TW201125277A - Speed control method of sensorless brushless DC motor using current feedback - Google Patents

Speed control method of sensorless brushless DC motor using current feedback Download PDF

Info

Publication number
TW201125277A
TW201125277A TW99126833A TW99126833A TW201125277A TW 201125277 A TW201125277 A TW 201125277A TW 99126833 A TW99126833 A TW 99126833A TW 99126833 A TW99126833 A TW 99126833A TW 201125277 A TW201125277 A TW 201125277A
Authority
TW
Taiwan
Prior art keywords
phase
current
motor
zero
command
Prior art date
Application number
TW99126833A
Other languages
Chinese (zh)
Inventor
Tzuen-Lih Chern
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW99126833A priority Critical patent/TW201125277A/en
Publication of TW201125277A publication Critical patent/TW201125277A/en

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A new current feedback speed control method for sensorless brushless DC motor was proposed. In sensorless control application, the phase-change point detection can not using Hall sensor. Therefore, a new speed control scheme comprises a back-EMF zero-crossing point detection unit, a speed estimation unit, a rotor position estimation unit, and current feedback control with three-phase square-wave or sine-wave driving signals. In this method, the speed loop is used to generate the magnitude of current command and estimation of rotor position. In the current feedback control, three-phase current signals are obtained by current sensors to complete the current control loop. Therefore, the back-EMF and phase-current could be perpendicular, and the system performance can be improved. The signal generator was used to generate three-phase driving signals to keep the motor rotating. When the specific phase-current is approximate to zero, this phase was set as floating state. The back-EMF zero-crossing point can be detected in this floating duration, and the phase-change detection is proceeding to provide phase-change information to the system.

Description

201125277 五本案若有化學式時’請揭示最能顯示發明特徵的化學式: 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種無感測無刷直流馬達電流回 授轉速控制架構,其無感測無刷直流馬達藉由轉子磁 極位置估測,搭配三相方波或弦波驅動訊號,與三相 電流回授訊號產生電流控制命令,使反電動勢與相電 流相互垂直之馬達轉速控制架構。 【先前技術】 無刷直流馬達以換流器開關取代電刷換相片進行 換相驅動,而馬達轉子位置感測器(如霍爾感測器)易 义/jnt度’臭化影響導致其操作場合受限,故必須運用無 感測控制方法。目前普遍的無感測無刷直流馬達驅動 方法’僅利用馬達三相電壓命令做為馬達驅動訊號, 惟,當使用電壓驅動命令應用於無感測轉速控制上, 其反電動勢與相電流之間不為垂直,此情形會導致馬 達無法於負載變動時提供最佳轉矩輸出,因此,馬達 在負載變動時會產生電流較大、效率較差及消耗功率 車父向等問題。 【發明内容】 本發明之無感測無刷直流馬達電流回授轉速控制201125277 If there is a chemical formula in the case of this case, please disclose the chemical formula that best shows the characteristics of the invention: 6. Invention Description: The present invention relates to a non-sensing brushless DC motor current feedback speed control architecture. The non-sensing brushless DC motor is controlled by the rotor magnetic pole position, combined with the three-phase square wave or sine wave driving signal, and the three-phase current feedback signal generates a current control command, so that the back electromotive force and the phase current are perpendicular to each other. Architecture. [Prior Art] The brushless DC motor uses a converter switch instead of a brush for a photo for phase-shifting driving, and a motor rotor position sensor (such as a Hall sensor) is easy to sense/jnt degree's stinky effect causes its operation. The situation is limited, so the non-sensing control method must be used. The current non-sensing brushless DC motor drive method 'only uses the motor three-phase voltage command as the motor drive signal, but when using the voltage drive command applied to the non-sensing speed control, its back electromotive force and phase current It is not vertical. In this case, the motor cannot provide the optimal torque output when the load changes. Therefore, when the load changes, the motor will have problems such as large current, poor efficiency, and power consumption. SUMMARY OF THE INVENTION The non-sensing brushless DC motor current feedback speed control of the present invention

