CN103772182A - 基于气液固多相反应分离同步反应器的利用空气氧化对二甲苯生产对苯二甲酸的方法 - Google Patents

基于气液固多相反应分离同步反应器的利用空气氧化对二甲苯生产对苯二甲酸的方法 Download PDF

Info

Publication number
CN103772182A
CN103772182A CN201410038148.4A CN201410038148A CN103772182A CN 103772182 A CN103772182 A CN 103772182A CN 201410038148 A CN201410038148 A CN 201410038148A CN 103772182 A CN103772182 A CN 103772182A
Authority
CN
China
Prior art keywords
tower
reaction
constant temperature
xylol
temperature sedimentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410038148.4A
Other languages
English (en)
Other versions
CN103772182B (zh
Inventor
郭灿城
郭欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Junjie New Material Co ltd
Original Assignee
YUANJIANG HUALONG CATALYTIC TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUANJIANG HUALONG CATALYTIC TECHNOLOGY CO LTD filed Critical YUANJIANG HUALONG CATALYTIC TECHNOLOGY CO LTD
Priority to CN201410038148.4A priority Critical patent/CN103772182B/zh
Publication of CN103772182A publication Critical patent/CN103772182A/zh
Application granted granted Critical
Publication of CN103772182B publication Critical patent/CN103772182B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

本发明公开了基于气液固多相反应分离同步反应器利用空气氧化对二甲苯生产对苯二甲酸的方法,将对二甲苯加入到气液固多相反应分离同步反应器,所述反应器包括反应塔和至少两个与反应塔底部连通的恒温沉降塔,反应塔内设有气相区、氧化区和气体出口;反应时,将对二甲苯充满氧化区和恒温沉降塔内,空气从氧化区底部连续通入,与对二甲苯接触发生氧化反应,同时生成的对苯二甲酸固体经沉降进入恒温沉降塔中,且此时恒温沉降塔中对二甲苯通过外循环体系进入氧化区中,使得反应连续进行,对苯二甲酸在恒温沉降塔继续沉降,直到盛满恒温沉降塔,将反应塔切换到与另一个装满对二甲苯的恒温沉降塔连通,由此交替进行,进行连续生产;该方法能高转化率、高收率地连续化生产对苯二甲酸,提高了生产效率,降低了生产成本。

