CN103746694A - Slope conversion circuit applied to two-step type integral analog-to-digital converter - Google Patents
Slope conversion circuit applied to two-step type integral analog-to-digital converter Download PDFInfo
- Publication number
- CN103746694A CN103746694A CN201410014952.9A CN201410014952A CN103746694A CN 103746694 A CN103746694 A CN 103746694A CN 201410014952 A CN201410014952 A CN 201410014952A CN 103746694 A CN103746694 A CN 103746694A
- Authority
- CN
- China
- Prior art keywords
- operational amplifier
- output
- capacitance
- switch
- over circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 75
- 238000005070 sampling Methods 0.000 claims abstract description 49
- 230000008859 change Effects 0.000 claims abstract description 26
- 230000003071 parasitic effect Effects 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 11
- 230000008569 process Effects 0.000 claims abstract description 9
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000012423 maintenance Methods 0.000 claims 1
- 239000003990 capacitor Substances 0.000 abstract description 32
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003121 nonmonotonic effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Landscapes
- Analogue/Digital Conversion (AREA)
Abstract
本发明属于半导体和集成电路技术领域,具体为一种应用于两步式积分型模数转换器的斜坡转换电路。本发明的斜坡转换电路包括一个运算放大器、一对的采样电容、一对寄生平衡电容和六个开关。在第一步高位模数转换时,输入斜坡信号直接输出,同时被运算放大器和第一个采样电容采样和保持;在第二步低位模数转换时,输入斜坡信号输入到运算放大器正输入端,运算放大器将其正输入端的电压变化以增益为一的方式传递到第二个采样电容的浮空极板,并在此与第一步的保持电压进行叠加,作为斜坡转换电路的输出。本发明可以有效消除该类型模数转换器电压变化的传递过程中由寄生电容引起的增益误差,提高精度和速度。
The invention belongs to the technical field of semiconductors and integrated circuits, in particular to a slope conversion circuit applied to a two-step integral analog-to-digital converter. The slope conversion circuit of the present invention includes an operational amplifier, a pair of sampling capacitors, a pair of parasitic balancing capacitors and six switches. In the first step of high-level analog-to-digital conversion, the input ramp signal is directly output, and is sampled and held by the operational amplifier and the first sampling capacitor at the same time; in the second step of low-level analog-to-digital conversion, the input ramp signal is input to the positive input terminal of the operational amplifier , the operational amplifier transmits the voltage change of its positive input terminal to the floating plate of the second sampling capacitor with a gain of one, and superimposes it with the holding voltage of the first step here as the output of the ramp conversion circuit. The invention can effectively eliminate the gain error caused by the parasitic capacitance in the transfer process of the voltage change of the analog-to-digital converter, and improve the precision and speed.
Description
技术领域 technical field
本发明属于半导体和集成电路技术领域,具体涉及集成电路中的一种应用于两步式积分型模数转换器的斜坡转换电路。 The invention belongs to the technical field of semiconductors and integrated circuits, and in particular relates to a slope conversion circuit applied to a two-step integral analog-to-digital converter in an integrated circuit.
背景技术 Background technique
积分型模数转换器由于其结构简单、低功耗、高精度等特点,在低速领域具有非常明显的优势,特别是在多通道并行模数转换器应用方面,积分型模数转换器更是因其出色的各通道一致性而被广泛应用。但是传统的B位积分型模数转换器的转换时间为2B个时钟周期,这个缺点限制了其精度的提高。因此积分型模数转换器从传统的一步式结构变为两步式结构,将转换时间与精度的关系由指数关系(2B)变为指数相加的关系(2M+2N,其中M+N=B),从而缩短了转换时间。两步式结构又包括:两步式多斜坡单斜率结构、两步式多斜坡多斜率结构和两步式单斜坡单斜率结构。两步式单斜坡单斜率结构消除了多斜坡结构的匹配和功耗问题,因此可以在中高精度模数转换应用中,更有效地缩短转换时间。 Due to its simple structure, low power consumption, and high precision, the integral analog-to-digital converter has very obvious advantages in the low-speed field, especially in the application of multi-channel parallel analog-to-digital converters, the integral analog-to-digital converter is even more Widely used for its excellent channel-to-channel consistency. But the conversion time of the traditional B-bit integral analog-to-digital converter is 2 B clock cycles, which limits the improvement of its accuracy. Therefore, the integral analog-to-digital converter changes from a traditional one-step structure to a two-step structure, and changes the relationship between conversion time and accuracy from an exponential relationship (2 B ) to an exponential relationship (2 M +2 N , where M +N=B), thus shortening the conversion time. The two-step structure further includes: a two-step multi-slope single-slope structure, a two-step multi-slope multi-slope structure and a two-step single-slope single-slope structure. The two-step single-slope single-slope structure eliminates the matching and power consumption problems of the multi-slope structure, so it can reduce the conversion time more effectively in medium-to-high-precision analog-to-digital conversion applications.