201125277 架構如第1圖所示,I後 DT ^ y' ”係包含一轉速回授控制器、一 控制器、-三相方波或弦波電流之產生二流回 杈控制器、—脈波寬度調元 益 首户& 換抓态、一無刷 體、—反電動勢零交越點伯測單元、一轉 速估測單元、-轉子磁極位置估測單元。 刷直Π明之主要目的係在於提供-種新型無感測無 刷直流馬達驅動和制 制方法,此方法包含三相方波與弦 訊號應用範圍,於馬達特定相之相電流接近零 時,將此特定相浮接,進行反電動勢零交越點偵測, 以估測轉子磁極位置’並將三相電流迴路訊號回授, 以產生三相方波或弦波電流控制命令,完成無感測無 刷直流馬達f流回授轉速控制之目的。 本發月係利用該二相方波或弦波電流之產生製作 -相各別相差12G度之電流命令驅使無刷直流馬達運 轉並由一相方波或弦波電流之產生於特定相電流接 近零處浮接,€反電動勢零交越點偵測單元得以藉由 此特定相浮接區間’進行換相訊號偵測以提供三相驅 動訊號換相資m ’同時藉由此換相訊號計算目前馬達 轉速並與轉速命令互相比較,以控制無刷直流馬達得 以定速運轉。於本發明中,以估測轉子磁極位置,並 加入三相電流回授產生三相電流控制命令,使反電動 勢與相電流之間相互垂直,以改善系統功率消耗及效 201125277 【實施方式】 *無感測無刷直流馬達電流回授肖速控制架構 清參閱第1圖’其為完整閉迴路轉速控制器之系 統方塊架構圖,其架構包含一轉速回授控制器ι〇、一 PI控制器20、一三相方波或弦波電流之產生3〇、一電 流回授控制器40、一脈波寬度調變單元50、-換流器 60、-無刷直流馬達本體7()…反電動勢零交越點價 測單元80、一轉子磁極位置估測單元81、一轉速估測 單兀90,當無刷直流馬達7〇轉動時,藉由抓取馬達三 相電壓至反電動勢零交越點偵測單元8〇,當欲進行馬 達一相反電動勢零交越點偵測時,於方波驅動時,三相 無感測方波驅動訊號於特定相電流接近零處Za〜Zc設 疋為#接(請參閱第3圖),於弦波驅動時,三相無感測 弦波驅動訊號於特定相電流接近零處Zu〜Zw設定為浮 接(請參閱第4圖),利用此特定相浮接方式,以偵測該 相反電動勢零交越點’若偵測出該相反電動勢零交越 點’則輸出換相訊號至轉速估測單元9〇計算此時馬達 的實際轉速。 清再參閱第1圖’當馬達實際轉速獲得後’其與 轉速命令—同輸入至轉速回授控制器10中,轉速回授 控制10將馬達目前實際轉速與轉速命令互相比較, 並輸出轉速誤差訊號至PI控制器20中,利用PI控 制益20中調整比例和積分參數值以改善系統暫態與穩 態時的響應情形’ PI控制器20輸出一電流命令大小至 201125277 三相方波或弦波電流之產生3 〇。 請再參閱第1圖,當換相訊號產生時,其會輸入至 轉子磁極位置估測單元81中,藉由換相訊號來估測無 刷直流馬達轉子目前所在的位置與角度,因此,轉子磁 極位置估測單元81會送出對應於三相轉子磁極位置訊 號至三相方波或弦波電流之產生30,同時,三相電流 回授訊號會輸入至電流回授控制器4〇,其會根據輸入 的三相方波或弦波電流訊號與電流回授訊號製作出 U、V ' W二相各別相差120度的電流控制命令。於本 發明中,藉由轉子磁極位置估測的方式,產生馬達轉子 磁極位置資訊,三相方波或弦波電流之產生3〇依據馬 達轉子磁極位置資訊,產生三相電流訊號,並將三相電 流訊號輸入至電流回授控制器4〇,同時系統也利用電 流感測器將三相電流回授訊號41輸入至電流回授控制 器40中,電流回授控制器4〇會將三相方波或弦波電流 s孔號與二相電流回授訊號相互比較’輸入至脈波寬度調 變單元50,此種驅動控制架構,可使相電流與反電動 勢之間互相垂直,以改善系統功率消耗及效能。 請再參閱第1圖,於脈波寬度調變單元中,= 相電流控制訊號將各別與鋸齒波互相比較,以得到三相 脈波寬度調變訊號’依據此三相脈波寬度調變訊號產生 六顆切換開關的導通時序’於換流器6〇中其根據前述 之切換開關的導通時序’依序控制三相上下臂六顆開關 的工作情形,以決定馬達三相工作週期寬度和反電動勢 201125277 零交越點時特定相浮接區間控制。 本發明係利用該三相方波或弦波電流之產生3〇製 作三相各別相I 120度之驅動訊號驅使無刷直流馬達 70運轉,並由三相方波或弦波電流之產纟3〇於特定相 電机接近零處浮接’使反電動勢零交越點偵測單元 侍以藉由此特疋相汗·接區間,進行換相訊號偵測以提供 三相驅動訊號換相資訊。本發明利用換相訊號進行馬達 轉子磁極位置估測,將估測結果送至三相方波或弦波電 μ之產生30,並藉由電流感測器量測三相回授電流訊 號:電流回授控制器40利用轉子磁極位置估測與電流 回授的方式’產生二相方波或弦波電流控制命令,使反 電動勢與相電流之間相互垂直,於輸出負載變動時,能 提供輸出端所需要的輸㈣矩,以改善系統功率消耗及 效能。 ⑺參閱f 2圖,其係一無感測無刷直流馬達與換 爪之等效電路圖,藉由控制換流器Up〜·六顆開關 之導通順序,以決定電源端電壓所提供之直流電流經 三相無刷直流馬達電樞路徑,並控制馬達轉動的方向 一轉速;^無感測兀件實施例中’無刷直流馬達換相 點之決定方式是將U〜w三相之特定相浮接,卩%〜Vw 二相電壓中之特定相’偵測其所對應之 一當特定相反電動勢之零交越點判斷電確動二 特定相進行換相並送出此特定相驅動訊說,三相無感 测無刷直流馬達藉由此種方式進行換相點偵測,並且 201125277 不斷重複使馬達持續運轉。 無感測方波驅動換相點谓測 4參閱帛3圖’其係一三相無感測方波電流命令 實%例,其中’三相電流命令導通角度各別相差1 20 度於—相導通區間Us〜Ws,各相方波訊號於導通區 間内持續送出一固定長度之電流命令至無刷直流馬達 電拒’使其定子產生磁極驅使馬達轉子轉動。當各相 導通區間結束後,則該相方波電流命令進入浮接區間 心〜Zc’此時特定相於浮接區間,另兩相方波電流命令 ^常導通故藉由此特定相浮接區間進行反電動勢 零交越點偵測,以判斷該特定相之換相點是否到達。 :圖例,於Za區間,㈣無感測方波電流命令浮接, :目及W相無感測方波電流命令則 於V相及臂開關皆關閉,馬達驅動訊號 ..目,τ 相間導通’故此時可利帛U相電遷淳拉佶 /J相反電動勢,若其反電動勢处果Α έ_ 、 則產生—η丨 ,、σ果為及過零交越點, υ相換相訊號使系統送出哼知丁 % 波電流命令,於7 泛出5玄相下一週期的方 7 於Zb及Zc區間之;5 Φ知办而 洌也是重覆μ .+、 之反電動勢零交越點偵 號,維持馬達正常運轉。確產生该特定相換相訊 201125277 無感測弦波驅動換相點偵測201125277 The architecture is as shown in Figure 1. The post-I DT ^ y' ” system includes a speed feedback controller, a controller, a three-phase square wave or a sinusoidal current to generate a two-current return controller, and a pulse width modulation. Yuanyi first household & change state, a brushless body, - counter electromotive force zero crossing point point measurement unit, a speed estimation unit, - rotor pole position estimation unit. The main purpose of brush straight is to provide - A novel non-sensing brushless DC motor driving and manufacturing method, the method comprising a three-phase square wave and string signal application range, when the phase current of a specific phase of the motor is close to zero, the specific phase is floated, and the counter electromotive force zero crossing is performed. Over-point detection, to estimate the rotor magnetic pole position ' and feedback the three-phase current loop signal to generate a three-phase square wave or sine wave current control command, complete the non-sensing brushless DC motor f flow feedback speed control purpose The current month uses the two-phase square wave or sine wave current to produce - the current phase difference of 12G degrees of current command to drive the brushless DC motor to run and the phase current or sine wave current is generated by the specific phase current close to zero Floating Then, the counter-electromotive zero-crossing point detecting unit can perform the commutation signal detection by the specific phase floating section to provide the three-phase driving signal commutation m' while calculating the current motor speed by using the commutation