CN103671820B - 齿轮及其制造方法 - Google Patents

齿轮及其制造方法 Download PDF

Info

Publication number
CN103671820B
CN103671820B CN201310429515.9A CN201310429515A CN103671820B CN 103671820 B CN103671820 B CN 103671820B CN 201310429515 A CN201310429515 A CN 201310429515A CN 103671820 B CN103671820 B CN 103671820B
Authority
CN
China
Prior art keywords
gear
tooth
flank
gear teeth
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310429515.9A
Other languages
English (en)
Other versions
CN103671820A (zh
Inventor
近江宪仕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012207916A external-priority patent/JP2014062591A/ja
Priority claimed from JP2012222036A external-priority patent/JP6113452B2/ja
Application filed by Enplas Corp filed Critical Enplas Corp
Publication of CN103671820A publication Critical patent/CN103671820A/zh
Application granted granted Critical
Publication of CN103671820B publication Critical patent/CN103671820B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F17/00Special methods or machines for making gear teeth, not covered by the preceding groups
    • B23F17/005Special methods or machines for making gear teeth, not covered by the preceding groups for machining tooth fillet or tooth root
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • F16H55/0806Involute profile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/10Gear cutting
    • Y10T409/101431Gear tooth shape generating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/1987Rotary bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gears, Cams (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明的齿轮,具有多个轮齿(3),并通过与配对齿轮的轮齿啮合而传递旋转运动,各个轮齿(3)的齿根侧形状(b)形成为包含第1曲面(c)和第2曲面(d),所述第1曲面(c)是与渐开线曲线的齿面(a)平滑连接的曲面,并由相对于所述渐开线曲线的齿面向相反方向凸出的曲线来表示,所述第2曲面(d)与所述第1曲面(c)平滑连接,并由相对于所述第1曲面(c)向相同方向凸出的二次函数来定义。由此,当与配对齿轮的轮齿啮合时能减少齿根侧的发生应力,获得轮齿的高强度化。