在公知电路中,两步式单斜坡单斜率积分型模数转换器原理如图1所示,由传统的斜坡转换电路101、比较器102、锁存和加法器103、计数和控制器104、以及斜坡信号发生器105(通常用一个数模转换器实现)。转换过程分为高M位和低N位两步进行:第一步进行高位M位转换,计数和控制器104的高M位从零开始计数,斜坡信号发生器105输出阶梯斜坡信号,斜坡信号与模数转换器输入的待量化信号分别输入到比较器102的两个输入端,当比较器102输出翻转时,锁存和加法器103锁存此时计数和控制器104的值(m),完成高位M转换;与此同时,传统的斜坡转换电路101采样并存储对应的斜坡信号。第二步进行低位N位转换,计数和控制器104的低位N从零开始计数,斜坡信号发生器105输出阶梯斜坡信号(其阶梯大小是第一步时的1/2N),传统的斜坡转换电路101将此斜坡信号与第一步存储的电压值叠加后输入到比较器102的正端,比较器102再一次翻转时,锁存和加法器103锁存计数和控制器104的值(n),完成低N位转换,并计算出模数转换的结果D=2Nm+n。
In the known circuit, the principle of the two-step single-slope single-slope integral analog-to-digital converter is shown in FIG. and a ramp signal generator 105 (usually implemented with a digital-to-analog converter). The conversion process is divided into two steps: the high M bit and the low N bit: the first step is to convert the high M bit, the high M bit of the counting and
所述转换过程中,传统的斜坡转换电路101对整个模数转换器性能影响很大。首先,斜坡转换电路中开关S11、S12、S13在开关转换时会有电荷注入和时钟馈通两个非理想因素,它会导致电压存储电路存储的电压与理想值出现偏差,从而影响模数转换器的性能。此问题可用已有公知的低位斜坡扩展的方法解决。其次,由于节点D存在寄生电容,它会导致第一步切换到第二步,以及第二步转换过程中,节点E电压变化传递到节点D时,电压变化的增益小于1;但此增益误差不存在于第一步转换中,最终造成模数转换器的非线性。由于当增益小于1时出现非单调,当增益大于1时出现失码,因此传统的斜坡转换电路101将造成模数转换器的非单调特性。
During the conversion process, the conventional
发明内容 Contents of the invention
针对上述两步式单斜坡单斜率积分型模数转换器的现有技术存在的问题,本发明提供一种斜坡转换电路,以解决两步式单斜坡单斜率积分型模数转换中,第一步切换到第二步,以及第二步操作时所引起的电压变化传递到斜坡转换电路输出的过程中,由于寄生电容而产生的增益误差的问题。 Aiming at the problems existing in the prior art of the two-step single-slope single-slope integral analog-to-digital converter, the present invention provides a slope conversion circuit to solve the problem of the first two-step single-slope single-slope integral analog-to-digital converter In the process of switching from the first step to the second step, and the voltage change caused by the second step operation is transmitted to the output of the slope conversion circuit, the problem of gain error due to parasitic capacitance.
本发明提供的斜坡转换电路,如图3所示,包括:一个运算放大器A1、一对采样电容CH1和CH2 、一对寄生平衡电容CM1和CM2,六个开关S1、S2、S3、S4、S5、S6。输入斜坡信号一方面依次经过开关S1和S6连接到斜坡转换电路的输出端,另一方面通过开关S2连接到运算放大器的正输入端;运算放大器的正输入端通过开关S3与参考电平相连;运算放大器的负输入端,一方面通过开关S4连接到运算放大器的输出端,另一方面依次经过第一采样电容CH1和开关S5,连接到运算放大器的输出端;运算放大器的输出端依次经过开关S5和第二采样电容CH2,连接到斜坡转换电路的输出端;第二采样电容CH2的两个极板通过开关S6相连;第一寄生平衡电容CM1的一个极板接地,另一个极板与运算放大器的负输入端相连;第二寄生平衡电容CM2的一个极板接地,另一个极板与斜坡转换电路的输出端相连。 The slope conversion circuit provided by the present invention, as shown in Figure 3, includes: an operational amplifier A1, a pair of sampling capacitors CH1 and CH2 , a pair of parasitic balancing capacitors C M1 and C M2 , six switches S1 , S2 , S 3 , S 4 , S 5 , S 6 . On the one hand, the input slope signal is connected to the output terminal of the slope conversion circuit through switches S1 and S6 in turn, and on the other hand, it is connected to the positive input terminal of the operational amplifier through switch S2 ; the positive input terminal of the operational amplifier is connected to the reference terminal through switch S3 The level is connected; the negative input terminal of the operational amplifier is connected to the output terminal of the operational amplifier through the switch S4 on the one hand, and connected to the output terminal of the operational amplifier through the first sampling capacitor C H1 and the switch S5 on the other hand; The output terminal of the amplifier is connected to the output terminal of the slope conversion circuit through the switch S5 and the second sampling capacitor CH2 in turn; the two plates of the second sampling capacitor CH2 are connected through the switch S6 ; the first parasitic balancing capacitor C M1 One plate of C M2 is grounded, and the other plate is connected to the negative input terminal of the operational amplifier; one plate of the second parasitic balancing capacitor C M2 is grounded, and the other plate is connected to the output terminal of the slope conversion circuit.
