CN102386923B - Asynchronous successive approximation analog-to-digital converter and conversion method - Google Patents
Asynchronous successive approximation analog-to-digital converter and conversion method Download PDFInfo
- Publication number
- CN102386923B CN102386923B CN201110280963.8A CN201110280963A CN102386923B CN 102386923 B CN102386923 B CN 102386923B CN 201110280963 A CN201110280963 A CN 201110280963A CN 102386923 B CN102386923 B CN 102386923B
- Authority
- CN
- China
- Prior art keywords
- capacitor array
- comparative result
- comparator
- digital converter
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 9
- 239000003990 capacitor Substances 0.000 claims abstract description 86
- 238000005070 sampling Methods 0.000 claims abstract description 24
- 230000000052 comparative effect Effects 0.000 claims 12
- 230000003247 decreasing effect Effects 0.000 claims 2
- 238000005498 polishing Methods 0.000 claims 2
- 238000013459 approach Methods 0.000 claims 1
- 230000001351 cycling effect Effects 0.000 claims 1
- 230000003252 repetitive effect Effects 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 abstract description 8
- 238000013461 design Methods 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 16
- 238000004088 simulation Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010845 search algorithm Methods 0.000 description 2
- 101100219315 Arabidopsis thaliana CYP83A1 gene Proteins 0.000 description 1
- 101000806846 Homo sapiens DNA-(apurinic or apyrimidinic site) endonuclease Proteins 0.000 description 1
- 101000835083 Homo sapiens Tissue factor pathway inhibitor 2 Proteins 0.000 description 1
- 101100269674 Mus musculus Alyref2 gene Proteins 0.000 description 1
- 101100140580 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) REF2 gene Proteins 0.000 description 1
- 102100026134 Tissue factor pathway inhibitor 2 Human genes 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Landscapes
- Analogue/Digital Conversion (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种异步逐次逼近模数转换器及转换方法,特别涉及一种通过改进检索方式,提高功耗效率、降低电容匹配和外围电路需求,并且适用于深亚微米低电源电压的异步逐次逼近模数转换器。The present invention relates to an asynchronous successive approximation analog-to-digital converter and a conversion method, in particular to an asynchronous successive approximation converter which improves power consumption efficiency, reduces capacitance matching and peripheral circuit requirements by improving the retrieval method, and is suitable for deep submicron low power supply voltage. approximation to the analog-to-digital converter.
技术背景 technical background
逐次逼近模数转换器是一种应用于中等精度、中等采样率的类型,相对于快闪型、流水线型等其他类型模数转换器有着最高的功耗效率,在医疗和便携设备中有广泛的应用。The successive approximation analog-to-digital converter is a type used in medium precision and medium sampling rate. Compared with other types of analog-to-digital converters such as flash type and pipeline type, it has the highest power consumption efficiency. It is widely used in medical and portable equipment. Applications.
传统的同步逐次逼近模数转换器需要一个高速系统时钟(采样频率的转换器解析位数倍),不管是在内部产生,还是从片外直接输入都会增加芯片额外的功耗,让逐次逼近型的高功耗效率大打折扣。The traditional synchronous successive approximation analog-to-digital converter requires a high-speed system clock (sampling frequency times the number of converter resolution digits), whether it is generated internally or directly input from off-chip will increase the extra power consumption of the chip, so that the successive approximation The high power consumption efficiency is greatly reduced.
由于逐次逼近模数转换器需要用到两倍递增的电容阵列,最小的和最大的电容之间的匹配限制了模数转换器的整体精度。采用单位电容和中心对称的版图布局能减小这种限制的影响,但不能从根本解决这个问题,很多设计采用数字校正的方式提高电容匹配的精度。Since the successive approximation ADC requires the use of capacitor arrays in increments of two, the matching between the smallest and largest capacitors limits the overall accuracy of the ADC. The use of unit capacitance and centrosymmetric layout can reduce the impact of this limitation, but it cannot fundamentally solve this problem. Many designs use digital correction to improve the accuracy of capacitance matching.
