜率。
处理单元164将修改的/校正的解调制信号与储存的向前换向断点相比较。具有值大于向前换向断点值的经修改的解调制信号与经确定的向前旋转方向的组合的至少一次出现导致处理单元164控制控制信号112以将功率级116换向到下一个相位对。在换向之前要求多次出现令人满意的条件可增加系统稳健性。处理单元164将修改的/校正的解调制信号与储存的反向换向断点相比较。具有值小于反向换向断点值的经修改的解调制信号与经确定的反向旋转方向的组合的至少一次出现导致处理单元164控制PWM 112以将功率级116换向到前一个相位对。在换向之前要求多次出现令人满意的条件可增加系统稳健性。
可以若干方式获得横跨驱动绕组的平均电流,所述方式包括测量和建模,所述方式中的一些方式对于本领域技术人员是已知的。一种可用于获得横跨驱动绕组的电流的方法是平均化由模数转换器和电流感测机制测量的电流。如上文所论述,平均电流用以修改阈值和解调制的测量电压中的至少一者。
当转子相对于其他电机特性和操作条件旋转得足够快时,可获得可靠的反EMF信号。使用可靠的反EMF信号来控制从驱动对到驱动对的换向在本领域中是众所周知的。因此,本文中所公开的技术经设计用于在转子未移动或以可获得可靠的反EMF信号的速度旋转时控制换向。当转子的旋转速度超越速度阈值以使得可获得可靠的反EMF信号时,电机控制切换到反EMF换向技术。
应强调,本发明的上述实施方式(特别是任何“优选的”实施方式)仅为实施的可能实例、仅阐述所述实施方式用于清楚理解所公开的系统和方法的原则。可在实质上不背离本发明的精神和原则的情况下对本发明的上述实施方式作出变更和修改。所有所述修改和变更旨在包括在本发明的范围内并受到随附权利要求书的保护。

Claims (15)

1.一种控制电机切换的方法,所述方法包含以下步骤:
在三个绕组的集合中的两个绕组上驱动非对称脉冲宽度调制信号;
测量三个绕组的所述集合中的未驱动绕组的电压;
解调制所述测量的电压;
在所述解调制的测量电压超过阈值时,改变受驱动的两个绕组;
使用基于所述电机的特性和所述电机的操作条件中的至少一者的补偿模型修改所述解调制的测量电压,其中所述补偿模型为由以下各者组成的群组中的至少一者:多项式、样条、对数曲线和三角式;以及
其中所述电机为三相永磁转子电机。
2.一种控制电机切换的方法,所述方法包含以下步骤:
在三个绕组的集合中的两个绕组上驱动非对称脉冲宽度调制信号;
测量三个绕组的所述集合中的未驱动绕组的电压;
解调制所述测量的电压;
在所述解调制的测量电压超过阈值时,改变受驱动的两个绕组;
使用基于所述电机的特性和所述电机的操作条件中的至少一者的补偿模型修改所述阈值,其中所述补偿模型为由以下各者组成的群组中的至少一者:多项式、样条、对数曲线和三角式;以及
其中所述电机为三相永磁转子电机。
3.根据权利要求1或2所述的方法,其中改变受驱动的两个绕组的所述步骤进一步包含:在所述解调制的测量电压已超过所述阈值达设定时段之后改变受驱动的相位。
4.根据权利要求1或2所述的方法,所述方法进一步包含:将所述阈值设定为所述脉冲宽度调制信号的函数。
5.根据权利要求2所述的方法,所述方法进一步包含:将所述阈值设定为所述脉冲宽度调制信号的函数,并且其中预定所述阈值并修改所述阈值作为所述脉冲宽度调制信号的函数。
6.根据权利要求1所述的方法,所述方法进一步包含:修改所述解调制的测量电压作为所述脉冲宽度调制信号的函数。
7.根据权利要求6所述的方法,其中修改所述解调制的测量电压的所述步骤进一步包含:调节所述解调制的测量电压。
8.根据权利要求1所述的方法,所述方法进一步包含:修改所述解调制的测量电压作为通过所述驱动绕组的电流的函数。
9.根据权利要求2所述的方法,所述方法进一步包含:修改所述阈值作为通过所述驱动绕组的电流的函数。
10.根据权利要求2所述的方法,进一步包含多个补偿模型,其中将所述补偿模型中的每一者分配到所述驱动绕组的不同对。
11.根据权利要求1所述的方法,其中解调制所述测量电压的步骤进一步包含:分出在激励所述驱动绕组时测量的所述测量电压的一部分。
12.一种用于控制无传感器BLDC电机中的电机切换的系统,所述电机具有三个定子绕组的集合,所述系统包含:
控制器单元,所述控制器单元包含控制信号发生器、存储器装置、处理单元、信号采集装置和模数转换器;
功率级,所述功率级具有多个开关,其中所述功率级接收来自所述控制信号发生器的控制信号和来自电源的功率信号,其中所述功率级驱动用非对称脉冲宽度调制信号驱动三个定子绕组的所述集合中的两个绕组,并留下所述三个定子绕组中的一个定子未受驱动;
补偿模型,所述补偿模型储存在所述存储器装置中,所述补偿模型基于所述电机的特性和所述电机的操作条件中的至少一者;
其中所述处理单元获得未驱动绕组上的解调制测量电压;
其中所述处理单元与所述功率级通信以在所述解调制的测量电压超过阈值时改变所述三个定子绕组中受驱动的两个绕组;
其中所述补偿模型由所述处理单元使用以修改所述阈值和所述解调制的测量电压中的至少一者;以及
其中所述电机为三相永磁转子电机。
13.根据权利要求12所述的系统,所述系统进一步包含电压感测电路,所述电压感测电路连接到所述三个绕组中的至少一个绕组并连接到所述控制器单元,其中所述电压感测电路测量在所述未驱动绕组上的电压。
14.根据权利要求12所述的系统,其中所述处理单元修改所述阈值作为在所述信号采集装置上感测的电流的函数。
15.根据权利要求14所述的系统,其中所述信号采集装置和所述模数转换器向所述处理单元提供横跨所述驱动绕组的平均电流。
CN201310199108.3A 2012-05-25 2013-05-24 用于控制无传感器bldc电机中的电机切换的系统和方法 Expired - Fee Related CN103780170B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261651736P 2012-05-25 2012-05-25
US61/651,736 2012-05-25
US13/800,327 2013-03-13
US13/800,327 US9000696B2 (en) 2012-05-25 2013-03-13 Circuit and method for sensorless control of a permanent magnet brushless motor during start-up
US13/826,898 2013-03-14
US13/826,898 US9093941B2 (en) 2012-05-25 2013-03-14 Determining commutation position for a sensorless permanent magnet brushless motor at low or zero speed using an asymmetric drive pattern