Description

齿轮及其制造方法
技术领域
本发明涉及一种具有多个轮齿并利用与配对齿轮的轮齿的啮合而在两轴之间传递旋转运动的齿轮,具体来说涉及一种当与配对齿轮的轮齿啮合时减少齿根侧的发生应力,具有能实现轮齿的高强度化的齿形形状的齿轮及其制造方法。
背景技术
以往,对于汽车和精密机械等动力传递机构所使用的齿轮,实施了各种提高轮齿强度的方法。
作为这种齿轮,有这样一种具有轮齿和齿槽的环形齿轮,即,在使轮齿与介由其齿面而联动的配对齿轮(小齿轮)相卡合的形式的齿轮中,齿面在小齿轮的最后卡合点之后,从齿顶向齿底而接近由小齿轮画出的、相对于基准齿面投影成垂直截面的次摆线,所述齿槽在横截面看时在齿底区域呈尖的拱形(例如参照日本专利特表2004-519644号公报)。
但是,在日本专利特表2004-519644号公报所记载的齿轮中,由于相邻的轮齿与轮齿之间的齿槽在横截面看时,在齿底的区域呈尖的拱形,因此,是一种齿底形成尖三角状的凹点的齿轮。在这种齿轮中,当与配对齿轮的轮齿啮合时容易在齿底的凹点产生应力集中,有增大发生应力并使之破损的可能。因此,要求包含齿底在内的轮齿整体的高强度化。
发明内容
因此,为了解决这类问题,本发明所要解决的课题是,提供具有这样一种齿形形状的齿轮及其制造方法,当与配对齿轮的轮齿啮合时能减少齿根侧的发生应力,获得轮齿高强度化。
用于解决课题的手段
为了实现上述课题,第1实施形态的齿轮是,具有多个轮齿,并通过与配对齿轮的轮齿啮合而传递旋转运动,多个所述轮齿分别包含第1齿面和第2齿面,所述第1齿面具有渐开线曲线,所述第2齿面相对于该第1齿面位于齿根侧,多个所述轮齿的各个位于齿根侧的第2齿面包含第1曲面和第2曲面,所述第1曲面是与所述渐开线曲线的齿面平滑连接的曲面,并由相对于所述渐开线曲线的齿面向相反方向凸出的曲线来表示,所述第2曲面与所述第1曲面平滑连接,并由相对于所述第1曲面向相同方向凸出的表示为y=kx2的二次函数来定义,其中,k是系数。
所述第2曲面,其轮齿直角截面的形状也可做成具有不与所述啮合的配对齿轮的轮齿的运动轨迹相干涉的曲率半径的曲线形状。
所述第1曲面,其轮齿直角截面的形状也可为具有不与所述啮合的配对齿轮的轮齿的运动轨迹相干涉的曲率半径的圆弧形状,或沿着所述运动轨迹的干涉区域的样条曲线的形状。
而采用第1实施形态的齿轮,由于各个轮齿的齿根侧形状形成为包含第1曲面和第2曲面,所述第1曲面是与渐开线曲线的齿面平滑连接的曲面,并由相对于所述渐开线曲线的齿面向相反方向凸出的曲线来表示,所述第2曲面与所述第1曲面平滑连接,并由相对于所述第1曲面向相同方向凸出的二次函数来定义,故齿底面不会形成尖的三角状的凹点,可形成由二次函数所定义的曲面。因此,齿根侧难以产生应力集中,当与配对齿轮的轮齿啮合时能减少齿根侧的发生应力,能获得轮齿的高强度化。由此,轮齿的长期耐久特性得到改善。
另外,第2实施形态的齿轮是,具有多个轮齿,并通过与配对齿轮的轮齿啮合而传递旋转运动,多个所述轮齿分别包含第1齿面和第2齿面,所述第1齿面具有渐开线曲线,所述第2齿面相对于该第1齿面位于齿根侧,多个所述轮齿的各个位于齿根侧的第2齿面具有与用齿条刀被展成切齿(日语:創成歯切り)后的形状相同的形状,所述齿条刀的刀刃具有由表示为y=kx2的二次函数所定义的曲线的圆形部分,其中,k是系数。
而采用第2实施形态的齿轮,对于各个轮齿的齿根侧形状,可做成具有与用齿条刀被展成切齿后的形状相同的曲面,该齿条刀的刀刃具有由二次函数所定义的曲线的圆形部分,而齿底面不会形成尖的三角状的凹点。因此,齿根侧难以产生应力集中,当与配对齿轮的轮齿啮合时能减少齿根侧的发生应力,能获得轮齿的高强度化。由此,轮齿的长期耐久特性得到改善。
此外,第2实施形态的齿轮的制造方法,是具有多个轮齿并通过与配对齿轮的轮齿啮合而传递旋转运动的齿轮的制造方法,多个所述轮齿分别包含第1齿面和第2齿面,所述第1齿面具有渐开线曲线,所述第2齿面相对于该第1齿面位于齿根侧,将多个所述轮齿的各个位于齿根侧的第2齿面做成与用齿条刀被展成切齿后的形状相同的形状,所述齿条刀的刀刃具有由二次函数所定义的曲线的圆形部分。
所述齿轮的制造方法也可是,以金属作为齿轮的原材料,并对各个轮齿的齿根侧形状用齿条刀进行展成切齿,所述齿条刀的刀刃具有由二次函数所定义的曲线的圆形部分。
所述齿轮的制造方法也可是,以树脂作为齿轮的原材料,并对各个轮齿的齿根侧形状用齿轮模子(日语:ギヤ駒)进行射出成型,所述齿轮模子是基于用齿条刀被展成切齿后的齿轮而制成的,所述齿条刀的刀刃具有由二次函数所定义的曲线的圆形部分。