signal And the speed command is compared with each other to control the brushless DC motor to operate at a constant speed. In the present invention, the rotor magnetic pole position is estimated, and a three-phase current feedback command is added to generate a three-phase current control command to make the counter electromotive force and the phase current. Vertically to improve system power consumption and efficiency 201125277 [Embodiment] * Non-sensing brushless DC motor current feedback Schematic control architecture Clearly refer to Figure 1 'It is the system block architecture of the complete closed loop speed controller The structure includes a speed feedback controller ι〇, a PI controller 20, a three-phase square wave or sine wave current generation, a current feedback controller 40, a pulse width modulation unit 50, - Inverter 60, - Brushless DC motor body 7 () ... Back EMF zero crossing point price measuring unit 80, a rotor magnetic pole position estimating unit 81, a rotational speed estimating unit 90, when the brushless DC motor 7 When rotating, by grabbing the motor three-phase voltage to the counter electromotive force zero-crossing point detecting unit 8〇, when the motor is to be opposite to the electromotive force zero-crossing point detection, when the square wave is driven, the three-phase non-sensing The square wave drive signal is set to ## to Zc (see Figure 3) when the specific phase current is close to zero. When the sine wave is driven, the three-phase non-sensing sine wave drive signal is close to zero at a specific phase current. ~Zw is set to float (see Figure 4), using this specific phase floating connection method to detect the opposite electromotive force zero crossing point 'If the opposite electromotive force zero crossing point is detected', the commutation signal is output The speed estimation unit 9 calculates the actual speed of the motor at this time. Referring to Fig. 1 'when the actual motor speed is obtained', it is input to the speed feedback controller 10, and the speed feedback control 10 The current actual speed and speed command of the motor are compared with each other, and the speed error signal is outputted to the PI controller 20, and the proportional and integral parameter values in the PI control benefit 20 are used to improve the response condition of the system transient and steady state 'PI control 20 output a battery 201125277 size to generate three-phase command square wave or sinusoidal currents 3 billion. Referring to FIG. 1 again, when the commutation signal is generated, it is input to the rotor magnetic pole position estimating unit 81, and the commutation signal is used to estimate the current position and angle of the brushless DC motor rotor. Therefore, the rotor The magnetic pole position estimating unit 81 sends a generation 30 corresponding to the three-phase rotor magnetic pole position signal to the three-phase square wave or sine wave current, and the three-phase current feedback signal is input to the current feedback controller 4〇, which is based on The input three-phase square wave or sine wave current signal and the current feedback signal produce a current control command that differs by 120 degrees from the U and V 'W two phases. In the present invention, the rotor magnetic pole position information is generated by the rotor magnetic pole position estimation method, and the three-phase square wave or the sine wave current is generated. According to the motor rotor magnetic pole position information, a three-phase current signal is generated, and the three-phase current signal is generated. The current signal is input to the current feedback controller 4〇, and the system also inputs the three-phase current feedback signal 41 to the current feedback controller 40 by using the current sensor, and the current feedback controller 4〇 will be a three-phase square wave. Or the sine wave current s hole number and the two-phase current feedback signal are compared with each other' input to the pulse width modulation unit 50. The drive control architecture can make the phase current and the back electromotive force perpendicular to each other to improve system power consumption. And performance. Please refer to FIG. 1 again. In the pulse width modulation unit, the = phase current control signal is compared with the sawtooth wave to obtain a three-phase pulse width modulation