Publications (2)

Publication Number Publication Date
CN103780170A CN103780170A (zh) 2014-05-07
CN103780170B true CN103780170B (zh) 2018-08-10

Family

ID=49773862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310199108.3A Expired - Fee Related CN103780170B (zh) 2012-05-25 2013-05-24 用于控制无传感器bldc电机中的电机切换的系统和方法

Country Status (2)

Country Link
US (1) US9093941B2 (zh)
CN (1) CN103780170B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3414450B1 (en) 2016-02-11 2021-03-31 Sedemac Mechatronics PVT Ltd Method and system for controlling an integrated starter-generator
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10320322B2 (en) 2016-04-15 2019-06-11 Emerson Climate Technologies, Inc. Switch actuation measurement circuit for voltage converter
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US11387729B2 (en) 2016-04-15 2022-07-12 Emerson Climate Technologies, Inc. Buck-converter-based drive circuits for driving motors of compressors and condenser fans
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
WO2017214035A1 (en) * 2016-06-06 2017-12-14 Aerovironment, Inc. Residual current detecting (rcd) and ground impedance monitoring transformer and control methods
US10594237B2 (en) * 2016-10-20 2020-03-17 Texas Instruments Incorporated Converged motor drive control for brushless dc motor
DE102017109841A1 (de) * 2017-05-08 2018-11-08 HELLA GmbH & Co. KGaA Verfahren und Vorrichtung zur Erkennung eines Nulldurchgangs eines Strangstroms eines bürstenlosen Gleichstrommotors
WO2019091560A1 (en) * 2017-11-09 2019-05-16 Pierburg Pump Technology Gmbh Electronically commutated electric motor and method for controlling the same
US11817811B2 (en) 2019-03-12 2023-11-14 Allegro Microsystems, Llc Motor controller with power feedback loop