逐次逼近模数转换器通过切换连接在电容下极板上的参考电压逐次逼近最终结果,切换电容中消耗的电荷是这种类型模数转换器功耗的主要来源,使用效率更高的切换方式也成为了进一步提高功耗效率的主要研究方向之一。The successive approximation analog-to-digital converter successively approximates the final result by switching the reference voltage connected to the lower plate of the capacitor. The charge consumed in the switched capacitor is the main source of power consumption of this type of analog-to-digital converter. Use a more efficient switching method It has also become one of the main research directions to further improve power consumption efficiency.
发明内容 Contents of the invention
本发明目的在于,通过提供一种异步逐次逼近模数转换器及转换方法,改进逼近搜索算法和使用异步时序控制,提高逐次逼近模数转换器的功耗效率,降低电容匹配和外围电路需求,并且适用于深亚微米低电源电压。The object of the present invention is to improve the power consumption efficiency of the successive approximation analog-to-digital converter by providing an asynchronous successive approximation analog-to-digital converter and conversion method, improving the approximation search algorithm and using asynchronous timing control, and reducing the capacitance matching and peripheral circuit requirements, And suitable for deep submicron low supply voltage.
本发明是采用以下技术手段实现的:The present invention is realized by adopting the following technical means:
一种异步逐次逼近模数转换器,包含:采样网络、主电容阵列、附电容阵列、比较器和逻辑控制电路。An asynchronous successive approximation analog-to-digital converter includes: a sampling network, a main capacitor array, an auxiliary capacitor array, a comparator and a logic control circuit.
主电容阵列的采样网络由两个自举式开关分别连接到差分模拟输入信号的正相输入端和反向输入端;附电容阵列的采样网络由两个CMOS开关连接到模拟输入信号的共模参考电压。The sampling network of the main capacitor array is connected to the positive phase input terminal and the negative input terminal of the differential analog input signal by two bootstrap switches; the sampling network of the attached capacitor array is connected to the common mode of the analog input signal by two CMOS switches reference voltage.
主电容阵列中所有电容的上极板和前述自举式开关的一端连接在一起输入比较器;其中每两个相同的电容为一组,下极板由逻辑控制电路的输出通过反相器控制,电容值大小按照两倍的关系逐个递减,最后一个电容下极板接地,补齐电容阵列正确切换所需剩下的容值。The upper plates of all capacitors in the main capacitor array and one end of the aforementioned bootstrap switch are connected together and input into the comparator; every two identical capacitors form a group, and the lower plate is controlled by the output of the logic control circuit through the inverter , the capacitance value decreases one by one according to the relationship of twice, the bottom plate of the last capacitor is grounded, and the remaining capacitance value required for the correct switching of the capacitor array is completed.
附电容阵列中所有电容的上极板和前述CMOS开关的一端连接在一起输入比较器;其中每两个相同的电容为一组,下极板由逻辑控制电路的输出通过反相器控制,电容值大小按照四倍的关系逐个递减,最后一个电容下极板接地,补齐电容阵列正确切换所需剩下的容值。The upper plates of all the capacitors in the attached capacitor array and one end of the aforementioned CMOS switch are connected together to input the comparator; wherein every two identical capacitors form a group, and the lower plate is controlled by the output of the logic control circuit through an inverter, and the capacitor The value decreases one by one according to the relationship of four times, and the bottom plate of the last capacitor is grounded, and the remaining capacitance required for the correct switching of the capacitor array is completed.
比较器通过比较主电容阵列和附电容阵列上极板的电压,输出比较结果以及比较完成的信号。The comparator compares the voltages of the plates on the main capacitor array and the auxiliary capacitor array, and outputs a comparison result and a comparison completion signal.
逻辑控制电路接收来自比较器的比较结果和比较完成信号,分别相应地交替切换主电容阵列和附电容阵列直至完成一次采样所有的比较,然后再将所有的下极板控制信号重置为初始值开始下一次采样。The logic control circuit receives the comparison result and the comparison completion signal from the comparator, alternately switches the main capacitor array and the auxiliary capacitor array respectively until all the comparisons of one sampling are completed, and then resets all the control signals of the lower plate to the initial value Start the next sampling.
一种异步逐次逼近模数转换方法,包括如下几个步骤:An asynchronous successive approximation analog-to-digital conversion method, comprising the following steps:
步骤1:重置所有的下极板控制信号为初始值。Step 1: Reset all lower plate control signals to initial values.