而采用第2实施形态的齿轮的制造方法,对于各个轮齿的齿根侧形状,可做成具有与用齿条刀被展成切齿后的形状相同的曲面,该齿条刀的刀刃具有由二次函数所定义的曲线的圆形部分,而齿底面不会形成尖的三角状的凹点。因此,齿根侧难以产生应力集中,当与配对齿轮的轮齿啮合时能减少齿根侧的发生应力,能获得轮齿的高强度化。由此,轮齿的长期耐久特性得到改善。
附图说明
图1是表示本发明的齿轮的整体形状的主视图。
图2是表示标准齿轮的齿形的立体图。
图3是表示第1实施形态的齿轮的轮齿形状的放大说明图。
图4是表示第1实施形态的齿轮的轮齿啮合时接触的配对齿轮的齿顶侧的齿面的运动轨迹的说明图。
图5是表示图4中A部的具体形状的说明图。
图6是表示对第1比较齿轮进行模拟实验后的解析结果的应力分布的曲线图。
图7是表示对第1实施形态的齿轮进行模拟实验后的解析结果的应力分布的曲线图。
图8是表示第2实施形态的齿轮的轮齿形状的放大说明图。
图9是表示刀刃具有由二次函数所定义的曲线的圆形部分的齿条刀的说明图。
图10是表示图9中B部的具体形状的说明图。
图11是表示用图9所示的齿条刀进行展成切齿时刀刃的运动轨迹的说明图。
图12是表示对第2比较齿轮进行模拟实验后的解析结果的应力分布的曲线图。
图13是表示对第2实施形态的齿轮进行模拟实验后的解析结果的应力分布的曲线图。
具体实施方式
下面,根据说明书附图来说明本发明的实施形态。
图1是表示本发明的齿轮的整体形状的主视图。该齿轮具有多个轮齿并利用与配对齿轮的轮齿啮合而在两轴之间传递旋转运动,是广泛用于例如汽车、精密机械、产业机械及它们的部件等的动力传递机构的齿轮。
在图1中,齿轮1的大致圆板状的腹板2(日语:ウェブ)的外周侧形成有多个轮齿3、3、……,在腹板2的中心部形成有用于固定旋转轴的穿设有轴孔4的轴套5,齿轮1在两轴之间传递旋转运动。另外,符号P表示该齿轮1的节圆。
所述齿轮1的轮齿3一般如图2所示,形成为具有渐开线曲线的齿面且左右对称的标准齿轮的齿形。即,各个轮齿3其齿顶面6的齿宽W1与齿底面7(即在相邻轮齿3、3之间的齿槽中最低的底面)的齿宽W2做成同一尺寸,齿全高H在齿宽方向做成一定。
图3是表示第1实施形态的齿轮1的轮齿3的形状的放大说明图。在图3中,将轮齿3的侧面称为齿面a,将齿面a的齿根侧形状称为齿面b。并且,第1实施形态中的齿轮1的轮齿3是对齿面a的齿根侧形状作了设计后的轮齿,如图3所示,各个轮齿3的齿根侧的齿面b的形状包含第1曲面c和第2曲面d。
也就是说,第1曲面c是与渐开线曲线的齿面a平滑连接的曲面,做成由相对于所述渐开线曲线的齿面a向相反方向凸出的曲线所表示的形状。
另外,第2曲面d做成与所述第1曲面c平滑连接、由相对于所述第1曲面c向相同方向凸出的二次函数所定义的形状。作为该二次函数,表示为y=kx2(这里,k是系数)。
这种齿形形状由如下所述决定。首先,在图4中,第2曲面d,其轮齿3的轮齿直角截面的形状做成具有不与啮合的配对齿轮的轮齿的运动轨迹相干涉的曲率半径、且与所述标准齿轮的齿底面7(参照图2)相接的曲线形状。即,齿轮的轮齿3在啮合时进行接触的配对齿轮(图示省略)的齿顶侧的齿面运动轨迹,由图4所示那样的次摆线曲线T来获得。该次摆线曲线T被限于在标准齿轮轮齿3、3间齿槽内不到达齿底面7的区域。在该状态下,只要决定成以下的形状即可:具有不与作为配对齿轮的轮齿的运动轨迹的次摆线曲线T相干涉的曲率半径、由成为与所述标准齿轮的齿底面7相接的曲线的二次函数所定义的形状。在这样的情况下,由于第2曲面d成为向图4中的虚线f所示的标准齿轮齿根侧齿面的内侧突出的形状,故齿根侧的齿厚比以往技术中的大。另外,齿轮的齿底面7上不会形成前述日本专利特表2004-519644号公报中记载的那样的尖的三角状的凹点。另外,在图4中,二次函数形成的第2曲面d虽然做成与标准齿轮的齿底面7相接的曲线形状,但第1实施形态并不限于此,只要是不与配对齿轮的轮齿的运动轨迹相干涉的位置,也可设定在任意的位置。例如,若设定在比所述标准齿轮的齿底面7高的位置,有可能进一步获得轮齿的高强度化。
接着,在图4中,第1曲面c,其轮齿3的轮齿直角截面的形状做成具有不与啮合的配对齿轮的轮齿的运动轨迹相干涉的曲率半径的圆弧的形状,或做成沿着所述运动轨迹的干涉区域那样的样条曲线的形状。这里,图5表示图4中A部的具体形状。在图5中,在齿面a与曲面d相交处,形成由渐开线曲线的齿面a的弯曲形状与由二次函数定义的第2曲面d的弯曲形状(与齿面a的弯曲形状方向相反)交汇的尖端e。当在齿面上存在这样的尖端e时,在此处容易集中应力。因此,为了消除该尖端e,只要将第1曲面c的形状做成前述那样的、具有不与作为配对齿轮的轮齿的运动轨迹的渐开线曲线T相干涉的曲率半径的圆弧的形状,或做成沿着该渐开线曲线T的干涉区域那样的样条曲线的形状即可。在这种情况下,第1曲面c成为不存在尖端e的平滑的齿面,且是与渐开线曲线的齿面a平滑连接的曲面,及成为由相对于该渐开线曲线的齿面a向相反方向凸出的曲线所表示的曲面。因此,能实现不使尖端产生应力集中的形状的齿形。