signal, which is modulated according to the three-phase pulse width. The signal generates a turn-on timing of the six switchers in the converter 6〇, which sequentially controls the operation of the six switches of the three-phase upper and lower arms according to the turn-on timing of the switch, to determine the width of the three-phase duty cycle of the motor and Back EMF 201125277 Specific phase float interval control at zero crossing point. The invention utilizes the three-phase square wave or the generation of the sinusoidal current to produce a three-phase phase I 120 degree driving signal to drive the brushless DC motor 70 to operate, and is produced by a three-phase square wave or a sinusoidal current. The floating phase of the specific phase motor is close to zero. The counter-electromotive zero-crossing point detecting unit is configured to perform the commutation signal detection to provide the three-phase driving signal commutation information by using the special sweating interface. The invention utilizes the commutation signal to estimate the magnetic pole position of the motor rotor, and sends the estimation result to the generation 30 of the three-phase square wave or the sine wave electric μ, and measures the three-phase feedback current signal by the current sensor: current back The controller 40 uses the method of rotor magnetic pole position estimation and current feedback to generate a two-phase square wave or sine wave current control command, so that the counter electromotive force and the phase current are perpendicular to each other, and the output end can be provided when the output load changes. The required input (four) moments to improve system power consumption and performance. (7) Refer to figure f 2, which is an equivalent circuit diagram of a non-sensing brushless DC motor and a change of claws. By controlling the conduction sequence of the inverter Up~· six switches, the DC current provided by the power supply terminal voltage is determined. Through the three-phase brushless DC motor armature path, and control the direction of the motor rotation - a speed; ^ non-sensing element in the embodiment of the 'brushless DC motor commutation point is determined by the U ~ w three-phase specific phase Floating, 特定%~Vw the specific phase of the two-phase voltage 'detects one of its corresponding ones. When the zero crossing point of the specific opposite electromotive force judges that the two specific phases are commutated and sends out the specific phase driving, The three-phase non-sensing brushless DC motor performs commutation point detection in this way, and 201125277 continuously repeats the motor for continuous operation. Non-sensing square wave drive commutation point pre-measure 4 See 帛3 diagram's a three-phase non-sensing square wave current command real example, where 'three-phase current command conduction angles differ by 1 20 degrees in phase The conduction interval Us~Ws, each phase square wave signal continuously sends a fixed length current command to the brushless DC motor in the conduction interval to make the stator generate magnetic pole to drive the motor rotor to rotate. When the conduction period of each phase ends, the phase square wave current command enters the floating section heart ~ Zc', and the specific phase is in the floating section, and the other two phase square wave current commands are normally conducted, thereby performing the specific phase floating interval. The back EMF zero crossing point detection detects whether the commutation point of the particular phase has arrived. : Legend, in the Za interval, (4) Non-sensing square wave current command floating, : The purpose and W phase non-sensing square wave current command are closed in the V phase and the arm switch, the motor drive signal.., τ phase conduction 'So at this time, the U phase can be moved to pull the 佶 佶 J / J opposite electromotive force, if its counter electromotive force is Α , then _ 丨 丨, σ fruit is the zero crossing point, υ phase commutation signal makes The system sends out the % 丁 % % wave current command, which is in the range of Zb and Zc in the next cycle of 5 相 phase 5; 5 Φ knows and 洌 is also repeated μ. +, the back EMF zero crossing point Detecting the number to keep the motor running normally. This particular phase change is actually generated 201125277 Non-sensing sine wave drive commutation point detection