上述方案中,两个采样电容匹配相等。两个寄生平衡电容具有大于或等于零的电容值,分别用于调节运算放大器负输入端(X)和斜坡转换电路输出端(A)的等效对地寄生电容,使上述两个节点(X和A)具有相等的对地电容。采样电容与对地电容之和称为总电容,上述两个节点(X和A)的总电容分别称为第一总电容和第二总电容。所以,第一总电容和第二总电容相等。 In the above scheme, the two sampling capacitors are matched equally. The two parasitic balancing capacitors have capacitance values greater than or equal to zero, and are used to adjust the equivalent ground parasitic capacitances of the negative input terminal (X) of the operational amplifier and the output terminal (A) of the slope conversion circuit respectively, so that the above two nodes (X and A) have equal capacitance to ground. The sum of the sampling capacitance and the ground capacitance is called the total capacitance, and the total capacitances of the above two nodes (X and A) are respectively called the first total capacitance and the second total capacitance. Therefore, the first total capacitance and the second total capacitance are equal.
上述方案中,运算放大器与第一采样电容CH1以及开关S4和S5构成了电容翻转结构的采样保持电路。运算放大器由开关S2、S3、S4和S5控制,在一个模数转换周期相继工作于采样模式、保持模式和跟随模式:在采样模式时,S4导通,S5关断,运算放大器负输入端与运算放大器输出端相连,第一采样电容CH1的一个极板与运算放大器负输入端相连,另一个极板对输入斜坡信号进行采样;在保持模式和跟随模式时,S4关断,S5导通,第一采样电容CH1的另一个极板与运算放大器输出端相连;运算放大器正输入端,在采样模式和保持模式时通过导通的S3与参考电平相连,在跟随模式时通过导通的S2与输入斜坡信号相连。 In the above solution, the operational amplifier, the first sampling capacitor C H1 and the switches S4 and S5 constitute a sample-and-hold circuit with a capacitance inversion structure. The operational amplifier is controlled by switches S 2 , S 3 , S 4 and S 5 , and works successively in sampling mode, holding mode and following mode in one analog-to-digital conversion cycle: in sampling mode, S 4 is on, S 5 is off, The negative input terminal of the operational amplifier is connected with the output terminal of the operational amplifier, one plate of the first sampling capacitor CH1 is connected with the negative input terminal of the operational amplifier, and the other plate samples the input ramp signal; in the hold mode and follow mode, S 4 is turned off, S 5 is turned on, and the other plate of the first sampling capacitor CH1 is connected to the output terminal of the operational amplifier; the positive input terminal of the operational amplifier is connected to the reference level through the conducted S 3 in the sampling mode and the holding mode Connected, and connected to the input ramp signal through the conduction of S2 in the following mode.
上述方案中,输入斜坡信号在斜坡转换电路中的输入方式由三个开关(S1、S2和S6)进行控制: In the above scheme, the input mode of the input ramp signal in the ramp conversion circuit is controlled by three switches (S 1 , S 2 and S 6 ):
(1)第一步高位模数转换开始时,S1和S6导通,S2关断,输入斜坡信号连接到斜坡转换电路的输出,直接作为斜坡转换电路的输出信号;输入斜坡信号同时被第一采样电容CH1采样;第二采样电容CH2的两个极板被开关S6短路到斜坡转换电路的输出。 (1) When the first step of high-order analog-to-digital conversion starts, S 1 and S 6 are turned on, S 2 is turned off, and the input ramp signal is connected to the output of the ramp conversion circuit, which is directly used as the output signal of the ramp conversion circuit; the input ramp signal is simultaneously It is sampled by the first sampling capacitor CH1 ; the two plates of the second sampling capacitor CH2 are short-circuited to the output of the slope conversion circuit by the switch S6 .