对于上述那样的齿形形状的第1实施形态的齿轮1,现说明通过计算机模拟实验得出的啮合时齿根侧的发生应力并进行解析(CAE)后的结果。在这种情况下,作为进行比较的齿轮,使用在标准齿轮的齿形中用刀刃具有由圆弧定义的圆形部分的齿条进行展成切齿后的齿轮(以下称为“第1比较齿轮”)。
现说明该模拟实验的齿根应力计算时的计算模型和解析条件。该解析中所用的第1实施形态的齿轮及第1比较齿轮是正齿轮,模数(m)是1,齿数是30个。材质是杨氏模量=2800MPa、泊松比≒0.38的树脂(POM)。啮合的配对齿轮,各要素做成与前述第1实施形态的齿轮及第1比较齿轮相同。负荷条件是,在最差载荷点位置向齿面法线方向赋予10N的载荷。作为解析模型,用仅抽出一轮齿的薄壳网壳模型(日语:シェルメッシュモデル)进行了解析。作为计算齿根应力的计算软件,使用了“SolidWorks”软件。
首先,图6表示对第1比较齿轮进行解析后得出的齿根应力的应力分布的结果。在图6中,横轴表示齿全高方向的X坐标(mm),坐标的右侧表示齿顶侧,左侧表示齿底侧。横轴的原点是齿轮中心(轴孔4的中心)。纵轴表示发生的主应力(MPa)的大小。在该第1比较齿轮中,如图6所示,主应力从齿顶侧向齿底侧逐渐增大,从X坐标=14.3mm处主应力急剧上升,最大主应力σmax达到5.39MPa。
接着,图7表示对第1实施形态的齿轮进行解析后得出的齿根应力的应力分布的结果。在图7中,横轴、纵轴与图6相同,表示齿全高方向的X坐标(mm)和发生的主应力(MPa)的大小。第1实施形态的齿轮中,尽管如图7所示那样,主应力从齿顶向齿底逐渐增大,从X坐标=14.3mm处开始主应力增加,但最大主应力σmax为4.6MPa。在这种情况下,主应力的上升位置与第1比较齿轮的主应力的上升位置大致相同。另外,该上升的状态也与第1比较齿轮大致相同。但是,在第1实施形态的齿轮中,最大主应力σmax比第1比较齿轮低(约减少14%)。并且,若看齿根侧的应力分布,则第1比较齿轮成为在一处具有峰值(极大值)的凸形分布,而在第1实施形态的齿轮中,成为应力广泛分散的形态(被平坦化),由此认为最大主应力下降。
从上述的模拟实验的解析结果可知,很明显采用第1实施形态的齿轮的齿形形状,相比于第1比较齿轮,可减少与配对齿轮的轮齿在啮合时齿根侧的发生应力,可获得轮齿高强度化。因此,轮齿的长期耐久性得到改善。
另外,采用第1实施形态的齿轮,由于齿根侧形状为由二次函数定义的曲面,因此,相比于齿底形成尖的三角状凹点的以往齿轮,齿根侧难以产生应力集中。
图8是表示第2实施形态的齿轮1的轮齿3形状的放大说明图。在图8中,将轮齿3的侧面称为齿面a,将齿面a的齿根侧形状称为齿面b。并且,第2实施形态的齿轮1的轮齿3是对齿面a的齿根侧形状作了设计的轮齿,如图8所示,各个轮齿3的齿根侧的齿面b形状具有与用齿条刀被展成切齿后的形状相同的形状,而该齿条刀的刀刃具有由二次函数所定义的曲线的圆形部分。尤其,与所述齿底面7(参照图2)连接的部分被做成凹曲面。
并且,所述凹曲面(b),是与渐开线曲线的齿面a平滑连接的曲面,即被做成由相对于所述渐开线曲线的齿面a向相反方向凸出的曲线所表示的形状。另外,作为具有这种齿根侧形状的齿轮1,既可是对金属原材料进行切削加工而制成的金属齿轮,也可是将树脂进行射出成型而制成的树脂齿轮。
这里,要制造图8所示齿形形状的齿轮1,也可将各个轮齿3的齿根侧形状形成为与用齿条刀进行展成切齿后的形状相同的形状,齿条刀的刀刃具有由二次函数所定义的曲线的圆形部分。在这种情况下所用的齿条刀10如图9所示,在该刀11的刀刃12上具有由二次函数定义的曲线的圆形部分。作为该二次函数,表示为y=kx2(这里,k是系数)。
图10表示图9中B部的具体形状。在图10中,齿条刀10的刀11在通常的齿轮设计中用展成切齿方式制造齿根强度高的齿轮时,一般是将刀刃12的部分做成圆弧形状。即,刀刃12的点C1、D、C2的部分被做成具有规定半径的圆弧g(以往例子)。与此相对,制造第2实施形态的齿轮1所用的齿条刀10的刀11,其图10所示的刀刃12的点C1、D、C2的部分做成被由二次函数定义的曲线h置换后的圆形部分。在这种情况下,由二次函数定义的曲线h相比于以往例子的圆弧g更位于内侧,刀刃12稍许变细。用具有这种刀刃12的齿条刀10被展成切齿后的齿轮1,其齿根侧的齿厚比用刀刃12做成圆弧g的以往例子的齿条刀被展成切齿后的齿轮大。另外,在图10中,虽然刀刃12的点C1、D、C2的部分被由二次函数定义的曲线h置换,但对于左右的曲线开始点(或连接点)C1、C2的位置,在不与啮合的配对齿轮的轮齿的运动轨迹相干涉的范围也可设定在任意位置。