請參閱第4圖’其係一三相無感測弦波電流命令 實施例’其中’三相電流命令導通角度各別相差120 度’於二相導通區間Ut〜Wt,各相弦波訊號於導通區 間内持續送出一固定長度之電流命令至無刷直流馬達 電柩,使其定子產生磁極驅使馬達轉子轉動。當各相 導通區間結束後’則該相弦波電流命令進入浮接區間 Zu〜Zw,此時特定相於浮接區間,另兩相弦波電流命令 仍正常導通,故藉由此特定相浮接區間進行反電動勢 零交越點偵測’以判斷該特定相之換相點是否到達。 如圖例於Zu H Μ,u相無感測弦波電流命令浮接, V相及W相無感測弦波電流命令則分別為Vt和Wt導 通品1由於u相上下臂開關皆關閉’馬達驅動訊號 於v相及W相間導通,故此時可利U相電壓浮接该 測U相反電動勢,苦立沒雷 ,、電動勢果為經過零交越點, 則產生- U相換相訊號使系統送出該相下一週期的弦 波電流命令,於7v 1¾ 7«, Γό B日 ,… ¥及Zw區間之反電動勢零交越點偵 測也疋重覆上述過程,以正 ^ ^ $厘王这特定相換相訊 5虎’,准持馬達正常運轉。 10 201125277 【圖式簡單說明】 第1圖:本發明之無感測無刷直流馬達電流回授轉速 控制架構圖。 第2圖:三相無感測器無刷直流馬達及換流器等效電 路圖。 第3圖:本案無感測器無刷直流馬達三相方波電流命 令圖。 第4圖:本案無感測器無刷直流馬達三相弦波電流命 令圖。 【圖示及主要元件符號說明】 1 〇轉速回授控制器 2 〇 PI控制器 30三相方波或弦波電流之產生 40電流回授控制器 4 1三相電流回授 50脈波寬度調變單元 60換流器 7 0無刷直流馬達本體 8 0反電動勢零交越點偵測單元 8 1轉子磁極位置估測單元 90轉速估測單元Please refer to Fig. 4 'which is a three-phase non-sensing sine wave current command embodiment' where 'three-phase current command conduction angles are different by 120 degrees' in the two-phase conduction interval Ut~Wt, and each phase chord signal is A fixed-length current command is continuously sent to the brushless DC motor in the conduction interval, so that the stator generates magnetic poles to drive the motor rotor to rotate. When the phase conduction interval of each phase ends, the phase sine wave current command enters the floating interval Zu~Zw. At this time, the specific phase is in the floating interval, and the other two phase sine wave current commands are still normally turned on, so that the specific phase floats The counter-electromotive zero-crossing point detection is performed to determine whether the commutation point of the particular phase has arrived. As shown in the figure, in Zu H Μ, the u-phase non-sensing sine wave current command floats, and the V-phase and W-phase non-sensing sine wave current commands are respectively Vt and Wt conduction products 1 because the u-phase upper and lower arm switches are closed. The driving signal is turned on between the v-phase and the W-phase. Therefore, the U-phase voltage can be floated to measure the opposite electromotive force of the U-phase, and the electro-potential is not thunder, and the electromotive force is the zero-crossing point, and the U-phase commutation signal is generated. Sending the sine wave current command for the next cycle of the phase, on the 7v 13⁄4 7«, Γό B day, ... and the counter-electromotive zero crossing point detection in the ¥ and Zw intervals also repeats the above process to positive ^ ^ $ 厘This particular phase is changed to 5th, and the motor is running normally. 10 201125277 [Simple description of the diagram] Figure 1: The control architecture diagram of the non-sensing brushless DC motor current feedback speed of the present invention. Figure 2: Three-phase non-sensor brushless DC motor and converter equivalent circuit diagram. Figure 3: This is a three-phase square wave current command diagram for a brushless DC motor without a sensor. Figure 4: This case has no sensor brushless DC motor three-phase sine wave current command diagram. [Illustration and main component symbol description] 1 〇 Speed feedback controller 2 〇 PI controller 30 three-phase square wave or sine wave current generation 40 current feedback controller 4 1 three-phase current feedback 50 pulse width modulation Unit 60 Inverter 70 Brushless DC Motor Body 80 Back EMF Zero Crossing Point Detection Unit 8 1 Rotor Magnetic pole Position Estimation Unit 90 Speed Estimation Unit