(2)第一步高位模数转换的采样过程一直持续到输入斜坡信号恰好大于模数转换器的输入信号时结束,S1和S2均关断,输入斜坡信号不再输入到斜坡转换电路中;此时运算放大器进入保持模式,其输出保持电压为最后采样到的输入斜坡信号的电压值;第二采样电容CH2在运算放大器输出建立稳定之后,两个极板间的开关S6关断,其中一个极板与运算放大器输出端相连,另一个极板浮空并作斜坡转换电路的输出;此时第二采样电容CH2两个极板的电压均为保持电压。 (2) The sampling process of the first high-bit analog-to-digital conversion continues until the input ramp signal is just greater than the input signal of the analog-to-digital converter. Both S 1 and S 2 are turned off, and the input ramp signal is no longer input to the ramp conversion circuit. At this time, the operational amplifier enters the holding mode, and its output holding voltage is the voltage value of the last sampled input ramp signal; after the second sampling capacitor CH2 is stable at the output of the operational amplifier, the switch S6 between the two plates is closed One of the plates is connected to the output terminal of the operational amplifier, and the other plate is floating and used as the output of the slope conversion circuit; at this time, the voltages of the two plates of the second sampling capacitor CH2 are holding voltages.
(3)第二步低位模数转换时,S1关断,S2导通,输入斜坡信号输入到运算放大器的正输入端,处于跟随模式的运算放大器将运算放大器正输入端的电压变化传递到运算放大器的输出端;根据电荷守恒原理,再进一步传递到第二采样电容CH2的浮空极板上,并在此叠加到第一步保持电压上,作为斜坡转换电路的输出信号。 (3) In the second step of low-level analog-to-digital conversion, S 1 is turned off, S 2 is turned on, and the input ramp signal is input to the positive input terminal of the operational amplifier, and the operational amplifier in the following mode transmits the voltage change of the positive input terminal of the operational amplifier to the The output terminal of the operational amplifier; according to the principle of charge conservation, it is further transmitted to the floating plate of the second sampling capacitor CH2 , and is superimposed on the first step holding voltage here as the output signal of the slope conversion circuit.
上述方案中,运算放大器正输入端的电压变化由以下两个操作产生:(1)当运算放大器从保持模式进入跟随模式时,正输入端由参考电平切换到第二步输入斜坡信号的初始电平;(2)当运算放大器工作于跟随模式时,第二步输入斜坡信号电压变化。 In the above scheme, the voltage change of the positive input terminal of the operational amplifier is generated by the following two operations: (1) When the operational amplifier enters the following mode from the hold mode, the positive input terminal is switched from the reference level to the initial level of the ramp signal input in the second step. (2) When the operational amplifier works in follower mode, the voltage of the ramp signal input in the second step changes.
上述方案中,运算放大器正输入端的电压变化通过两个级联的传递函数传递到斜坡转换电路的输出端:(1)第一级是处于跟随模式的运算放大器将运算放大器正输入端的电压变化传递到运算放大器的输出端,第一级传递函数的增益等于第一总电容与第一采样电容之比;(2)第二级是运算放大器的输出电压变化传递斜坡转换电路的输出端,第二级传递函数的增益等于第二采样电容与第二总电容之比。由于上述两个采样电容和两个总电容分别相等,因此上述两级增益互为倒数;而两级增益相乘为总增益,所以上述斜坡转换电路的电压变化传递函数的总增益等于一。 In the above scheme, the voltage change at the positive input terminal of the operational amplifier is transferred to the output terminal of the slope conversion circuit through two cascaded transfer functions: (1) The first stage is the operational amplifier in follower mode to transfer the voltage change at the positive input terminal of the operational amplifier to To the output terminal of the operational amplifier, the gain of the first stage transfer function is equal to the ratio of the first total capacitance to the first sampling capacitance; (2) The second stage is the output terminal of the operational amplifier output voltage change transmission ramp conversion circuit, the second The gain of the stage transfer function is equal to the ratio of the second sampling capacitance to the second total capacitance. Since the above two sampling capacitors and the two total capacitors are respectively equal, the gains of the above two stages are reciprocals of each other; and the gains of the two stages are multiplied to form the total gain, so the total gain of the voltage change transfer function of the slope conversion circuit is equal to one.
上述方案在实现时,由于电容匹配等原因使上述两个采样电容和两个总电容分别存在电容值的偏差,但总增益仅决定于它们各自的相对偏差,这种相对偏差在集成电路实现时均可以控制在±1%左右,所以总增益仍然非常接近于一。 When the above solution is implemented, due to capacitance matching and other reasons, the above two sampling capacitors and the two total capacitors have capacitance deviations, but the total gain is only determined by their respective relative deviations. This relative deviation is implemented in integrated circuits. Both can be controlled within ±1%, so the overall gain is still very close to unity.