图11是表示用图9所示的齿条刀10进行展成切齿时刀刃12的运动轨迹的说明图。在这种情况下,以金属作为齿轮1的原材料,将各个轮齿3的齿根侧形状用刀刃12具有由二次函数定义的曲线的圆形部分的齿条刀10进行展成切齿而制造齿轮1的状态来表示。齿条刀10的刀11碰到齿轮1的原材料进行展成切齿时的刀刃12的运动轨迹以图11所示那样的曲线U来获得。该曲线U在标准齿轮的轮齿3、3间的齿槽内成为其顶点与齿底面7相接的状态。在这种情况下,由于图8所示的凹曲面(b)成为向图11虚线i所示的标准齿轮的齿根侧的齿面的内侧突出的形状,因此,齿根侧的齿厚比以往例子大。另外,在齿轮的齿底面7上不会形成前述日本专利特表2004-519644号公报所记载的那样的尖的三角状的凹点。另外,在图11中,凹曲面(b)做成与标准齿轮的齿底面7相接的曲线形状,但第2实施形态不限于此,只要是不与配对齿轮的轮齿的运动轨迹相干涉的位置,也可设定在任意位置。例如,若设定在比所述标准齿轮的齿底面7高的位置,也有可能获得轮齿高强度化。
另外,在上述说明中,说明了制造金属齿轮的状态,但第2实施形态并不限于此,也可用树脂作为齿轮1的原材料,将各轮齿3的齿根侧的形状用齿轮模子(模具)进行射出成型来制造树脂齿轮,齿轮模子是基于用齿条刀10被展成切齿后的齿轮而制作的,而齿条刀10的刀刃12具有由二次函数所定义的曲线的圆形部分。对于这种情况下的齿轮模子的制作,也可将用所述齿条刀10被展成切齿后的金属齿轮用作为电极,利用放电加工来制造齿轮模子。或者,也可利用除了放电加工以外的以往公知的方法来制造齿轮模子。
现说明对于上述那样决定的齿形形状的第2实施形态的齿轮1,通过计算机模拟实验求出啮合时齿根侧的发生应力并进行解析(CAE)后的结果。在这种情况下,作为进行比较的齿轮,做成在标准齿轮的齿形中用刀刃具有由圆弧所定义的圆形部分的齿条刀被展成切齿后的齿轮(以下称为“第2比较齿轮”)。
现说明该模拟实验的齿根应力计算时的计算模型和解析条件。该解析中所用的第2实施形态的齿轮及第2比较齿轮是正齿轮,模数(m)是1,齿数是30个。材质是杨氏模量=2800MPa、泊松比≒0.38的树脂(POM)。啮合的配对齿轮,其各要素做成与前述第2实施形态的齿轮及第2比较齿轮相同。负荷条件是,在最差载荷点位置向齿面法线方向赋予10N的载荷。作为解析模型,用仅拔出一轮齿的薄壳网壳模型进行了解析。作为齿根应力计算的计算软件,使用了“SolidWorks”。
首先,图12表示对第2比较齿轮进行解析后的齿根应力的应力分布的结果。在图12中,横轴表示齿全高方向的X坐标(mm),坐标的右侧表示齿顶侧,左侧表示齿底侧。横轴的原点是齿轮中心(轴孔4的中心)。纵轴表示发生的主应力(MPa)的大小。在该第2比较齿轮中,如图12所示,主应力从齿顶侧向齿底侧逐渐增大,从X坐标=14.3mm处主应力急剧上升,最大主应力σmax达到5.39MPa。
接着,图13表示对第2实施形态的齿轮进行解析后的齿根应力的应力分布的结果。在图13中,横轴、纵轴与图12相同,表示齿全高方向的X坐标(mm)和发生的主应力(MPa)的大小。第2实施形态的齿轮中,尽管如图13所示那样,主应力从齿顶向齿底逐渐增大,从X坐标=14.3mm处开始主应力增加,但最大主应力σmax为5.25MPa。在这种情况下,主应力的上升位置与第2比较齿轮的大致相同。另外,该上升的状态也与第2比较齿轮大致相同。但是,在第2实施形态的齿轮中,最大主应力σmax比第2比较齿轮低(约减少3%)。并且,若看齿根侧的应力分布,则第2比较齿轮成为在一处具有峰值(极大值)的凸形分布,而在第2实施形态的齿轮中,成为应力广泛分散的形态(被平坦化),由此认为最大主应力下降。
从上述的模拟实验的解析结果可知,采用第2实施形态的齿轮的齿形形状,相比于第2比较齿轮,可减少与配对齿轮轮齿在啮合时齿根侧的发生应力,可获得轮齿高强度化。因此,轮齿的长期耐久性得到改善。
另外,采用第2实施形态的齿轮,对于各个轮齿的齿根侧形状,相比于齿底面形成尖的三角状凹点的以往齿轮,难以在齿根侧产生应力集中。
另外,在以上的实施形态中,说明了把本发明适用于标准齿轮的例子,但本发明并不限于此,例如,当然也可适用于转位齿轮。
另外,本发明的齿轮不限于正齿轮,可广泛适用于斜齿轮、人字齿轮、锥齿轮、平面齿轮、蜗轮传动齿轮和偏轴伞齿轮等齿形形状。另外,本发明的齿轮不限于金属(例如机械构造用合金钢、碳素钢、不锈钢、黄铜、磷青铜等)制的齿轮,也可适用于树脂制的齿轮。