Vdc電源端直流端電壓 Co電容 [S] 201125277 下臂開關 下臂開關 :目下臂開關 Vw W相電壓 反電動勢 Z w W相阻抗Vdc power supply DC terminal voltage Co capacitor [S] 201125277 Lower arm switch Lower arm switch: Lower arm switch Vw W phase voltage Back EMF Z w W phase impedance

Up U相上臂開關 Un U相Up U-phase upper arm switch Un U phase

Vp V相上臂開關 Vn V相Vp V phase upper arm switch Vn V phase

Wp W相上臂開關 Wn W ^ V u U相電壓 V v V相電堡Wp W phase upper arm switch Wn W ^ V u U phase voltage V v V phase electric castle

Eu U相反電動勢 Εν V相Eu U opposite electromotive force Εν V phase

EwW相反電動勢EwW opposite electromotive force

Zu U相阻抗 Zv V相阻抗 Us U相方波電流命令導通區間 Vs V相方波電流命令導通區間 WS W相方波電流命令導通區fa' Za U相方波電流命令浮接區間 Zb V相方波電流命令浮接區間 Zc W相方波電流命令浮接區間 ZCP弦波訊號零交越點 Ut U相弦波電流命令導通區間Zu U phase impedance Zv V phase impedance Us U phase square wave current command conduction interval Vs V phase square wave current command conduction interval WS W phase square wave current command conduction region fa' Za U phase square wave current command floating interval Zb V phase square wave current command float Interval Zc W phase square wave current command floating interval ZCP string signal zero crossing point Ut U phase sine wave current command conduction interval