Description

基于气液固多相反应分离同步反应器的利用空气氧化对二甲苯生产对苯二甲酸的方法
技术领域
本发明涉及一种利用空气氧化对二甲苯生产对苯二甲酸的工艺方法。 
背景技术
对苯二甲酸是聚酯工业的主要原料。以醋酸钴、醋酸锰为催化剂,溴化物等为促进剂,在180~200℃、14~16MPa下,用空气氧化PX(对二甲苯)可以产生对苯二甲酸。但是,催化剂金属盐和反应产物对苯二甲酸都是不溶于反应物PX的固体物质,所以上述方案不能直接工业应用。为了解决金属盐、对苯二甲酸、PX的相互溶解性问题,US6,175,038公开了使用70%的醋酸和10%的水作为混合溶剂使金属盐、对苯二甲酸和PX相互溶解的技术方案,并且已经成为目前工业制备对苯二甲酸的技术。但是该方案中存在如下问题:一是溴化物和醋酸严重污染环境和腐蚀设备;二是反应物PX只占体系总量的20%,导致生产和分离设备庞大,产物精制和分离复杂,操作技术难度大,生产效率低;三是反应过程中溶剂醋酸也被氧化,目前工业上每生产1吨对苯二甲酸,溶剂醋酸的损耗量在60~80公斤;四是生产过程中产物对苯二甲酸长时间以悬浮形式存在于溶剂中,在高温高压条件下,部分产物进一步发生脱羧形成副产物,导致对苯二甲酸精制难度加大。 
专利CN1453259公开了一种由金属卟啉或金属卟啉与金属盐催化芳香甲基苯被空气或含二氧化碳空气直接氧化成为相应芳香羧酸的工艺。该工艺不使用腐蚀性的醋酸溶剂和溴化物,可以避免腐蚀和环境污染问题,也不存在溶剂的氧化,但氧化产物为甲基苯甲醛、甲基苯甲醇和甲基苯甲酸而不是对苯二甲酸,并且由于反应物芳香甲苯与氧化产物互不溶解使得该反应工艺只适合间隙反应过程,不适合连续化工业生产。另外,该技术中产物仍然长时间停留在反应系统中,存在高温高压条件下,部分产物进一步发生脱羧形成副产物的问题。 
专利CN101362687公开了在多釜串联反应器中以金属卟啉为催化剂,以空气作氧化剂,PX通过氧化过程得到对苯二甲酸的连续反应工艺。该方案进行的PX氧化反应分为PX初次氧化和经分离后的初次氧化产物对甲基苯甲酸和对甲基苯甲醇混合物的二次氧化两个氧化过程。两次氧化在同一反应器循环完成并构成连续氧化过程。为了解决固体氧化产物在氧化反应釜之间或者氧化反应釜与结晶分离罐之间的转移问题,该工艺在氧化反应釜之间或者氧化反应釜与结晶分离罐之间连接有固体泵。但是,该工艺仍然存在如下问题:一是氧化反应釜或者结晶分离罐与固体泵之间连有大量管路,固体氧化产物对苯二甲酸在反应物PX中不溶解而出现在氧化反应器底部和流动管路中结晶;二是PX的初次氧化产物为对甲基苯甲酸、对甲基苯甲醇和对苯二甲酸的混合物,需要在结晶器中将产物对苯二甲酸进行分离,而这个过程的实现需要消耗大量能量;三是该技术中产物对苯二甲酸仍然长时间停留在反应系统中,存在高温高压条件下,部分产物进一步发生脱羧形成副产物的问题。 
化工生产中经常遇到产物比重大于反应物且互不相溶的气液固多相反应。对这类反应,反应过程中气体、液体和固体多相同时存在于反应体系中。现有的化工生产模式是,整个反应期间,反应物与反应产物自然地或者被强制地(例如搅拌)分布于反应区。反应结束后,再将反应物与反应产物移到分离器中进行分离。由于体系中多相物质的存在会影响液体在生产装置中的流动性而无法连续生产。对于上述情况,目前化工生产中主要有两种解决方案。一种方案是加入另一种能同时溶解多相物质的溶剂。通过加入溶剂的方法可以实现有不溶性产物生成的工艺连续化;但是,溶剂的加入使化工生产过程变得复杂,同时也增加相应的设备投资和能耗、物耗以及溶剂对环境的污染;另一种方案是,采用间隙操作生产。上述两个方案中,都将增加反应产物在反应系统中的停留时间,而在反应操作条件下,反应产物会因为分解或者深度反应,导致反应产物收率和收率降低。 
发明内容
本发明的目的是在于提供一种基于气液固多相反应分离同步反应器利用空气氧化对二甲苯,高转化率、高收率地连续化生产对苯二甲酸的方法,该方法大大提高了对苯二甲酸的生产效率,降低了生产成本。 
本发明公开了基于气液固多相反应分离同步反应器利用空气氧化对二甲苯生产对苯二甲酸的方法,该方法是将对二甲苯加入到气液固多相反应分离同步反应器,所述气液固多相反应分离同步反应器包括鼓泡重力反应塔或搅拌反应塔,至少两个与所述的鼓泡重力反应塔或搅拌反应塔底部连通的恒温沉降塔;所述的鼓泡重力反应塔或搅拌反应塔塔内包括上部的气相区、中下部的氧化区和顶部的反应气体导出口;所述鼓泡重力反应塔的氧化区内的塔壁上沿塔轴45~75°夹角方向倾斜设有多组交替分布的重力沉降板,所述重力沉降板板面设有可供气体和液体通过的小孔;所述搅拌反应塔的氧化区内设有搅拌器;反应时,将所述的对二甲苯充满所述的氧化区和恒温沉降塔内,空气从所述的鼓泡重力反应塔或搅拌反应塔底部连续通入,经气体分布器分散后,与所述氧化区的对二甲苯接触发生氧化反应,同时氧化反应生成的对苯二甲酸在重力作用下从所述搅拌反应塔的氧化区直接沉降进入恒温沉降塔中,或者从所述鼓泡重力反应塔的氧化区沿着重力沉降板沉降进入恒温沉降塔中,而此时所述恒温沉降塔中的对二甲苯则通过外循环体系进入所述的鼓泡重力反应塔或搅拌反应塔中,补充所述的搅拌反应塔或鼓泡重力反应塔内反应所消耗的对二甲苯,使得反应连续进行;对苯二甲酸在所述恒温沉降塔继续沉降,直至对苯二甲酸盛满恒温沉降塔时,将鼓泡重力反应塔或搅拌反应塔切换到与另一个装满对二甲苯的恒温沉降塔连通,由此交替进行,进行连续生产; 
所述外循环体系的循环量为反应体系中对二甲苯总体积的40~80%/h; 
所述的氧化反应是在加入过渡金属盐催化剂和/或金属卟啉催化剂,温度为145~185℃,压力1.2~1.5MPa的条件下反应。 
所述的方法,使用金属卟啉催化剂时,金属卟啉催化剂在反应体系中的浓度为5~50ppm;或者使用过渡金属盐催化剂时,过渡金属盐在反应体系中的浓度为200~500ppm;或者使用过渡金属盐催化剂和金属卟啉催化剂时,金属卟啉催化剂在反应体系中的浓度为5~50ppm,过渡金属盐在反应体系中的浓度为200~500ppm。 
所述的金属卟啉为四苯基卟啉钴(CAS号14172-90-8)、四苯基卟啉铜(CAS号14172-91-9)、四苯基卟啉铁(CAS号16456-81-8)、四苯基卟啉锰(CAS号32195-55-4)、四苯基卟啉铁μ-二聚体(CAS号12582-61-5)、四对氯苯基卟啉钴 (CAS号55195-17-8)、四对氯苯基卟啉铜(CAS号16828-36-7)、四对氯苯基卟啉铁(CAS号36965-70-5)、四对氯苯基卟啉锰(CAS号62613-31-4)、四对氯苯基卟啉铁μ-二聚体(CAS号37191-15-4)中的一种或几种。 
所述的过渡金属盐为钴和/或锰的醋酸盐,或者钴和/或锰的卤化物;采用过渡金属盐作催化剂时,可在对二甲苯中加入对二甲苯0.5~5wt%的水,促进过渡金属盐催化剂溶解。 
所述装满对二甲苯的恒温沉降塔中压力和鼓泡重力反应塔或搅拌反应塔相同;防止替换过程中压力的突变对反应稳定性的影响和人身安全隐患。 
所述的鼓泡重力反应塔或搅拌反应塔距塔顶≥1/3塔壁高度处设有用于引出氧化区中过量对二甲苯以维持氧化区液面平衡的反应液导出口。 
所述氧化反应未反应的气体部分进入鼓泡重力反应塔或搅拌反应塔上部的气相区,经所述鼓泡重力反应塔或搅拌反应塔顶部设置的冷凝器冷凝回收气体中夹带的对二甲苯后,由反应气体导出口排空。 
所述的重力沉降板上下相邻两重力沉降板之间的小孔错开设置。 
所述的重力沉降板上下相邻两重力沉降板之间呈V型设置。 
所述的重力沉降板长度与塔径比为1:0.8~1.2,优选为1:1。 
所述的外循环体系包括循环泵和循环管;所述的循环管与恒温沉降塔与鼓泡重力反应塔或搅拌反应塔氧化区上部连通。 