Claims (7)

1.一种齿轮,具有多个轮齿,并通过与配对齿轮的轮齿啮合而传递旋转运动,该齿轮的特征在于,
多个所述轮齿分别包含第1齿面和第2齿面,所述第1齿面具有渐开线曲线,所述第2齿面相对于该第1齿面位于齿根侧,
多个所述轮齿的各个位于齿根侧的第2齿面包含第1曲面和第2曲面,
所述第1曲面是与所述渐开线曲线的齿面平滑连接的曲面,并由相对于所述渐开线曲线的齿面向相反方向凸出的曲线来表示,
所述第2曲面与所述第1曲面平滑连接,并由相对于所述第1曲面向相同方向凸出的表示为y=kx2的二次函数来定义,其中,k是系数。
2.如权利要求1所述的齿轮,其特征在于,所述第2曲面,其轮齿直角截面的形状为具有不与所述啮合的配对齿轮的轮齿的运动轨迹相干涉的曲率半径的曲线形状。
3.如权利要求1或2所述的齿轮,其特征在于,所述第1曲面,其轮齿直角截面的形状为具有不与所述啮合的配对齿轮的轮齿的运动轨迹相干涉的曲率半径的圆弧形状,或沿着所述运动轨迹的干涉区域的样条曲线的形状。
4.一种齿轮,具有多个轮齿,并通过与配对齿轮的轮齿啮合而传递旋转运动,该齿轮的特征在于,
多个所述轮齿分别包含第1齿面和第2齿面,所述第1齿面具有渐开线曲线,所述第2齿面相对于该第1齿面位于齿根侧,
多个所述轮齿的各个位于齿根侧的第2齿面具有与用齿条刀被展成切齿后的形状相同的形状,所述齿条刀的刀刃具有由表示为y=kx2的二次函数所定义的曲线的圆形部分,其中,k是系数。
5.一种齿轮的制造方法,是具有多个轮齿并通过与配对齿轮的轮齿啮合而传递旋转运动的齿轮的制造方法,其特征在于,
多个所述轮齿分别包含第1齿面和第2齿面,所述第1齿面具有渐开线曲线,所述第2齿面相对于该第1齿面位于齿根侧,
将多个所述轮齿的各个位于齿根侧的第2齿面做成与用齿条刀被展成切齿后的形状相同的形状,所述齿条刀的刀刃具有由表示为y=kx2的二次函数所定义的曲线的圆形部分,其中,k是系数。
6.如权利要求5所述的齿轮的制造方法,其特征在于,以金属作为齿轮的原材料,并对多个所述轮齿的各个位于齿根侧的第2齿面用齿条刀进行展成切齿,所述齿条刀的刀刃具有由表示为y=kx2的二次函数所定义的曲线的圆形部分,其中,k是系数。
7.如权利要求5所述的齿轮的制造方法,其特征在于,以树脂作为齿轮的原材料,并对多个所述轮齿的各个位于齿根侧的第2齿面用齿轮模子进行射出成型,所述齿轮模子是基于用齿条刀被展成切齿后的齿轮而制成的,所述齿条刀的刀刃具有由表示为y=kx2的二次函数所定义的曲线的圆形部分,其中,k是系数。
CN201310429515.9A 2012-09-21 2013-09-18 齿轮及其制造方法 Expired - Fee Related CN103671820B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-207916 2012-09-21
JP2012207916A JP2014062591A (ja) 2012-09-21 2012-09-21 歯車
JP2012222036A JP6113452B2 (ja) 2012-10-04 2012-10-04 歯車及びその製造方法
JP2012-222036 2012-10-04