V t V相弦波電流命令導通區間 Wt W相弦波電流命令導通區間 Zu U相弦波電流命令浮接區間 Zv V相弦波電流命令浮接區間 Zw W相弦波電流命令浮接區fE 12V t V phase sine wave current command conduction interval Wt W phase sine wave current command conduction interval Zu U phase sine wave current command floating interval Zv V phase sine wave current command floating interval Zw W phase sine wave current command floating area fE 12

Claims (1)

201125277 • 七、申請專利範圍: 1、 一種無感測無刷直流馬達控制架構,如第丨圖所 _ 示,在電流迴路中利用速度迴路產生電流命令大 小,與估測轉子磁極的位置,來產生電流迴路的命 令,且利用電流感測器來回授三相電流訊號,以完 成電流回授控制,如此可使反電動勢與相電流相互 垂直’以改善系統功率消耗及效能。 2、 一種無感測方波驅動方法,如第3圖所示,u、V、 # W三相電流於導通區間Us〜Ws,提供一固定長度之 電流命令驅動馬達’於特定相電流接近零時 Za〜Zc,將電流命令浮接’於此浮接區間進行反電 動勢零交越點偵測,並估測轉子磁極位置。 3、 一種無感測弦波驅動方法,如第4圖所示,u、V、 W三相電流於導通區間Ut〜Wt ’提供一固定長度之 電流命令驅動馬達,於特定相電流接近零時 Zu~Zw ’將電流命令浮接,於此浮接區間進行反電 ® 動勢零交越點偵測,並估測轉子磁極位置。 13201125277 • VII. Patent application scope: 1. A non-sensing brushless DC motor control architecture, as shown in the figure below, uses the speed loop to generate the current command size in the current loop, and estimates the position of the rotor pole. The current loop command is generated, and the current sensor is used to send back the three-phase current signal to complete the current feedback control, so that the back electromotive force and the phase current are perpendicular to each other to improve system power consumption and performance. 2. A non-sensing square wave driving method, as shown in FIG. 3, the u, V, #W three-phase currents in the conduction interval Us~Ws, providing a fixed length of current command drive motor 'at a specific phase current close to zero When Za~Zc, the current command is floated to perform back EMF zero crossing detection in this floating section, and the rotor pole position is estimated. 3. A non-sensing sine wave driving method, as shown in FIG. 4, the u, V, W three-phase currents provide a fixed length current command driving motor in the conduction interval Ut~Wt ', when the specific phase current approaches zero Zu~Zw 'floats the current command, performs anti-electricity® zero-crossing point detection in this floating section, and estimates the rotor pole position. 13
TW99126833A 2010-01-07 2010-08-12 Speed control method of sensorless brushless DC motor using current feedback TW201125277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99126833A TW201125277A (en) 2010-01-07 2010-08-12 Speed control method of sensorless brushless DC motor using current feedback

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW99100213 2010-01-07
TW99126833A TW201125277A (en) 2010-01-07 2010-08-12 Speed control method of sensorless brushless DC motor using current feedback

Publications (1)

Publication Number Publication Date
TW201125277A true TW201125277A (en) 2011-07-16

Family

ID=45047387

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99126833A TW201125277A (en) 2010-01-07 2010-08-12 Speed control method of sensorless brushless DC motor using current feedback

Country Status (1)