本发明的有益效果是可以有效地消除斜坡转换电路输入端的电压变化传递到输出端由于寄生电容而产生的增益误差,所述的电压变化是由第一步切换到第二步,以及第二步转换过程中的所引起的。同时,采样保持电路部分采用了传统电容翻转结构的采样保持电路,保留了其下极板采样时序,可以有效消除由于开关注入和馈通引入的非线性误差。基于以上改进效果,本发明可以有效地提高两步式积分型模数转换器的精度和速度。 The beneficial effect of the present invention is that it can effectively eliminate the gain error caused by the parasitic capacitance of the voltage change at the input terminal of the slope conversion circuit transmitted to the output terminal, the voltage change is switched from the first step to the second step, and the second step caused by the conversion process. At the same time, the sample-and-hold circuit part adopts the sample-and-hold circuit with the traditional capacitor flipping structure, which retains the sampling timing of the lower plate, and can effectively eliminate the nonlinear error introduced by switch injection and feedthrough. Based on the above improvement effects, the present invention can effectively improve the precision and speed of the two-step integral analog-to-digital converter.
附图说明 Description of drawings
图1是公知的采用传统斜坡转换电路的两步式单斜坡单斜率积分型模数转换器原理图,其中虚线方框中为节点上由连线和负载引入的等效对地寄生电容。 Fig. 1 is a schematic diagram of a known two-step single-slope single-slope integrating analog-to-digital converter adopting a traditional slope conversion circuit, where the dotted box is the equivalent parasitic capacitance to ground introduced by the connection line and the load on the node.
图2是公知的用于控制传统斜坡转换电路的时序图。 FIG. 2 is a known timing diagram for controlling a conventional ramp conversion circuit.
图3是本发明的用于两步式单斜坡单斜率积分型模数转换器的斜坡转换电路。 FIG. 3 is a ramp conversion circuit for a two-step single-slope single-slope integral analog-to-digital converter of the present invention.
图4是本发明的用于两步式单斜坡单斜率积分型模数转换器的斜坡转换电路,为了描述原理加入了虚线方框中节点上由连线和负载引入的等效对地寄生电容。 Fig. 4 is the slope conversion circuit for the two-step single-slope single-slope integral analog-to-digital converter of the present invention. In order to describe the principle, the equivalent parasitic capacitance to ground introduced by the connection line and the load on the node in the dotted line box is added .
图5是本发明用于控制斜坡转换电路的时序图。 FIG. 5 is a timing diagram for controlling the slope conversion circuit of the present invention.
具体实施方式 Detailed ways
为了便于理解,以下将结合具体的附图和实施方式对本发明进行详细地描述。需要指出的是,图3和图5仅是本发明的实施举例,本发明权利要求范围内的具体实施的形式和细节不限于图3和图5。对于任何熟知集成电路设计技术的人员,可知本发明所述图3和图5各例均可以根据本文说明,在本发明范围内作出各种不同的修正和变化,这些修正和变化也纳入本发明的范围内。 For ease of understanding, the present invention will be described in detail below in conjunction with specific drawings and embodiments. It should be noted that Fig. 3 and Fig. 5 are only examples of implementation of the present invention, and the form and details of specific implementation within the scope of claims of the present invention are not limited to Fig. 3 and Fig. 5 . For anyone who is familiar with integrated circuit design technology, it can be known that the examples of Fig. 3 and Fig. 5 described in the present invention can make various amendments and changes within the scope of the present invention according to the description herein, and these amendments and changes are also included in the present invention In the range.
图1是公知的两步式积分型模数转换器的电路原理图,包括:传统的斜坡转换电路101、比较器102、锁存和加法器103、计数和控制器104、以及斜坡信号发生器105。图1中VIN是待量化的输入信号,Vramp,in是输入斜坡信号,Vramp,out是输出斜坡信号,D<B-1,0>是输出B位数字码。三个开关在图2所示时序信号的控制下完成两步式转换。在两种情况下存在增益误差。第一种情况是,当第一步高位转换进行到输入斜坡信号恰好大于待量化的信号时,S13关断,此时斜坡信号仍由S11输入,引起节点D电压变化ΔVD,从而节点E电压变化ΔVE,由于节点E存在对地的寄生电容CPE,将导致传递函数的增益小于1,表达如下:
Fig. 1 is the circuit schematic diagram of known two-step integral type analog-to-digital converter, including: traditional
。 .
第二种情况是,当第一步切换到第二步以及第二步低位转换时,节点E的电压变化ΔVE引起节点D的电压变化ΔVD,由于D点存在对地的寄生电容CPD,将导致传递函数增益小于1,表达如下: The second case is that when the first step is switched to the second step and the second step is low-level conversion, the voltage change ΔV E of node E causes the voltage change ΔV D of node D, because there is a parasitic capacitance C PD at point D to ground , will result in a transfer function gain less than 1, expressed as follows:
。 .