Publications (2)

Publication Number Publication Date
CN103671820A CN103671820A (zh) 2014-03-26
CN103671820B true CN103671820B (zh) 2017-12-12

Family

ID=50310261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310429515.9A Expired - Fee Related CN103671820B (zh) 2012-09-21 2013-09-18 齿轮及其制造方法

Country Status (2)

Country Link
US (1) US9550243B2 (zh)
CN (1) CN103671820B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734458B2 (ja) * 2011-12-06 2015-06-17 本田技研工業株式会社 ウォームギヤ機構
DE102014115022B4 (de) 2014-10-16 2016-06-16 Präwema Antriebstechnik GmbH Verfahren zum Abrichten eines Honwerkzeugs und Verfahren zum Honen eines Zahnrads
DE102015106354A1 (de) 2014-12-16 2016-06-16 Profilator Gmbh & Co. Kg Wälzschälverfahren und Schneidwerkzeug zur Erzeugung zumindest teilverrundeter Zahnköpfe
CN107407393B (zh) * 2015-03-30 2019-08-16 日本制铁株式会社 高强度齿轮
JP6788968B2 (ja) * 2015-12-28 2020-11-25 株式会社シマノ 歯車およびこれを備える自転車用変速機構
US10816336B2 (en) * 2016-03-01 2020-10-27 Gleason Metrology Systems Corporation Measurement of worm gears
CN107864701A (zh) * 2017-09-26 2018-04-03 昆明理工大学 一种切土刃口具有仿生函数锯齿结构的手工锄头
DE102018108753A1 (de) * 2018-04-12 2019-10-17 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung einer Verzahnung und Verzahnung
IT201900013713A1 (it) * 2019-08-01 2021-02-01 Settima Mecc S R L Ruota dentata avente un profilo perfezionato
US11473664B2 (en) * 2019-10-21 2022-10-18 Aktiebolaget Skf Gear tooth chamfer for an annular gear
US11441666B2 (en) 2020-01-23 2022-09-13 Cnh Industrial America Llc Sprocket for agricultural vehicle
CN112733282B (zh) * 2020-12-21 2022-06-10 武汉理工大学 面齿轮车齿齿面模型的获取方法
EP4194716A1 (de) * 2021-12-09 2023-06-14 IMS Gear SE & Co. KGaA Zahnradgetriebe sowie sitzlängsverstellung für ein kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2422326A (en) * 1945-08-02 1947-06-17 Gleason Works Varying leverage gear
CN1940350A (zh) * 2005-09-28 2007-04-04 恩普乐股份有限公司 齿轮及齿轮装置
CN101410656A (zh) * 2006-03-31 2009-04-15 索纳Blw精密锻造有限责任公司 渐开线滚齿齿轮的齿形
CN103945953A (zh) * 2011-06-24 2014-07-23 Sms西马格股份公司 用于在偏转角下运行的齿部和制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946620A (en) * 1973-11-08 1976-03-30 Sumitomo Shipbuilding & Machinery Co., Ltd. Gear with a trochoidal curved disk
DE4138913C1 (zh) * 1991-11-27 1993-06-09 John S. Barnes Gmbh, 8670 Hof, De
US5271289A (en) * 1992-12-16 1993-12-21 Baxter Jr Meriwether L Non-involute gear
JP3552234B2 (ja) * 1996-10-02 2004-08-11 トヨタ自動車株式会社 歯車設計方法、歯車製造方法、およびその製造方法で製造された歯車
US6205879B1 (en) * 1999-06-28 2001-03-27 Visteon Global Technologies, Inc. Helical and spur gear drive with double crowned pinion tooth surfaces and conjugated gear tooth surfaces
AT409466B (de) * 2000-11-30 2002-08-26 Miba Sintermetall Ag Verfahren und vorrichtung zum herstellen eines zahnrades
DE10125067A1 (de) 2001-05-23 2002-12-12 Bosch Gmbh Robert Tellerrad
US6571655B2 (en) * 2001-07-26 2003-06-03 Juken Kogyo Co., Ltd. Involute gear pair structure
JP4414688B2 (ja) * 2003-06-26 2010-02-10 株式会社ジェイテクト 歯車機構
FR2867542B1 (fr) * 2004-03-12 2007-04-20 Centre Nat Rech Scient Organe dente et engrenage s'y rapportant
DE102005027144A1 (de) * 2005-06-10 2006-12-14 Gkn Sinter Metals Gmbh Oberflächenverdichtung einer Verzahnung
DE102008045318B3 (de) * 2008-09-02 2009-10-08 Voith Patent Gmbh Verzahnung eines Zahnrads
KR101012291B1 (ko) * 2008-10-06 2011-02-08 경원기계공업(주) 스크류 압축기용 로우터의 치형
JP5391396B2 (ja) * 2008-11-28 2014-01-15 株式会社エンプラス 歯車
JP5430538B2 (ja) * 2010-03-09 2014-03-05 ジヤトコ株式会社 ギア構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2422326A (en) * 1945-08-02 1947-06-17 Gleason Works Varying leverage gear
CN1940350A (zh) * 2005-09-28 2007-04-04 恩普乐股份有限公司 齿轮及齿轮装置
CN101410656A (zh) * 2006-03-31 2009-04-15 索纳Blw精密锻造有限责任公司 渐开线滚齿齿轮的齿形
CN103945953A (zh) * 2011-06-24 2014-07-23 Sms西马格股份公司 用于在偏转角下运行的齿部和制造方法