Country Link
TW (1) TW201125277A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545749A (en) * 2012-01-06 2012-07-04 上海大学 Wide-speed-regulation-range brushless direct current motor position sensorless control device and method
CN103490680A (en) * 2012-06-12 2014-01-01 晶致半导体股份有限公司 Driving system and driving method for direct current brushless motor without Hall element
CN103647482A (en) * 2013-12-17 2014-03-19 上海新时达电气股份有限公司 Brushless DC (direct current) motor 180-degree square wave control method and module and converter
TWI466435B (en) * 2012-05-29 2014-12-21 Amtek Semiconductor Co Ltd System and method for a brushless dc motor without hall sensor
CN104579036A (en) * 2013-10-25 2015-04-29 财团法人工业技术研究院 Dual-mode driving method and device
CN112350623A (en) * 2019-08-07 2021-02-09 茂达电子股份有限公司 Motor driving circuit and method
TWI793517B (en) * 2021-02-05 2023-02-21 陞達科技股份有限公司 Motor system and motor driving method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545749A (en) * 2012-01-06 2012-07-04 上海大学 Wide-speed-regulation-range brushless direct current motor position sensorless control device and method
CN102545749B (en) * 2012-01-06 2014-06-11 上海大学 Wide-speed-regulation-range brushless direct current motor position sensorless control device and method
TWI466435B (en) * 2012-05-29 2014-12-21 Amtek Semiconductor Co Ltd System and method for a brushless dc motor without hall sensor
CN103490680A (en) * 2012-06-12 2014-01-01 晶致半导体股份有限公司 Driving system and driving method for direct current brushless motor without Hall element
CN103490680B (en) * 2012-06-12 2016-08-24 晶致半导体股份有限公司 Driving system and driving method for direct current brushless motor without Hall element
TWI504136B (en) * 2013-10-25 2015-10-11 Ind Tech Res Inst Dual-mode drive method and apparatus thereof
CN104579036A (en) * 2013-10-25 2015-04-29 财团法人工业技术研究院 Dual-mode driving method and device
CN104579036B (en) * 2013-10-25 2017-04-05 财团法人工业技术研究院 Dual-mode driving method and device
CN103647482B (en) * 2013-12-17 2016-01-20 上海新时达电气股份有限公司 Brshless DC motor 180 ° of square wave control methods and control module thereof and frequency converter
CN103647482A (en) * 2013-12-17 2014-03-19 上海新时达电气股份有限公司 Brushless DC (direct current) motor 180-degree square wave control method and module and converter
CN112350623A (en) * 2019-08-07 2021-02-09 茂达电子股份有限公司 Motor driving circuit and method
TWI793517B (en) * 2021-02-05 2023-02-21 陞達科技股份有限公司 Motor system and motor driving method
US11695355B2 (en) 2021-02-05 2023-07-04 Sentelic Corporation Motor system and motor driving method

Similar Documents

Publication Publication Date Title
US11309819B2 (en) Initial rotor position detection in a brushless DC motor
TW201125277A (en) Speed control method of sensorless brushless DC motor using current feedback
CN103780170B (en) For controlling the system and method without the motor switching in sensor BLDC motors
TWI535187B (en) Method and arrangement for improving zero-crossing detection in sensorless brushless direct current motor
CN102437804A (en) Sensing brushless direct-current motor current feedback speed control method and drive method
CN113661648B (en) Method for determining the position of a rotor of a brushless permanent magnet machine
JP6050339B2 (en) Electric drive unit
WO2014164042A2 (en) Three phase brushless dc motor sensor-less control using sinusoidal drive method and apparatus
Pindoriya et al. Analysis of position and speed control of sensorless BLDC motor using zero crossing back-EMF technique
CN109495030A (en) Permanent magnet synchronous motor rotating-speed tracking method, equipment and computer readable storage medium
JP2009077503A (en) Motor controller and controller for air conditioner
JP4661535B2 (en) Synchronous motor restart system
CN110476348A (en) The magnetic field position detection method of motor
WO2007114058A1 (en) Permanent magnet synchronization motor magnetic pole position detecting method
Chern et al. Sensorless speed control of BLDC motor using six step square wave and rotor position detection
Kalyani et al. Simulation of sensorless operation of BLDC motor based on the zero-cross detection from the line voltage
KR20160065291A (en) Motor driving module
JP5627053B2 (en) Sensorless driving method for permanent magnet AC motor
KR102311975B1 (en) Bldc motor system including parameter detection circuit and operating method for bldc motor system
TWI519058B (en) Sensorless Operation Control Method for DC Brushless Motor
CN106803728A (en) A kind of zero cross detection circuit of DC brushless motor
Kaliappan et al. Modeling, simulation and experimental analysis of permanent magnet brushless DC motors for sensorless operations
KR102260101B1 (en) Integrated circuit for controlling motor
Bhadani et al. Modelling and Controlling of BLDC Motor
Gupta et al. A review: Sensorless control of brushless DC motor