所述恒温沉降塔中少部分对二甲苯可以从鼓泡重力反应塔底部连通的管进入鼓泡重力反应塔。 
所述的氧化反应生成的对苯二甲酸在对二甲苯中不溶解,而比重大于对二甲苯,在循环泵的作用下快速从氧化区向分离区转移。 
所述鼓泡重力反应塔或搅拌反应塔径高比为1:20~40;优选为1:25~35;最优选为1:30。 
所述气液固多相反应分离同步反应器包括鼓泡重力反应塔或搅拌反应塔,和至少两个与所述的鼓泡重力反应塔或搅拌反应塔底部连通的恒温沉降塔。 
所述的鼓泡重力反应塔或搅拌反应塔塔内包括上部的气相区、中下部的氧化区和顶部的反应气体导出口;所述中下部的氧化区与所述气相区的分界处为鼓泡重力反应塔或搅拌反应塔距塔顶≥1/3塔壁高度处。所述的鼓泡重力反应塔或搅 拌反应塔径高比为1:20~40;优选为1:25~35;最优选为1:30。 
所述的鼓泡重力反应塔或搅拌反应塔塔顶部设有反应气体导出口和冷凝液体导入口;塔上部的气相区内设有多层交替设置的冷却盘管;塔内下部设气体原料导入口和气体分布器;塔底部的连接口与至少两个结构、大小相同的恒温沉降塔连接。所述的鼓泡重力反应塔或搅拌反应塔距塔顶≥1/3塔壁高度处设有用于引出氧化区中过量反应液以维持氧化区液面平衡的反应液导出口。 
所述搅拌反应塔的氧化区内设有搅拌器。 
所述的鼓泡重力反应塔下部设有人孔。 
所述的鼓泡重力反应塔氧化区内的塔壁上沿塔轴45~75°夹角方向倾斜设有多组交替分布的重力沉降板。 
所述重力沉降板板面设有可使气体和液体通过的小孔;所述重力沉降板上下相邻两重力沉降板之间的小孔错开,且呈V型设置;所述的重力沉降板长度与塔径比为1:0.8~1.2;优选为1:1。 
所述的恒温沉降塔顶部设有与所述鼓泡重力反应塔或搅拌反应塔底部相连的连接口;恒温沉降塔上部设有反应物料导入口,恒温沉降塔下部设有产物出料口,恒温沉降塔顶部与鼓泡重力反应塔或搅拌反应塔顶部之间连有液体循环管。所述液体循环管管路上设有循环泵和换热器;鼓泡重力反应塔或搅拌反应塔底部连接口通过三通与恒温沉降塔顶部的连接口连接;鼓泡重力反应塔或搅拌反应塔上部通过循环管由三通与恒温沉降塔的顶部连接。所述的恒温沉降塔顶部还设有人孔和观察孔。 
本发明的有益效果:本发明首次利用对苯二甲酸与对二甲苯的比重不同且互不相溶解的物化特性,结合本发明为气液固多相反应设计的反应与分离同步进行的反应器,能在将对二甲苯经液相空气氧化生成对苯二甲酸的同时,同步将对苯二甲酸产物从氧化反应体系中的分离,从而实现了对苯二甲酸高产率、高收率地连续化生产。本发明将反应器设计成鼓泡重力反应塔或搅拌反应塔与恒温沉降塔一体化,在鼓泡重力反应塔或搅拌反应塔内可将产生的比重大于对二甲苯且互不相溶对苯二甲酸由于重力作用进入恒温沉降塔中,从而实现了对二甲苯氧化反应与产物分离的同步进行,一方面避免了生成的对苯二甲酸进一步氧化或者分解,大大提高了反应的转化率和对苯二甲酸的产率,另一方面将产物及时分离,使反 应的连续进行,实现了连续化生产,也解决了以往工艺采取大量反应物集中分离而导致的设备结构复杂、设备投资大和生产效率低的问题。本发明将反应温度保持在145~185℃,能将苯甲醇等中间产物溶解在底物中,防止中间产物沉降,同时本发明通过设置外循环体系,来保证氧化区的温度和物料平衡,加速固体产物的沉降,防止过度反应,大大提高了底物的转化率和产物的纯度。本发明在鼓泡重力反应塔中进一步通过设置倾斜的重力沉降板来减少气体鼓泡对对苯二甲酸沉降速度的影响,使产物沿着沉降板沉降及时进入恒温沉降塔,避免了对苯二甲酸的深度反应;而重力沉降板也有利于将气体进一步分散和阻挡,增加空气与对二甲苯的接触面积和接触时间,进一步提高对二甲苯转化率,从对二甲苯转化率和对苯二甲酸的收率两方面的同时提高,来提高对苯二甲酸的收率和粗产品的品质;综上所述,本发明提高了对苯二甲酸的收率和收率,实现了对苯二甲酸的连续生产。 
附图说明
【图1】为本发明的反应系统为鼓泡鼓泡重力反应塔的气液固多相反应分离同步反应器的结构示意图; 
【图2】为本发明的反应系统为搅拌反应塔的气液固多相反应分离同步反应器的结构示意图; 
a为恒温沉降塔Ⅰ19顶部接口图,b为鼓泡重力反应塔1顶部接口图,c为7的仰视图,d为7的俯视图,e为搅拌反应塔24的顶部接口图,1为鼓泡重力反应塔,2为反应气体导出口,3为冷凝液体导入口,4为反应液导出口,5为气体原料导入口,6为气体分布器,7为冷却盘管,9和11为连接口,12为反应物料导入口,13为产物出料口,14为循环管,15为人孔,16为观察孔,17和18为三通管,19为恒温沉降塔Ⅰ,20为恒温沉降塔Ⅱ,21为换热器,22为循环泵;23为搅拌器,24为搅拌反应塔,25加热夹套。 
具体实施方式
以下实施例是对本发明的进一步说明,而不是限制本发明的保护范围。 
实施例1 
采用图1所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化制备对苯二甲酸产品;其中,鼓泡重力反应塔径高比为1:20;重力沉降板长度与塔径比1:0.8;重力沉降板沿塔轴倾斜的夹角为75°;设有恒温沉降塔Ⅰ和恒温沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶2/5处塔身高度处。 
在含水3wt%的对二甲苯原料中加入醋酸钴(浓度为200ppm)和醋酸锰(浓度为200ppm)作为复合催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和鼓泡重力反应塔,充满恒温沉降塔Ⅰ和鼓泡重力反应塔的氧化区,将循环管上的三通和鼓泡重力反应塔底部的三通管控制鼓泡重力反应塔与恒温沉降塔Ⅰ连通,从鼓泡重力反应塔的气体原料导入口通入空气,将鼓泡重力反应塔温度调节到185℃,塔内压力保持在1.3MPa进行氧化反应,恒温沉降塔和鼓泡重力反应塔中的对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的60%/h,使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和鼓泡重力反应塔底部的三通管切换至鼓泡重力反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和鼓泡重力反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和鼓泡重力反应塔中压力接近的恒温沉降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使生产连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算出对二甲苯氧化转化率和对苯二甲酸收率,结果如表1。 
表1反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
3 97 96
6 98 96
9 97 96
12 97 95
实施例2 
采用附图1所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化 制备对苯二甲酸产品;其中,鼓泡重力反应塔径高比为1:40;重力沉降板长度与塔径比1:1.2;重力沉降板沿塔轴倾斜的夹角为45°;设有恒温沉降塔Ⅰ和恒温沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶3/7处塔身高度处。 