Also Published As

Publication number Publication date
US20140090503A1 (en) 2014-04-03
US9550243B2 (en) 2017-01-24
CN103671820A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
CN103671820B (zh) 齿轮及其制造方法
US9091338B2 (en) Free-form surface gear
CN104235308B (zh) 齿轮
CN101868656B (zh) 齿轮的齿部
CN107256300B (zh) 基于齿面应力边棱作用和齿轮歪斜变形的圆柱直齿轮齿向修形方法
JP2019500562A (ja) 連続歯元面接触方式の共役歯車
CN104662331B (zh) 齿轮
CN107002852B (zh) 树脂制斜齿轮
CN101862867A (zh) 基于可重复刃磨的面齿轮滚刀设计方法
US8250941B2 (en) Method of designing gear using CAD system, and gear
CN104816047A (zh) 一种面齿轮磨削刀具设计方法
CN104889503A (zh) 大齿轮基于模具成型的摆线齿锥齿轮半展成加工方法
CN109446709B (zh) 一种减速机的摆线齿廓曲线仿真方法及系统
CN104439540B (zh) 一种齿轮加工刀具
CN202349153U (zh) 一种单切双圆弧齿轮
Liu et al. Computerized determination of the qualified region of main design parameters of face-milled hypoid gears with low shaft angle
JP4474250B2 (ja) 円錐形インボリュート歯車対の設計方法及び円錐形インボリュート歯車対
CN102371473A (zh) 一种标准球面渐开线直齿圆锥齿轮的加工方法
CN110206866A (zh) 齿轮及其制造方法
JP6113452B2 (ja) 歯車及びその製造方法
Andersson et al. Optimizing the tooth root strength of sintered gears for a manual automotive transmission
Jia et al. Modelling and bending strength analysis of cylindrical gears with arcuate tooth trace
JP6129507B2 (ja) 歯車及びその製造方法
CN102537098A (zh) 齿轮联轴节及其制造方法
CN102494104A (zh) 一种单切双圆弧齿轮

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171212

Termination date: 20190918

CF01 Termination of patent right due to non-payment of annual fee