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515974A2 (en) * 1991-05-28 1992-12-02 David L. Kruse Two-phase brushless DC motor controller
CN1767359A (zh) * 2004-10-27 2006-05-03 乐金电子(天津)电器有限公司 永久磁铁同步电机的转子位置检测装置及其检测方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE461551T1 (de) 2001-10-10 2010-04-15 Ebm Papst St Georgen Gmbh & Co Verfahren zum betreiben eines elektronisch kommutierten motors, und motor zur durchführung eines solchen verfahrens
DE10162380A1 (de) 2001-12-19 2003-07-03 Bosch Gmbh Robert Verfahren zum Starten eines bürstenlosen Gleichstrommotors
CA2513550A1 (en) 2003-01-24 2004-08-12 Tecumseh Products Company Brushless and sensorless dc motor control system with locked and stopped rotor detection
JP3965395B2 (ja) 2004-05-18 2007-08-29 松下電器産業株式会社 モータ駆動装置
JP4386815B2 (ja) * 2004-10-04 2009-12-16 パナソニック株式会社 モータの駆動装置および駆動方法
KR100791814B1 (ko) 2005-07-13 2009-01-28 삼성광주전자 주식회사 센서리스 비엘디씨 전동기의 제어방법
DE102006032491A1 (de) 2006-07-13 2008-01-17 Siemens Ag Verfahren und Vorrichtung zur Bestimmung der Rotorposition bei einem bürstenlosen und sensorlosen Elektromotor
US7489097B2 (en) 2006-11-02 2009-02-10 Chrysler Llc Sensorless position detection for a brushless direct current motor during inverter standby
ITVA20070064A1 (it) 2007-07-25 2009-01-26 St Microelectronics Srl Closed-loop startup per motori brushless sensorless
JP5176420B2 (ja) 2007-08-02 2013-04-03 株式会社ジェイテクト ブラシレスモータのセンサレス制御装置
JP2009142064A (ja) 2007-12-06 2009-06-25 Nippon Densan Corp ブラシレスモータ
US20100060217A1 (en) 2008-09-10 2010-03-11 Aisan Kogyo Kabushiki Kaisha Brushless motor starting method and control device
US20100141191A1 (en) * 2008-12-04 2010-06-10 Chen Liyong Systems and methods for determining a commutation state for a brushless dc motor
US8384338B2 (en) 2009-01-30 2013-02-26 Eaton Corporation System and method for determining stator winding resistance in an AC motor using motor drives
JP2010193707A (ja) 2009-02-16 2010-09-02 Micronas Gmbh ブラシレスdcモータを駆動するための方法
KR101167778B1 (ko) * 2010-04-22 2012-07-31 엘지전자 주식회사 모터 제어 장치 및 이의 제어 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515974A2 (en) * 1991-05-28 1992-12-02 David L. Kruse Two-phase brushless DC motor controller
CN1767359A (zh) * 2004-10-27 2006-05-03 乐金电子(天津)电器有限公司 永久磁铁同步电机的转子位置检测装置及其检测方法

Also Published As

Publication number Publication date
US20130342141A1 (en) 2013-12-26
US9093941B2 (en) 2015-07-28
CN103780170A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
CN103780170B (zh) 用于控制无传感器bldc电机中的电机切换的系统和方法
CN103780172B (zh) 用于在启动期间校准永磁无刷电机的无传感器控制的电路与方法
CN103780171B (zh) 用于在低速或零速下的无传感器永磁无刷电机的不同类型操作之间切换以决定转子位置的方法及系统
CN103780166B (zh) 用于隔离永磁无刷电机的未驱动电压以检测转子位置的系统和方法
CN103155398B (zh) 电动机和电动机控制
US9000696B2 (en) Circuit and method for sensorless control of a permanent magnet brushless motor during start-up
Prasad et al. Modelling and Simulation Analysis of the Brushless DC Motor by using MATLAB
KR101437716B1 (ko) 동기식 전기 모터를 위한 위치 센서가 없는 제어 시스템
TW201125280A (en) Variable pulse width modulation for reduced zero-crossing granularity in sensorless brushless direct current motors
JP5668949B2 (ja) 逆起電力検出回路とそれを用いたモータ駆動制御装置並びにモータ
JP5668947B2 (ja) モータ駆動制御装置、モータ駆動制御方法及びそれを用いたモータ
WO2007114058A1 (ja) 永久磁石同期モータの磁極位置検出方法
CN102804590B (zh) 用于补偿永久励磁的马达中负载影响的方法和装置
TW201125277A (en) Speed control method of sensorless brushless DC motor using current feedback
JP5857825B2 (ja) モータ制御装置
JP2018014773A (ja) センサレスモータの回転子位置検出方法及びセンサレスモータ駆動装置
JP2021072653A (ja) 電動機の界磁位置検出方法
JP2020202636A (ja) 電動機の界磁位置検出方法
Ramesh et al. Field Oriented Control for Space Vector Modulation Based Brushless DC Motor Drive
JP2011030385A (ja) モータ駆動装置、及びモータに備えられたロータの相対位置の判別方法
JP5330728B2 (ja) ブラシレスモータの駆動装置
EP3832879B1 (en) Control of a single coil bldc motor
JP5923437B2 (ja) 同期電動機駆動システム
JP2017034767A (ja) 3相ブラシレスモータのセンサレス駆動方法
JP5930264B2 (ja) 二相ブラシレスモータの駆動装置及び駆動方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180810