步骤2:根据第一次比较结果切换附电容阵列中最大的一组电容对应的控制信号:如果比较结果为正,则将其输出切换为+1/2Vref(差分模拟输入信号范围在+Vref到-Vref之间);如果比较结果为负,则将其输出切换为-1/2Vref。Step 2: Switch the control signal corresponding to the largest group of capacitors in the attached capacitor array according to the first comparison result: if the comparison result is positive, switch its output to +1/2Vref (the differential analog input signal range is from +Vref to -Vref); if the comparison is negative, its output is switched to -1/2Vref.
步骤3:完成步骤2后再次根据新一轮的比较结果切换主电容阵列中最大的一组电容对应的控制信号:1.若步骤2比较结果为正:如果本次比较结果为正,则切换完成-3/4Vref的操作;如果本次比较结果为负,则切换完成-1/4Vref的操作。2.若步骤2比较结果为负:如果本次比较结果为正,则切换完成+1/4Vref的操作;如果本次比较结果为负,则切换完成+3/4Vref的操作。Step 3: After completing step 2, switch the control signal corresponding to the largest group of capacitors in the main capacitor array again according to the new round of comparison results: 1. If the comparison result in step 2 is positive: If the comparison result is positive this time, switch Complete the operation of -3/4Vref; if the result of this comparison is negative, switch to complete the operation of -1/4Vref. 2. If the comparison result in step 2 is negative: if the comparison result is positive, then switch to complete the +1/4Vref operation; if the current comparison result is negative, then switch to complete the +3/4Vref operation.
步骤4:以此类推,重复循环步骤2和步骤3直至切换到主电容阵列和附电容阵列中最小的一组电容,然后输出比较得到的二进制码和转换完成信号,结束本次采样转换过程,等待进入下一次。Step 4: By analogy, repeat step 2 and
主电容阵列和附电容阵列中每两个电容为一组,一个起到加上参考电压的作用,另一个起到减去参考电压的作用,改变其控制信号在采样过程中的初始值就能完成操作。Every two capacitors in the main capacitor array and the auxiliary capacitor array form a group, one plays the role of adding the reference voltage, and the other plays the role of subtracting the reference voltage, changing the initial value of its control signal during the sampling process can Done.
本发明与现有技术相比,具有以下明显的优势和有益效果:Compared with the prior art, the present invention has the following obvious advantages and beneficial effects:
本发明使用异步时序控制的逐次逼近模数转换器,工作在低电压下(小于1伏),省去了外围电路提供高速系统时钟的环节。通过改进后的逼近搜索算法,将传统同类型模数转换器中对电容的匹配需求放松到以前的4倍,并且减小了电容切换过程中的功耗。由于比较参考电压使用电源电压和地,因此不再需要导通电阻随信号幅度变化的CMOS开关和外围电路中提供的缓冲器。The invention uses a successive approximation analog-to-digital converter controlled by asynchronous sequence, works at a low voltage (less than 1 volt), and saves the link of peripheral circuits providing high-speed system clocks. Through the improved approximation search algorithm, the matching requirement of capacitors in traditional analog-to-digital converters of the same type is relaxed to 4 times before, and the power consumption in the process of capacitor switching is reduced. Since the power supply voltage and ground are used for comparing reference voltages, CMOS switches whose on-resistance varies with the signal amplitude and buffers provided in peripheral circuits are no longer required.
综上所述,本发明实现了低电压低功耗异步逐次逼近模数转换器,提高了功耗效率,降低了电容匹配和外围电路需求。In summary, the present invention realizes a low-voltage and low-power asynchronous successive approximation analog-to-digital converter, improves power consumption efficiency, and reduces capacitance matching and peripheral circuit requirements.