在含水5wt%的对二甲苯原料中加入醋酸钴(浓度为400ppm)和四苯基卟啉铜(浓度为10ppm)作为复合催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和鼓泡重力反应塔,充满恒温沉降塔Ⅰ和鼓泡重力反应塔的氧化区,将循环管上的三通和鼓泡重力反应塔底部的三通管控制鼓泡重力反应塔与恒温沉降塔Ⅰ连通,从鼓泡重力反应塔的气体原料导入口通入空气,将鼓泡重力反应塔温度调节到150℃,塔内压力保持在1.4MPa进行氧化反应,恒温沉降塔和鼓泡重力反应塔中的对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的65%/h,使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和鼓泡重力反应塔底部的三通管切换至鼓泡重力反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和鼓泡重力反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和鼓泡重力反应塔中压力接近的恒温沉降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使生产连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算出对二甲苯氧化转化率和对苯二甲酸收率,结果如表2。 
表2反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
3 97 97
6 98 97
9 97 96
12 97 96
实施例3 
采用附图1所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化制备对苯二甲酸产品;其中,鼓泡重力反应塔径高比为1:35;重力沉降板长度与 塔径比1:1.2;重力沉降板沿塔轴倾斜的夹角为55°;设有恒温沉降塔Ⅰ和恒温沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶3/7处塔身高度处。 
在对二甲苯原料中加入四苯基卟啉钴(浓度为8ppm)和四对氯苯基卟啉铁(浓度为8ppm)作为复配催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和鼓泡重力反应塔,充满恒温沉降塔Ⅰ和鼓泡重力反应塔的氧化区,将循环管上的三通和鼓泡重力反应塔底部的三通管控制鼓泡重力反应塔与恒温沉降塔Ⅰ连通,从鼓泡重力反应塔的气体原料导入口通入空气,将鼓泡重力反应塔温度调节到170℃,塔内压力保持在1.5MPa进行氧化反应,恒温沉降塔和鼓泡重力反应塔中的对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的70%/h,使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和鼓泡重力反应塔底部的三通管切换至鼓泡重力反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和鼓泡重力反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和鼓泡重力反应塔中压力接近的恒温沉降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使反应连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算出对二甲苯氧化转化率和对苯二甲酸收率,结果如表3。 
表3反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
3 98 97
6 99 98
9 98 98
12 98 97
实施例4 
采用附图1所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化制备对苯二甲酸产品;其中,鼓泡重力反应塔径高比为1:25;重力沉降板长度与塔径比1:1.1;重力沉降板沿塔轴倾斜的夹角为65°;设有恒温沉降塔Ⅰ和恒温 沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶2/5处塔身高度处。 
在对二甲苯原料中加入四苯基卟啉铁μ-二聚体(浓度为12ppm)和四对氯苯基卟啉锰(浓度为12ppm)作为复配催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和鼓泡重力反应塔,充满恒温沉降塔Ⅰ和鼓泡重力反应塔的氧化区,将循环管上的三通和鼓泡重力反应塔底部的三通管控制鼓泡重力反应塔与恒温沉降塔Ⅰ连通,从鼓泡重力反应塔的气体原料导入口通入空气,将鼓泡重力反应塔温度调节到165℃,塔内压力保持在1.4MPa进行氧化反应,恒温沉降塔和鼓泡重力反应塔中的对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的75%/h,使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和鼓泡重力反应塔底部的三通管切换至鼓泡重力反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和鼓泡重力反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和鼓泡重力反应塔中压力接近的恒温沉降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使生产连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算出对二甲苯氧化转化率和对苯二甲酸收率,结果如表4。 
表4反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
3 97 97
6 98 97
9 98 98
12 98 97
实施例5 
采用附图1所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化制备对苯二甲酸产品;其中,鼓泡重力反应塔径高比为1:32;重力沉降板长度与塔径比1:0.9;重力沉降板沿塔轴倾斜的夹角为50°;设有恒温沉降塔Ⅰ和恒温沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶2/5处塔身高度处。 
在含水0.5wt%的对二甲苯原料中加入四苯基卟啉铁(浓度为12ppm)和醋酸锰(浓度为200ppm)复配催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和鼓泡重力反应塔,充满恒温沉降塔Ⅰ和鼓泡重力反应塔的氧化区,将循环管上的三通和鼓泡重力反应塔底部的三通管控制鼓泡重力反应塔与恒温沉降塔Ⅰ连通,从鼓泡重力反应塔的气体原料导入口通入空气,将鼓泡重力反应塔温度调节到150℃,塔内压力保持在1.2MPa进行氧化反应,恒温沉降塔和鼓泡重力反应塔中的对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的55%/h,使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和鼓泡重力反应塔底部的三通管切换至鼓泡重力反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和鼓泡重力反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和鼓泡重力反应塔中压力接近的恒温沉降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使生产连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算出对二甲苯氧化转化率和对苯二甲酸收率,结果如表5。 