第一种情况在传统的斜坡转换电路中可以通过在关断S13后立即关断S11来避免,然而第二种情况产生的增益误差则无法只通过改变时序来消除。这种增益误差将导致模数转换结果出现非单调。另一方面,由于以上增益决定于电容的绝对值,而绝对值在集成电路实现时具有20%~30%的偏差,导致增益变化范围较大。本发明所述的斜坡转换电路将取代传统的斜坡转换电路101,解决上述增益误差的问题。
The first case can be avoided by turning off S 11 immediately after turning off S 13 in a traditional ramp switching circuit, but the gain error generated in the second case cannot be eliminated by changing the timing only. This gain error will cause the analog-to-digital conversion result to appear non-monotonic. On the other hand, since the above gain is determined by the absolute value of the capacitor, and the absolute value has a deviation of 20% to 30% when the integrated circuit is implemented, the gain variation range is relatively large. The slope conversion circuit of the present invention will replace the traditional
图3是本发明应用于两步式积分型模数转换器的斜坡转换电路的一种实施方式,图4是为了以下描述方便,在图3的基础上加入了虚线方框中节点上由于连线和(或)负载引入的等效对地寄生电容。斜坡转换电路包括:一个运算放大器A1,一对采样电容CH1和CH2,一对寄生平衡电容CM1和CM2,六个开关S1、S2、S3、S4、S5、S6。Vramp,in是输入斜坡信号,Vramp,out是输出斜坡信号。两个采样电容应匹配相等且标称值为CH,即:CH1=CH2=CH。一对寄生平衡电容(CM1和CM2)一端接地,另一端分别接于运算放大器的负输入端(X)和斜坡转换电路的输出端(A),用于调节如图4中的运算放大器负输入端(X)的等效对地寄生电容CP1和斜坡转换电路输出端(A)的等效对地寄生电容CP2,使上述两个节点具有相等的对地电容且标称值为CP,即:CP1+CM1= CP2+CM2=CP。采样电容与对地电容之和称为总电容(CH+CP),因此上述两个节点具有相同的总电容。 Fig. 3 is an embodiment of the slope conversion circuit applied to the two-step integral analog-to-digital converter of the present invention. Fig. 4 is for the convenience of the following description. The equivalent ground parasitic capacitance introduced by the line and (or) load. The slope conversion circuit includes: an operational amplifier A1, a pair of sampling capacitors CH1 and CH2 , a pair of parasitic balancing capacitors C M1 and C M2 , six switches S 1 , S 2 , S 3 , S 4 , S 5 , S 6 . V ramp, in is the input ramp signal, V ramp, out is the output ramp signal. The two sampling capacitors should be matched equally and have a nominal value of CH , namely: CH1 = CH2 = CH . One end of a pair of parasitic balancing capacitors (C M1 and C M2 ) is grounded, and the other end is respectively connected to the negative input terminal (X) of the operational amplifier and the output terminal (A) of the slope conversion circuit, which is used to adjust the operational amplifier in Figure 4 The equivalent ground-to-ground parasitic capacitance C P1 of the negative input terminal (X) and the equivalent ground-to-ground parasitic capacitance C P2 of the slope conversion circuit output terminal (A) make the above two nodes have equal ground-to-ground capacitance and the nominal value is C P , namely: C P1 +C M1 = C P2 +C M2 =C P . The sum of the sampling capacitance and the capacitance to ground is called the total capacitance ( CH + C P ), so the above two nodes have the same total capacitance.
图5是适用于本发明斜坡转换电路时序的一种实施方式,用于控制图3中的六个开关,从而控制运算放大器的工作模式和输入斜坡信号的接入方式。一个模数转换周期由第一步高M位转换和第二步低N位转换组成;第一步高M位转换中运算放大器相继工作于采样模式和保持模式,第二步低N位转换中运算放大器工作于跟随模式。注意,S6关断可以发生在保持电压建立稳定之后到保持模式结束之前的任何时刻。 FIG. 5 is an embodiment of the timing sequence applicable to the slope conversion circuit of the present invention, which is used to control the six switches in FIG. 3 , so as to control the operation mode of the operational amplifier and the access mode of the input ramp signal. An analog-to-digital conversion cycle consists of the first step of high M-bit conversion and the second step of low N-bit conversion; in the first step of high M-bit conversion, the operational amplifier works successively in sampling mode and hold mode, and in the second step of low N-bit conversion The operational amplifier works in follower mode. Note that S6 turn-off can occur at any time after the holdover voltage has stabilized and before the end of holdover mode.
根据图4和图5,本发明所述的斜坡转换电路消除增益误差的具体原理可描述如下。所述模数转换器的在第一步到第二步切换和第二步转换过程中引起运算放大器正输入端(B)的电压变化ΔVB,被处于跟随模式的运算放大器传递到其输出端(Y),产生ΔVY,由于运算放大器负输入端(X)存在对地电容(CP1+CM1),则该传递函数的增益大于1,表示为: According to FIG. 4 and FIG. 5 , the specific principle of eliminating the gain error by the slope conversion circuit of the present invention can be described as follows. The voltage change ΔV B at the positive input terminal (B) of the operational amplifier caused by the first-to-second-step switching and the second-step conversion of the analog-to-digital converter is transferred to its output by the operational amplifier in follower mode (Y), resulting in ΔV Y , because there is a ground capacitance (C P1 +C M1 ) at the negative input terminal (X) of the operational amplifier, the gain of the transfer function is greater than 1, expressed as:
。 .