附图说明 Description of drawings
图1为异步逐次逼近模数转换器的结构框图;Fig. 1 is a structural block diagram of an asynchronous successive approximation analog-to-digital converter;
图2为本发明实施例中异步逐次逼近模数转换器的电路图;Fig. 2 is a circuit diagram of an asynchronous successive approximation analog-to-digital converter in an embodiment of the present invention;
图3为本发明实施例中比较器的电路图;Fig. 3 is the circuit diagram of comparator in the embodiment of the present invention;
图4为本发明实施例中逻辑控制电路的结构图;4 is a structural diagram of a logic control circuit in an embodiment of the present invention;
图5为本发明实施例中逻辑控制电路单元1的电路图;FIG. 5 is a circuit diagram of the logic
图6为本发明实施例中逻辑控制电路单元2的电路图;6 is a circuit diagram of the logic control circuit unit 2 in an embodiment of the present invention;
图7为本发明实施例中比较器的时序示意图;FIG. 7 is a schematic timing diagram of a comparator in an embodiment of the present invention;
图8为本发明实施例中主电容阵列和附电容阵列输出的仿真结果示意图;8 is a schematic diagram of simulation results output by the main capacitor array and the auxiliary capacitor array in an embodiment of the present invention;
图9为本发明实施例中模数转换器输出的快速傅里叶变换仿真结果示意图。FIG. 9 is a schematic diagram of a fast Fourier transform simulation result output by an analog-to-digital converter in an embodiment of the present invention.
符号说明:Symbol Description:
201:主电容阵列;202:附电容阵列;203:自举式采样开关;204:比较器;205:逻辑控制电路;201: main capacitor array; 202: additional capacitor array; 203: bootstrap sampling switch; 204: comparator; 205: logic control circuit;
801:模拟输入信号;802:主电容阵列输出信号;803:附电容阵列输出信号。801: analog input signal; 802: main capacitor array output signal; 803: auxiliary capacitor array output signal.
具体实施方法Specific implementation method
以下结合说明书附图对本发明的具体实施例加以说明:Specific embodiments of the present invention are described below in conjunction with the accompanying drawings:
如图1所示,本发明一种异步逐次逼近模数转换器的结构框图,包括:采样网络、主电容阵列、附电容阵列、比较器和逻辑控制电路。本发明实施例中实现的是一个8比特、50兆赫兹采样率的逐次逼近模数转换器。As shown in FIG. 1 , a structural block diagram of an asynchronous successive approximation analog-to-digital converter of the present invention includes: a sampling network, a main capacitor array, an auxiliary capacitor array, a comparator and a logic control circuit. What is realized in the embodiment of the present invention is an 8-bit successive approximation analog-to-digital converter with a sampling rate of 50 MHz.
主电容阵列的输入信号由于是随时间变化的模拟信号,因此采用自举式采样开关;附电容阵列的输入信号是共模参考电压,不随时间变化,因此采用CMOS采样开关。Since the input signal of the main capacitor array is an analog signal that changes with time, a bootstrap sampling switch is used; the input signal of the auxiliary capacitor array is a common-mode reference voltage that does not change with time, so a CMOS sampling switch is used.
图2给出了主电容阵列和附电容阵列的电路图。主电容阵列包含13个上极板连接在一起的电容,其中1个电容的下极板接地,电容大小为C*262/3(C是单位电容),另外12个电容每两个为一组,下极板由逻辑控制电路的输出经过反相器控制,最大的一组是32*C,最小的一组是1*C;附电容阵列包含9个上极板连接在一起的电容,其中1个电容的下极板接地,电容大小为C*770/3,另外8个电容每两个为一组,下极板由逻辑控制电路的输出经过反相器控制,最大的一组是64*C,最小的一组是1*C。Figure 2 shows the circuit diagram of the main capacitor array and the additional capacitor array. The main capacitor array consists of 13 capacitors with upper plates connected together, of which the lower plate of one capacitor is grounded, and the size of the capacitor is C*262/3 (C is a unit capacitor), and the other 12 capacitors are a group of two , the lower plate is controlled by the output of the logic control circuit through the inverter, the largest group is 32*C, and the smallest group is 1*C; the attached capacitor array contains 9 capacitors connected together on the upper plate, of which The lower plate of one capacitor is grounded, and the size of the capacitor is C*770/3. The other eight capacitors form a group of two. The lower plate is controlled by the output of the logic control circuit through the inverter. The largest group is 64 *C, the smallest group is 1*C.