表5反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
3 97 98
6 98 97
9 99 97
12 98 97
实施例6 
采用附图1所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化制备对苯二甲酸产品;其中,鼓泡重力反应塔径高比为1:25;重力沉降板长度与塔径比1:1;重力沉降板沿塔轴倾斜的夹角为65°;设有恒温沉降塔Ⅰ和恒温沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶1/3处塔身高度处。 
在含水2wt%的对二甲苯原料中加入四对氯苯基卟啉铁μ-二聚体(浓度为 20ppm)和醋酸锰(浓度为300ppm)复配催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和鼓泡重力反应塔,充满恒温沉降塔Ⅰ和鼓泡重力反应塔的氧化区,将循环管上的三通和鼓泡重力反应塔底部的三通管控制鼓泡重力反应塔与恒温沉降塔Ⅰ连通,从鼓泡重力反应塔的气体原料导入口通入空气,将鼓泡重力反应塔温度调节到148℃,塔内压力保持在1.3MPa进行氧化反应,恒温沉降塔和鼓泡重力反应塔中的对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的50%/h,使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和鼓泡重力反应塔底部的三通管切换至鼓泡重力反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和鼓泡重力反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和鼓泡重力反应塔中压力接近的恒温沉降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使生产连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算出对二甲苯氧化转化率和对苯二甲酸收率,结果如表6。 
表6反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
3 98 97
6 98 97
9 98 96
12 99 98
实施例7 
采用图2所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化制备对苯二甲酸产品;其中,搅拌反应塔径高比为1:25;设有恒温沉降塔Ⅰ和恒温沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶1/3处塔身高度处。 
在含水4wt%的对二甲苯原料中加入醋酸锰(浓度为400ppm)作为催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和搅拌反应塔,充满恒温沉降塔Ⅰ和搅拌反应塔的氧化区,将循环管上的三通和搅拌反应塔底部的 三通管控制搅拌反应塔与恒温沉降塔Ⅰ连通,从搅拌反应塔的气体原料导入口通入空气,将搅拌反应塔温度调节到175℃,塔内压力保持在1.3MPa进行氧化反应,恒温沉降塔和搅拌反应塔中的对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的45%/h,使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和搅拌反应塔底部的三通管切换至搅拌反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和搅拌反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和搅拌反应塔中压力接近的恒温沉降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使生产连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算出对二甲苯氧化转化率和对苯二甲酸的收率,结果如表7。 
表7反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
3 97 96
6 98 97
9 97 95
12 97 96
实施例8 
采用图2所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化制备对苯二甲酸产品;其中,搅拌反应塔径高比为1:35;设有恒温沉降塔Ⅰ和恒温沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶4/9处塔身高度处。 
在含水5wt%的对二甲苯原料中加入醋酸锰(浓度为300ppm)和四对氯苯基卟啉铜(浓度为6ppm)作为复合催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和搅拌反应塔,充满恒温沉降塔Ⅰ和搅拌反应塔的氧化区,将循环管上的三通和搅拌反应塔底部的三通管控制搅拌反应塔与恒温沉降塔Ⅰ连通,从搅拌反应塔的气体原料导入口通入空气,将搅拌反应塔温度调节到165℃,塔内压力保持在1.4MPa进行氧化反应,恒温沉降塔和搅拌反应塔中的 对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的40%/h,使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和搅拌反应塔底部的三通管切换至搅拌反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和搅拌反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和搅拌反应塔中压力接近的恒温沉降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使生产连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算出对二甲苯氧化转化率和对苯二甲酸的收率,结果如表8。 
表8反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
3 97 97
6 98 96
9 98 97
12 97 96
实施例9 
采用图2所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化制备对苯二甲酸产品;其中,搅拌反应塔径高比为1:30;设有恒温沉降塔Ⅰ和恒温沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶4/9处塔身高度处。 
在对二甲苯原料中加入四对氯苯基卟啉铁μ-二聚体(浓度为20ppm)和四对氯苯基卟啉铜(浓度为5ppm)作为复配催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和搅拌反应塔,充满恒温沉降塔Ⅰ和搅拌反应塔的氧化区,将循环管上的三通和搅拌反应塔底部的三通管控制搅拌反应塔与恒温沉降塔Ⅰ连通,从搅拌反应塔的气体原料导入口通入空气,将搅拌反应塔温度调节到155℃,塔内压力保持在1.2MPa进行氧化反应,恒温沉降塔和搅拌反应塔中的对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的45%/h,使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和搅拌反应塔底部的 三通管切换至搅拌反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和搅拌反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和搅拌反应塔中压力接近的恒温沉降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使生产连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算出对二甲苯氧化转化率和对苯二甲酸的收率,结果如表9。 
表9反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
3 97 97
6 97 96
9 98 96
12 98 97
实施例10 
采用图2所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化制备对苯二甲酸产品;其中,搅拌反应塔径高比为1:20;设有恒温沉降塔Ⅰ和恒温沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶4/9处塔身高度处。 
在对二甲苯原料中加入四对氯苯基卟啉锰(浓度为10ppm)和四对氯苯基卟啉铁μ-二聚体(浓度为10ppm)作为复配催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和搅拌反应塔,充满恒温沉降塔Ⅰ和搅拌反应塔的氧化区,将循环管上的三通和搅拌反应塔底部的三通管控制搅拌反应塔与恒温沉降塔Ⅰ连通,从搅拌反应塔的气体原料导入口通入空气,将搅拌反应塔温度调节到170℃,塔内压力保持在1.3MPa进行氧化反应,恒温沉降塔和搅拌反应塔中的对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的50%/h,使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和搅拌反应塔底部的三通管切换至搅拌反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和搅拌反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和搅拌反应塔中压力接近的恒温沉 降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使反应连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算出对二甲苯氧化转化率和对苯二甲酸的收率,结果如表10。 
表10反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
3 97 97
6 97 97
9 98 96
12 99 97
实施例11 
采用图2所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化制备对苯二甲酸产品;其中,搅拌反应塔径高比为1:30;设有恒温沉降塔Ⅰ和恒温沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶1/3处塔身高度处。 
在含水2wt%的对二甲苯原料中加入15ppm的四对氯苯基卟啉铁和200ppm醋酸钴的复配催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和搅拌反应塔,充满恒温沉降塔Ⅰ和搅拌反应塔的氧化区,将循环管上的三通和搅拌反应塔底部的三通管控制搅拌反应塔与恒温沉降塔Ⅰ连通,从搅拌反应塔的气体原料导入口通入空气,将搅拌反应塔温度调节到158℃,塔内压力保持在1.3MPa进行氧化反应,恒温沉降塔和搅拌反应塔中的对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的60%/h,使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和搅拌反应塔底部的三通管切换至搅拌反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和搅拌反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和搅拌反应塔中压力接近的恒温沉降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使生产连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算 出对二甲苯氧化转化率和对苯二甲酸的收率,结果如表11。 
表11反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
3 97 98
6 99 97
9 98 98
12 99 97
实施例12 
采用图2所示的气液固多相反应分离同步反应器进行对二甲苯的空气氧化制备对苯二甲酸产品;其中,搅拌反应塔径高比为1:40;设有恒温沉降塔Ⅰ和恒温沉降塔Ⅱ两个恒温沉降塔;反应液导出口离反应塔顶2/5处塔身高度处。 
在含水1wt%的对二甲苯原料中加入10ppm的四苯基卟啉钴和200ppm醋酸锰的复配催化剂,混合液从恒温沉降塔Ⅰ上部反应物料导入口进入恒温沉降塔Ⅰ和搅拌反应塔,充满恒温沉降塔Ⅰ和搅拌反应塔的氧化区,将循环管上的三通和搅拌反应塔底部的三通管控制搅拌反应塔与恒温沉降塔Ⅰ连通,从搅拌反应塔的气体原料导入口通入空气,将搅拌反应塔温度调节到162℃,塔内压力保持在1.4MPa进行氧化反应,恒温沉降塔和搅拌反应塔中的对二甲苯通过外部循环系统进行循环,循环速度为反应体系中对二甲苯总体积的65%/h使反应不断进行,生成的对苯二甲酸产物不断进入恒温沉降塔Ⅰ,当对苯二甲酸产物装满恒温沉降塔Ⅰ时,将循环管上的三通和搅拌反应塔底部的三通管切换至搅拌反应塔与恒温沉降塔Ⅱ连通,恒温沉降塔Ⅱ中装满对二甲苯原料,且压力和搅拌反应塔中的压力接近;将装满对苯二甲酸产物的恒温沉降塔Ⅰ取下,用新的装满对二甲苯原料,且压力和搅拌反应塔中压力接近的恒温沉降塔Ⅰ替换,备用,通过恒温沉降塔Ⅰ和恒温沉降塔Ⅱ的不断替换,使生产连续进行;当反应稳定后,每隔3小时对对苯二甲酸产物和进入的对二甲苯原料的量以及反应液成分的检测,计算出对二甲苯氧化转化率和对苯二甲酸的收率,结果如表12。 
表12反应时间和对二甲苯转化率剂对苯二甲酸收率的关系 
反应时间(h) 对二甲苯氧化转化率(%) 对苯二甲酸的收率(%)
[0096] 
3 97 96
6 98 97
9 97 96
12 98 97

Claims (10)

1.基于气液固多相反应分离同步反应器利用空气氧化对二甲苯生产对苯二甲酸的方法,其特征在于,将对二甲苯加入到气液固多相反应分离同步反应器,所述气液固多相反应分离同步反应器包括鼓泡重力反应塔或搅拌反应塔,至少两个与所述的鼓泡重力反应塔或搅拌反应塔底部连通的恒温沉降塔;所述的鼓泡重力反应塔或搅拌反应塔塔内包括上部的气相区、中下部的氧化区和顶部的反应气体导出口;所述鼓泡重力反应塔的氧化区内的塔壁上沿塔轴45~75°夹角方向倾斜设有多组交替分布的重力沉降板,所述重力沉降板板面设有可供气体和液体通过的小孔;所述搅拌反应塔的氧化区内设有搅拌器;反应时,将所述的对二甲苯充满所述的氧化区和恒温沉降塔内,空气从所述的鼓泡重力反应塔或搅拌反应塔底部连续通入,经气体分布器分散后,与所述氧化区的对二甲苯接触发生氧化反应,同时氧化反应生成的对苯二甲酸在重力作用下从所述搅拌反应塔的氧化区直接沉降进入恒温沉降塔中,或者从所述鼓泡重力反应塔的氧化区沿着重力沉降板沉降进入恒温沉降塔中,而此时所述恒温沉降塔中的对二甲苯则通过外循环体系进入所述的鼓泡重力反应塔或搅拌反应塔中,补充所述的搅拌反应塔或鼓泡重力反应塔内反应所消耗的对二甲苯,使得反应连续进行;对苯二甲酸在所述恒温沉降塔继续沉降,直至对苯二甲酸盛满恒温沉降塔时,将鼓泡重力反应塔或搅拌反应塔切换到与另一个装满对二甲苯的恒温沉降塔连通,由此交替进行,进行连续生产;所述外循环体系的循环量为反应体系中对二甲苯总体积的40~80%/h;所述的氧化反应是在加入过渡金属盐催化剂和/或金属卟啉催化剂,温度为145~185℃,压力1.2~1.5MPa的条件下反应。
2.如权利要求1所述的方法,其特征在于,使用金属卟啉催化剂时,金属卟啉催化剂在反应体系中的浓度为5~50ppm;或者使用过渡金属盐催化剂时,过渡金属盐在反应体系中的浓度为200~500ppm;或者使用过渡金属盐催化剂和金属卟啉催化剂时,金属卟啉催化剂在反应体系中的浓度为5~50ppm,过渡金属盐在反应体系中的浓度为200~500ppm。
3.如权利要求2所述的方法,其特征在于,所述的金属卟啉包括四苯基卟啉钴、四苯基卟啉铁、四苯基卟啉锰、四苯基卟啉铜、四苯基卟啉铁μ-二聚体、四对氯苯基卟啉钴、四对氯苯基卟啉铁、四对氯苯基卟啉锰、四对氯苯基卟啉铜、四对氯苯基卟啉铁μ-二聚体中的一种或几种。
4.如权利要求2所述的方法,其特征在于,所述的过渡金属盐为钴和/或锰的醋酸盐,或者钴和/或锰的卤化物。
5.如权利要求1所述的方法,其特征在于,所述装满对二甲苯的恒温沉降塔中压力和鼓泡重力反应塔或搅拌反应塔中压力相同。
6.如权利要求1所述的方法,其特征在于,所述的鼓泡重力反应塔或搅拌反应塔距塔顶≥1/3塔壁高度处设有用于引出氧化区中过量对二甲苯以维持氧化区液面平衡的反应液导出口。
7.如权利要求1所述的方法,其特征在于,所述氧化反应未反应的气体部分进入鼓泡重力反应塔或搅拌反应塔上部的气相区,经所述鼓泡重力反应塔或搅拌反应塔顶部设置的冷凝器冷凝回收气体中夹带的对二甲苯后,由反应气体导出口排空。
8.如权利要求1所述的方法,其特征在于,所述的重力沉降板上下相邻两重力沉降板之间的小孔错开设置。
9.如权利要求1所述的方法,其特征在于,所述的重力沉降板长度与塔径比为1:0.8~1.2。
10.如权利要求1~9任一项所述的方法,其特征在于,所述的外循环体系包括循环泵和循环管;所述的循环管与恒温沉降塔与鼓泡重力反应塔或搅拌反应塔氧化区上部连通。
CN201410038148.4A 2014-01-26 2014-01-26 基于气液固多相反应分离同步反应器的利用空气氧化对二甲苯生产对苯二甲酸的方法 Active CN103772182B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410038148.4A CN103772182B (zh) 2014-01-26 2014-01-26 基于气液固多相反应分离同步反应器的利用空气氧化对二甲苯生产对苯二甲酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410038148.4A CN103772182B (zh) 2014-01-26 2014-01-26 基于气液固多相反应分离同步反应器的利用空气氧化对二甲苯生产对苯二甲酸的方法

Publications (2)

Publication Number Publication Date
CN103772182A true CN103772182A (zh) 2014-05-07
CN103772182B CN103772182B (zh) 2015-06-17

Family

ID=50565012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410038148.4A Active CN103772182B (zh) 2014-01-26 2014-01-26 基于气液固多相反应分离同步反应器的利用空气氧化对二甲苯生产对苯二甲酸的方法

Country Status (1)

Country Link
CN (1) CN103772182B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105218344A (zh) * 2015-09-15 2016-01-06 沅江华龙催化科技有限公司 基于反应分离同步反应器利用空气氧化取代甲苯生产取代苯基甲酸的方法
CN110128261A (zh) * 2019-02-26 2019-08-16 沅江华龙催化科技有限公司 一种节能环保的对二甲苯空气氧化合成对苯二甲酸的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064676A (zh) * 1991-03-07 1992-09-23 帝国化学工业公司 生产对苯二甲酸的方法
CN1160038A (zh) * 1996-01-16 1997-09-24 波克股份有限公司 对苯二甲酸的制备方法
CN1486968A (zh) * 2003-08-08 2004-04-07 中国纺织工业设计院 一种生产对苯二甲酸用的气升式外循环鼓泡塔氧化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064676A (zh) * 1991-03-07 1992-09-23 帝国化学工业公司 生产对苯二甲酸的方法
CN1160038A (zh) * 1996-01-16 1997-09-24 波克股份有限公司 对苯二甲酸的制备方法
CN1486968A (zh) * 2003-08-08 2004-04-07 中国纺织工业设计院 一种生产对苯二甲酸用的气升式外循环鼓泡塔氧化装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105218344A (zh) * 2015-09-15 2016-01-06 沅江华龙催化科技有限公司 基于反应分离同步反应器利用空气氧化取代甲苯生产取代苯基甲酸的方法
CN105218344B (zh) * 2015-09-15 2020-09-04 沅江华龙催化科技有限公司 基于反应分离同步反应器利用空气氧化取代甲苯生产取代苯基甲酸的方法
CN110128261A (zh) * 2019-02-26 2019-08-16 沅江华龙催化科技有限公司 一种节能环保的对二甲苯空气氧化合成对苯二甲酸的方法

Also Published As

Publication number Publication date
CN103772182B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
CN103755543B (zh) 基于气液固多相反应分离同步反应器的利用空气氧化环己烷生产己二酸的方法
CN1021221C (zh) 芳香羧酸生产方法
CN103755544B (zh) 基于气液固多相反应分离同步反应器利用空气氧化环己烷生产ka油和己二酸的方法
EP0764626B1 (en) Process to manufacture aromatic carboxylic acids
CN103755521B (zh) 基于气液固多相反应分离同步反应器利用空气氧化环己烷生产ka油的方法
EP4049748A1 (en) Gas-liquid bubbling bed reactor, reaction system and method for synthesizing carbonate
CN103755520A (zh) 基于气液固多相反应分离同步反应器利用空气氧化取代甲苯生产取代苯甲醇、醛和酸的方法
CN105085169A (zh) 基于改进的反应分离同步反应器利用空气氧化环己烷生产ka油和己二酸的方法
CN103772182B (zh) 基于气液固多相反应分离同步反应器的利用空气氧化对二甲苯生产对苯二甲酸的方法
CN101589015A (zh) 生产丙烯酸的方法
CN1594302A (zh) 一种逐级催化氧化连续生产偏苯三酸酐的方法
CN111333601A (zh) 一种制备4,4’-(六氟异丙烯基)二酞酸酐的方法
CN1951900A (zh) 一种低能耗制备对苯二甲酸的方法
CN107778131B (zh) 一种基于多层双环流导流筒鼓泡反应器制备环己醇和环己酮的方法
CN101402624A (zh) 偏三甲苯液相空气分段氧化法生产偏苯三酸酐的方法
CN216170071U (zh) 一种熔融结晶提纯装置系统
CN216419325U (zh) 一种氯代邻二甲苯连续氧化装置、系统及鼓泡反应器
CN109096089A (zh) 对苯二甲酸的制备方法及其装置
CN115282913A (zh) 一种制备丙酸甲酯的反应系统及方法
CN212595615U (zh) 一种反应装置及甲醇羰基合成醋酸的系统
CN105315238A (zh) 环氧丙烷的生产设备
CN111100030A (zh) N,n-二甲基乙酰胺的制备工艺及制备装置
CN216404259U (zh) 一种连续制备苯乙酮的系统
CN105272939A (zh) 环氧丙烷生产方法
CN220126150U (zh) 一种合成硫酸乙烯酯的系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200313

Address after: No. 502, unit 3, building 8, No. 42-1, sangyuan Road, Licheng District, Jinan City, Shandong Province

Patentee after: Wang Xuejun

Address before: 413000, Yiyang City, Hunan province Yuanjiang rocky Lake Road

Patentee before: YUANJIANG HUALONG CATALYST TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right

Effective date of registration: 20200319

Address after: 233000 Xianghe Home Floor No.9, Xinhuai Road, Dongsheng Street, Longzihu District, Bengbu City, Anhui Province

Patentee after: Bengbu Qibang Science and Technology Information Consulting Co.,Ltd.

Address before: No. 502, unit 3, building 8, No. 42-1, sangyuan Road, Licheng District, Jinan City, Shandong Province

Patentee before: Wang Xuejun

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220422

Address after: 441300 Jiaotong Avenue, suixian Economic Development Zone, Suizhou City, Hubei Province (next to Paris spring)

Patentee after: Hubei Junjie New Material Co.,Ltd.

Address before: 233000 No.9, 1st floor, Xianghe Jiayuan, Xinhuai Road, Dongsheng Street, Longzihu District, Bengbu City, Anhui Province

Patentee before: Bengbu Qibang Science and Technology Information Consulting Co.,Ltd.

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Production of terephthalic acid by air oxidation of P-Xylene based on gas-liquid solid multiphase reaction separation synchronous reactor

Effective date of registration: 20230620

Granted publication date: 20150617

Pledgee: Bank of China Limited Suizhou Branch

Pledgor: Hubei Junjie New Material Co.,Ltd.

Registration number: Y2023980044241

PE01 Entry into force of the registration of the contract for pledge of patent right