根据电荷守恒原理,ΔVY将会继续传递所述斜坡转换电路的输出端,产生的电压变化为ΔVA,由于采样电容(CH2)浮空极板(A)存在对地电容(CP2+CM2),则该传递函数的增益小于1,表示为: According to the principle of charge conservation, ΔV Y will continue to be transmitted to the output terminal of the slope conversion circuit, and the resulting voltage change is ΔV A , because the floating plate (A) of the sampling capacitor (C H2 ) has a ground capacitance (C P2 + C M2 ), then the gain of the transfer function is less than 1, expressed as:
。 .
所以电压变化的传递函数的总增益为, So the overall gain of the transfer function for the voltage change is,
。 .
理想上,如上述CH1=CH2=CH且CP1+CM1=CP2+CM2=CP,因此两级增益就互为倒数,所以电压变化的总增益就是1。然而在实现过程中,由于电容匹配等原因分别存在微小偏差ΔCH和ΔCP,则总增益如下式所示: Ideally, as above, C H1 =C H2 = CH and C P1 +C M1 =C P2 +C M2 =C P , so the gains of the two stages are reciprocals of each other, so the total gain of the voltage change is 1. However, in the implementation process, there are small deviations ΔC H and ΔC P due to capacitance matching and other reasons, and the total gain is as follows:
。 .
由于ΔCH/CH和ΔCP/CP是相对偏差,在集成电路实现时均可以控制在±1%左右,所以总增益仍然非常接近于1。 Since ΔC H / CH and ΔC P /C P are relative deviations, both can be controlled at about ±1% when implemented in an integrated circuit, so the total gain is still very close to 1.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410014952.9A CN103746694B (en) | 2014-01-14 | 2014-01-14 | Slope conversion circuit applied to two-step type integral analog-to-digital converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410014952.9A CN103746694B (en) | 2014-01-14 | 2014-01-14 | Slope conversion circuit applied to two-step type integral analog-to-digital converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103746694A true CN103746694A (en) | 2014-04-23 |
CN103746694B CN103746694B (en) | 2017-02-01 |
Family
ID=50503693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410014952.9A Active CN103746694B (en) | 2014-01-14 | 2014-01-14 | Slope conversion circuit applied to two-step type integral analog-to-digital converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103746694B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104506194A (en) * | 2014-12-11 | 2015-04-08 | 复旦大学 | Shared type active slope conversion circuit used for column parallel two-step type analog-digital converter |
CN105024545A (en) * | 2014-04-25 | 2015-11-04 | 深圳市中兴微电子技术有限公司 | Switch control method, ON-OFF control circuit and modulator |
CN105897273A (en) * | 2016-03-28 | 2016-08-24 | 烟台睿创微纳技术有限公司 | Analog-to-digital conversion circuit and method for main and secondary gradients |
CN106656185A (en) * | 2016-12-31 | 2017-05-10 | 唯捷创芯(天津)电子技术股份有限公司 | Monoclinic analog-digital converter with digital double-sampling function, chip and terminal |
CN112446183A (en) * | 2019-08-15 | 2021-03-05 | 天津大学青岛海洋技术研究院 | Two-step single slope analog-to-digital converter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101964662A (en) * | 2010-10-12 | 2011-02-02 | 浙江大学 | Improved single-slope serial analog-digital converter |
CN102611854A (en) * | 2012-03-20 | 2012-07-25 | 天津大学 | Realization device of column-level analog-to-digital converter (ADC) in complementary metal-oxide semiconductor (CMOS) image sensor |
US20120194367A1 (en) * | 2011-01-31 | 2012-08-02 | Hynix Semiconductor Inc. | Continuous ramp generator design and its calibration for cmos image sensors using single-ramp adcs |
EP2579461A2 (en) * | 2011-10-07 | 2013-04-10 | Canon Kabushiki Kaisha | Ramp signal output circuit, analog-to-digital conversion circuit, imaging device, method for driving ramp signal output circuit, method for driving analog-to-digital conversion circuit, and method for driving imaging device |
-
2014
- 2014-01-14 CN CN201410014952.9A patent/CN103746694B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101964662A (en) * | 2010-10-12 | 2011-02-02 | 浙江大学 | Improved single-slope serial analog-digital converter |
US20120194367A1 (en) * | 2011-01-31 | 2012-08-02 | Hynix Semiconductor Inc. | Continuous ramp generator design and its calibration for cmos image sensors using single-ramp adcs |
EP2579461A2 (en) * | 2011-10-07 | 2013-04-10 | Canon Kabushiki Kaisha | Ramp signal output circuit, analog-to-digital conversion circuit, imaging device, method for driving ramp signal output circuit, method for driving analog-to-digital conversion circuit, and method for driving imaging device |