图3给出了比较器的电路图。输入采用两个差分对,其中IP和IN是主电容阵列的输出,REF1和REF2是附电容阵列的输出。图3左侧的是预放大器,扩大待比较电压之间的差距;右侧是锁存器(latch),将电压之间的差距进一步拉大到电源电压和地。为了简化外围电路,预放大器不是使用参考电流源做偏置,而是引入时钟信号通过压控电流源做偏置,这样也可以在不需要放大的时候关掉放大器减小功耗。同样地,时钟信号在比较器不工作的时候会关断锁存器。比较完成信号则是将锁存器的输出经过或非门之后得到。Figure 3 shows the circuit diagram of the comparator. The input uses two differential pairs, where IP and IN are the outputs of the main capacitor array, and REF1 and REF2 are the outputs of the additional capacitor array. The left side of Figure 3 is a pre-amplifier, which expands the gap between the voltages to be compared; the right side is a latch (latch), which further widens the gap between the voltages to the power supply voltage and ground. In order to simplify the peripheral circuit, the pre-amplifier does not use a reference current source as bias, but introduces a clock signal to bias through a voltage-controlled current source, so that the amplifier can be turned off to reduce power consumption when amplification is not needed. Likewise, the clock signal turns off the latch when the comparator is not active. The comparison completion signal is obtained by passing the output of the latch through a NOR gate.
图4给出了逻辑控制电路的结构图,主要由单元1和单元2组成,其中所有的单元1级联在一起分别依次给出一次采样后8次比较的使能信号,单元2则完成单元1输出信号的一部分后处理功能。最后的组合逻辑则将单元2的输出转换成主、附电容阵列所需要的控制信号。图5给出了单元1的电路图,其中set和set_next是本级与前一级和后一级的接口,rdy是比较完成信号,cmp是比较器使能信号;图6给出了单元2的电路图,cmp_out是比较器的比较结果,rst是重置信号,每次采样前都会有效一次,set是图4中或门的输出,rdy是比较完成信号,bit是模数转换器待输出的数字码。图7给出了比较器的时序图,cmp使能信号是低有效,经过一段时间比较器输出比较结果cmp_out,并且在比较结果稳定后输出比较完成信号rdy。Figure 4 shows the structure diagram of the logic control circuit, which is mainly composed of
图8给出了在正弦模拟信号输入的情况下,主电容阵列和附电容阵列切换电压时输出信号的变化。与传统方式相比,功耗效率得到提高。图9是模数转换器输出的快速傅里叶变换仿真结果。Figure 8 shows the change of the output signal when the main capacitor array and the auxiliary capacitor array switch the voltage in the case of sinusoidal analog signal input. Power consumption efficiency is improved compared to conventional methods. Fig. 9 is the fast Fourier transform simulation result output by the analog-to-digital converter.
实施本发明的关键在于设计异步时序电路,由于负载以及线上和线间寄生的影响,各个控制信号之间会出现不同程度的延时和上升下降时间的增加,这种问题一方面会影响异步控制功能的实现,另一方面会降低模数转换器的采样率。要解决这个问题,需要加大关键节点的器件尺寸以减小上升下降时间,并且对rdy信号做足够的延时,保证在工艺偏差的情况下,rdy有效的时候输出已经准备好。The key to implementing the present invention is to design an asynchronous sequential circuit. Due to the influence of load and parasitic on-line and between-line, there will be different degrees of delay and increase of rise and fall time between each control signal. On the one hand, this problem will affect the asynchronous The realization of the control function, on the other hand, will reduce the sampling rate of the analog-to-digital converter. To solve this problem, it is necessary to increase the device size of key nodes to reduce the rise and fall time, and to delay the rdy signal enough to ensure that the output is ready when rdy is valid under the condition of process deviation.
综上所述,本发明通过该实施例达到了设计目的,实现了一种异步逐次逼近模数转换器,具有功耗效率高、对电容匹配和外围电路要求低的特点。本发明并不限于上述实施例,可以在不偏离本发明的范围和精神的情况下对其进行修改和变化。In summary, the present invention achieves the design purpose through this embodiment, and implements an asynchronous successive approximation analog-to-digital converter, which has the characteristics of high power consumption efficiency and low requirements on capacitance matching and peripheral circuits. The present invention is not limited to the above-described embodiments, and modifications and changes can be made thereto without departing from the scope and spirit of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110280963.8A CN102386923B (en) | 2011-09-21 | 2011-09-21 | Asynchronous successive approximation analog-to-digital converter and conversion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110280963.8A CN102386923B (en) | 2011-09-21 | 2011-09-21 | Asynchronous successive approximation analog-to-digital converter and conversion method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102386923A CN102386923A (en) | 2012-03-21 |
CN102386923B true CN102386923B (en) | 2014-01-01 |
Family
ID=45825945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110280963.8A Expired - Fee Related CN102386923B (en) | 2011-09-21 | 2011-09-21 | Asynchronous successive approximation analog-to-digital converter and conversion method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102386923B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106656192A (en) * | 2016-10-10 | 2017-05-10 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | ADC chip circuit based on gate voltage bootstrap circuit and segmented full capacitor array |
CN106656190A (en) * | 2015-11-04 | 2017-05-10 | 瑞昱半导体股份有限公司 | Successive approximation type analog-digital conversion circuit and method thereof |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102801422B (en) * | 2012-08-17 | 2016-06-15 | 中国科学院微电子研究所 | Successive approximation type analog-to-digital converter |
CN104242939B (en) * | 2013-07-10 | 2017-09-29 | 西安电子科技大学 | The asynchronous gradual approaching A/D converter that a kind of intermediate resolution can configure at a high speed |
CN104242940B (en) * | 2013-08-09 | 2017-10-27 | 西安电子科技大学 | A kind of configurable asynchronous gradual approaching A/D converter of wide operating voltage |
CN104124971B (en) * | 2013-11-08 | 2018-06-05 | 西安电子科技大学 | Two-stage flow-line modulus converter based on Approach by inchmeal principle |
CN104113339B (en) * | 2013-12-03 | 2017-05-10 | 西安电子科技大学 | high-speed asynchronous successive approximation type analog-to-digital converter |
CN104113341B (en) * | 2014-07-16 | 2017-05-24 | 西安电子科技大学 | 12-bit intermediate-rate successive approximation type analog-digital converter |
US9219492B1 (en) * | 2014-09-19 | 2015-12-22 | Hong Kong Applied Science & Technology Research Institute Company, Limited | Loading-free multi-stage SAR-assisted pipeline ADC that eliminates amplifier load by re-using second-stage switched capacitors as amplifier feedback capacitor |
CN104660263B (en) * | 2014-12-29 | 2018-03-06 | 南京西西弗信息科技有限公司 | A kind of low-power consumption analog-digital converter |
CN104639169B (en) * | 2015-02-12 | 2017-10-20 | 西安交通大学 | A kind of two steps conversion successive approximation modulus converting circuit structure |
CN106301376B (en) * | 2015-06-03 | 2019-12-06 | 中国科学院深圳先进技术研究院 | Low-power-consumption successive approximation type analog-to-digital converter with adjustable comparator bias current |
CN104993830B (en) * | 2015-08-07 | 2018-02-13 | 中国电子科技集团公司第二十四研究所 | Binary channels time-division pilotaxitic texture is asynchronous gradually to compare type analog-to-digital converter |
CN105187067B (en) * | 2015-09-28 | 2018-04-06 | 中国电子科技集团公司第三十八研究所 | The capacitor array type d convertor circuit of high speed gradual approaching A/D converter |
CN105375926B (en) * | 2015-11-30 | 2018-10-26 | 上海华虹宏力半导体制造有限公司 | The capacitive gradually-appoximant analog-digital converter of pseudo-differential |
CN107528592A (en) * | 2016-06-22 | 2017-12-29 | 成都锐成芯微科技股份有限公司 | The self-built clock circuit of disparate step with delay unit |
CN107968655A (en) * | 2016-10-20 | 2018-04-27 | 国民技术股份有限公司 | A kind of successive approximation simulates digital quantizer |
CN107395205B (en) * | 2017-06-22 | 2020-06-19 | 西安电子科技大学 | Successive approximation type analog-digital converter based on asymmetric differential capacitor array |
TWI657666B (en) * | 2017-10-31 | 2019-04-21 | 聯陽半導體股份有限公司 | Analog-to-digital converter and calibration method thereof and callbration apparatus |
EP3716487A1 (en) * | 2019-03-27 | 2020-09-30 | Nxp B.V. | A capacitive sampling circuit |
CN110535470B (en) * | 2019-08-26 | 2022-06-14 | 中国电子科技集团公司第二十四研究所 | Comparator clock generation circuit and high-speed successive approximation type analog-to-digital converter |
CN111865319A (en) * | 2020-07-28 | 2020-10-30 | 西安电子科技大学 | An ultra-low power successive approximation analog-to-digital converter based on a four-input comparator |
CN115733493A (en) * | 2022-11-18 | 2023-03-03 | 江苏谷泰微电子有限公司 | Asynchronous and synchronous coexisting two-stage analog-to-digital converter and working method thereof |
CN116633353B (en) * | 2023-07-19 | 2023-10-03 | 高拓讯达(北京)微电子股份有限公司 | Low-power-consumption analog-to-digital conversion circuit |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102006075A (en) * | 2010-12-23 | 2011-04-06 | 复旦大学 | Successive approximation type analog-to-digital converter of energy-saving capacitor array |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7271758B2 (en) * | 2005-06-29 | 2007-09-18 | Silicon Laboratories Inc. | Gain adjust for SAR ADC |
-
2011
- 2011-09-21 CN CN201110280963.8A patent/CN102386923B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102006075A (en) * | 2010-12-23 | 2011-04-06 | 复旦大学 | Successive approximation type analog-to-digital converter of energy-saving capacitor array |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106656190A (en) * | 2015-11-04 | 2017-05-10 | 瑞昱半导体股份有限公司 | Successive approximation type analog-digital conversion circuit and method thereof |
CN106656190B (en) * | 2015-11-04 | 2020-02-14 | 瑞昱半导体股份有限公司 | Successive approximation type analog-digital conversion circuit and method thereof |
CN106656192A (en) * | 2016-10-10 | 2017-05-10 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | ADC chip circuit based on gate voltage bootstrap circuit and segmented full capacitor array |
Also Published As
Publication number | Publication date |
---|---|
CN102386923A (en) | 2012-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102386923B (en) | Asynchronous successive approximation analog-to-digital converter and conversion method | |
CN104967451B (en) | Gradual approaching A/D converter | |
CN103166644B (en) | A kind of low-power consumption gradual approaching A/D converter and conversion method thereof | |
CN104242939B (en) | The asynchronous gradual approaching A/D converter that a kind of intermediate resolution can configure at a high speed | |
CN102386924B (en) | Low Voltage Asynchronous Successive Approximation Analog-to-Digital Converter | |
CN206164507U (en) | Successive approximation type adc with segmentation capacitor array | |
CN105187065B (en) | Successive approximation analog to digital C super low-power consumption capacitor array and its logic control method | |
TWI532328B (en) | Analog to digital converter and converting method thereof | |
CN103178855B (en) | Be applied to the syllogic capacitor array structure of high accuracy gradually-appoximant analog-digital converter | |
CN109379082B (en) | Successive approximation analog-to-digital converter | |
CN108306644B (en) | Front-end circuit based on 10-bit ultra-low power consumption successive approximation type analog-to-digital converter | |
CN104253613B (en) | A kind of low pressure ultra-low-power high-precision comparator of SAR ADC | |
CN104124971A (en) | Two-stage pipelined analog-digital converter based on successive approximation principle | |
CN109936369B (en) | A Hybrid SAR-VCO ADC | |
CN108832928B (en) | Common-mode voltage correction circuit of SAR ADC capacitor array and correction method thereof | |
CN108111171B (en) | Monotonic switching method suitable for differential structure successive approximation type analog-to-digital converter | |
TWI583139B (en) | Analog to digital converting apparatus and initial method thereof | |
CN112564709A (en) | Noise shaping successive approximation analog-to-digital converter based on error feedback | |
CN107395205B (en) | Successive approximation type analog-digital converter based on asymmetric differential capacitor array | |
Huang et al. | A 10-bit 100 MS/s successive approximation register analog-to-digital converter design | |
CN106656190A (en) | Successive approximation type analog-digital conversion circuit and method thereof | |
CN111435835B (en) | Switched capacitor circuit and analog-to-digital conversion device | |
CN106656192A (en) | ADC chip circuit based on gate voltage bootstrap circuit and segmented full capacitor array | |
CN116405032A (en) | Noise shaping successive approximation type analog-to-digital converter and control method | |
TWI477083B (en) | Successive approximation analog-to-digital converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140101 Termination date: 20140921 |
|
EXPY | Termination of patent right or utility model |