CN102611854A (en) * | 2012-03-20 | 2012-07-25 | 天津大学 | Realization device of column-level analog-to-digital converter (ADC) in complementary metal-oxide semiconductor (CMOS) image sensor |
Non-Patent Citations (1)
Title |
---|
HUI ZHI-DA,CHENG XU等: "A Multi-Mode DAC and Filter Block For Reconfigurable (GSM/TD-SCDMA/WCDMA) Transmitters", 《复旦学报》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105024545A (en) * | 2014-04-25 | 2015-11-04 | 深圳市中兴微电子技术有限公司 | Switch control method, ON-OFF control circuit and modulator |
CN105024545B (en) * | 2014-04-25 | 2018-12-07 | 深圳市中兴微电子技术有限公司 | A kind of method of controlling switch, ON-OFF control circuit and modulator |
CN104506194A (en) * | 2014-12-11 | 2015-04-08 | 复旦大学 | Shared type active slope conversion circuit used for column parallel two-step type analog-digital converter |
CN104506194B (en) * | 2014-12-11 | 2017-12-01 | 复旦大学 | For arranging the shared active slope conversion circuit of parallel two-step analog-digital converter |
CN105897273A (en) * | 2016-03-28 | 2016-08-24 | 烟台睿创微纳技术有限公司 | Analog-to-digital conversion circuit and method for main and secondary gradients |
CN105897273B (en) * | 2016-03-28 | 2019-01-04 | 烟台睿创微纳技术股份有限公司 | A kind of primary and secondary slope analog to digital conversion circuit and method |
CN106656185A (en) * | 2016-12-31 | 2017-05-10 | 唯捷创芯(天津)电子技术股份有限公司 | Monoclinic analog-digital converter with digital double-sampling function, chip and terminal |
CN112446183A (en) * | 2019-08-15 | 2021-03-05 | 天津大学青岛海洋技术研究院 | Two-step single slope analog-to-digital converter |
Also Published As
Publication number | Publication date |
---|---|
CN103746694B (en) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101277112B (en) | Low-power consumption assembly line a/d converter by sharing operation amplifier | |
CN106533443B (en) | A high-speed dynamic comparator offset voltage calibration circuit | |
CN102386923B (en) | Asynchronous successive approximation analog-to-digital converter and conversion method | |
CN104967451B (en) | Gradual approaching A/D converter | |
CN109194333B (en) | A composite structure successive approximation analog-to-digital converter and its quantization method | |
CN103166644B (en) | A kind of low-power consumption gradual approaching A/D converter and conversion method thereof | |
CN103746694B (en) | Slope conversion circuit applied to two-step type integral analog-to-digital converter | |
CN106656185B (en) | Monoclinic analog-to-digital converter with digital double sampling function, chip and terminal | |
CN104485957B (en) | Production line analog-digital converter | |
CN103178855B (en) | Be applied to the syllogic capacitor array structure of high accuracy gradually-appoximant analog-digital converter | |
CN108809310B (en) | Passive time-interleaved SAR ADC-based band-pass Delta-Sigma modulator | |
CN104168025B (en) | A kind of charge type streamline gradual approaching A/D converter | |
CN102751990A (en) | Pipelined analog-to-digital converter capable of improving dynamic performance | |
CN104092466B (en) | Assembly line successive approximation analog-to-digital converter | |
CN103905046A (en) | Nine-stage ten-bit pipelined ADC circuit | |
CN104184478B (en) | Complementary cascade phase inverter and increment Sigma Delta analog to digital conversion circuits | |
CN105119603A (en) | Pipeline successive-approximation analog-to-digital converter | |
CN103986469A (en) | A sigma-delta ADC with two-step processing and hardware multiplexing | |
CN108832928A (en) | A common-mode voltage correction circuit and correction method for a SAR ADC capacitor array | |
CN109462402B (en) | Mixed type assembly line ADC structure | |
CN103152048B (en) | A kind of Differential Input successive approximation analog digital conversion method | |
CN104038223B (en) | Improved 10-bit differential capacitance segmented coupling type DAC | |
CN107395205A (en) | Gradual approaching A/D converter based on asymmetric differential capacitance array | |
TW202114357A (en) | Analog to digital converter device and noise shaping digital slope analog to digital converter circuitry | |
CN108880543A (en) | Production line analog-digital converter and its amplifier adaptive configuration circuit and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |